Division of Astrophysics and Nuclear Physics: Nuclear Physics Group (Parallel session #2)

Takashi Nakatsukasa

@CCS, Univ. of Tsukuba, 2014.2.19

Stochastic generation of low-energy configurations and configuration mixing calculation with Skyrme interactions

Graduate Student Y. Fukuoka (expected to receive his PhD in March)

Fukuoka, Shinohara, Funaki, Nakatsukasa, Yabana, PRC 88, 014321 (2013)

Microscopic structure theories

- Ab-inito-type approaches
 - GFMC, NCSM, CCM, etc.
 - Computationally very demanding for heavier nuclei
- Shell model approaches
 - CI calculation in a truncated space
 - Difficulties in cross-shell excitations
- Microscopic cluster models
 - RGM, GCM, etc.
 - Interaction is tuned for each nucleus
- Energy density functional approaches
 - New configuration-mixing (multi-ref.) calculation

Toward low-energy complete spectroscopy

Shinohara, Ohta, Nakatsukasa, Yabana, PRC 84, 054315 (2006)

- Beyond the mean field
 - Correlations, excited states
- Beyond (Q)RPA
 - States very different from the g.s.
- Beyond GCM
 - Lift a priori generator coordinates

Toward the *theoretical complete spectroscopy* of low-lying states with *an effective Hamiltonian* and with a *very large model space*:

"Stochastic" approach to configuration mixing

Configuration mixing with parity and angular momentum projection

- 1. Generation and selection of Slater det's in the 3D Cartesian Coordinate space $\{\Phi^i\} \ (i = 1, \dots, N)$
- 2. Projection on good J^{π} (3D rotation) $|\Phi_{MK}^{J}\rangle = P^{\pm}P_{MK}^{J}|\Phi\rangle$
- 3. Solution of generalized eigenvalue eq. $(\mathbf{H}^{J\pm} - E\mathbf{N}^{J\pm})\mathbf{g} = 0$

$$\frac{H_{nK,n'K'}^{J\pm}}{N_{nK,n'K'}^{J\pm}} = \left\langle \Phi^{n} \left| \begin{cases} H \\ 1 \end{cases} P^{\pm} P_{KK'}^{J} \right| \Phi^{n'} \right\rangle$$

Imaginary-time evolution

- Quickly removing high-energy (highmomentum) components
- Slowly moving on low-energy collective surface
- Finding local minima

Efficient method to construct configurations associated with many kinds of low-energy collective motions

Generation of basis states: Imaginary-time method in 3D coordinate space

Long-range correlations in terms of the configuration mixing

Imaginary-time Method

$$\left|\phi_{i}^{(n+1)}\right\rangle = e^{-\Delta t h[\rho]} \left|\phi_{i}^{(n)}\right\rangle, \quad i = 1, \cdots A$$

A well-known method in the Skyrme HF calculations

3D space is discretized in lattice Single-particle orbital:

$$\phi_i(\mathbf{r}) = \{\phi_i(\mathbf{r}_k)\}_{k=1,\cdots,Mr}, \quad i = 1,\cdots,N$$

Generation of many S-det's

Screening of Slater determinants

3D angular momentum projection

Parity and angular momentum projected state

$$\Psi_{M}^{J(\pm)} \rangle = \frac{2J+1}{8\pi^{2}} \sum_{K} g_{K} \int d\Omega D_{MK}^{J^{*}}(\Omega) \hat{R}(\Omega) \left| \Phi^{(\pm)} \right\rangle$$

$$\hat{R}(\Omega) = e^{-i\alpha \hat{J}_{z}} e^{-i\beta \hat{J}_{y}} e^{-i\gamma \hat{J}_{z}}$$
Parity-projected SD

Construct the angular momentum eigenstate by the explicit 3D rotation

Numerical detail

- Three-dimensional (3D) Cartesian mesh
 - Mesh size: 0.8 fm
 - All the mesh points inside the sphere of radius of 8 fm
- Euler angles
 - Discretization
 - $(\alpha, \beta, \gamma) = (18, 30, 18)$ points
- Numerical difficulties
 - Limiting number of SD
 - 50 Slater determinantns
 - About 10 h computation time 8.0 fm with the use of 512 processors

How *complete* is the calculation?

2012/3/6

- Ten different sets of Slater determinants, generated with different random numbers.
- Low-energy spectra within several hundred keV
- Transition strength within about 10 %

.....(10 sets)

69

¹²C (Sly4)

Exp: M. Chernykh *et al.*, PRL 98,032501 (2007)
AMD: Y. Kanada-En'yo, PTP117,655(2007)
GCM: E. Uegaki, *et al.*, PTP57,4 (1977)1262
RGM: M. Kamimura, NPA351,456-480(1981)
NCSM : P. Navrátil and W. E. Ormand, PRC 68, 034305 (2003)

¹²C Negative-parity excited states

Reliable results for the lowest state in each J^{π} Similar to the AMD result

Hoyle state

Radius

J^{π}	present	AMD	FMD	$3\alpha RGM$	BEC	3α GCM	
0^+_1	2.53 ± 0.03	2.53	2.39	2.40	2.40	2.40	
0_{2}^{+}	2.72 ± 0.003	3.27	3.38	3.47	3.83	3.40	Hoyle state
0^{+}_{3}	3.15 ± 0.02	3.98	4.62			3.52	Linear-chain state
2^+_1	2.61 ± 0.002	2.66	2.50	2.38	2.38	2.36	

Exp, FMD: M. Chernykh *et al.*, PRL 98,032501 (2007) AMD: Y. Kanada-En'yo, PTP117,655(2007) GCM: E. Uegaki, *et al.*, PTP57,4 (1977)1262 RGM: M. Kamimura, NPA351,456-480(1981)

Monopole transition

$$M(E0;0_1^+ \rightarrow 0_2^+) = 4.5 \pm 0.2 \text{ e fm}^2$$

5.4 \pm 0.2 Experiment
6.5 - 6.7 Other cal. based on the
gaussian anzats

16 POSITIVE parity

✓ correlation energy is about 3 MeV

¹⁶O Positive-parity states

Excitation energies are significantly lower than AMD.

16 **NEGATIVE** parity

arrows : B(E2) $(e^2 \text{fm}^4)$

✓ particle-hole excitation is good agreement with experimental values

²⁰Ne: Positive-parity states

- Well reproduce B(E2) values
- Too large moment of inertia

²⁰Ne: Negative-parity states

Computational cost of finite range interaction

■ Skyrme interaction

$$\begin{split} \left\langle \Phi \left| \widehat{V_{t0}^F} \right| \Phi \right\rangle &= -\frac{t_0}{2} x_0 \sum_{i,j} \left\langle \phi_i \phi_j \right| \delta(\vec{r}_1 - \vec{r}_2) \widehat{P}_r \widehat{P}_\sigma \widehat{P}_\tau \left| \phi_i \phi_j \right\rangle \\ &= -\frac{t_0}{2} x_0 \sum_{\tau} \int d\vec{r} \, \rho(\vec{r}\,)^2 \qquad \rho(\vec{r}) = \sum_{i,\sigma} \phi_i^*(\vec{r},\sigma) \phi_i(\vec{r},\sigma) \end{split}$$

Computational cost : $N_x^3 \times \underline{N_i}$

Gogny interaction

of orbits

$$\left| \Phi \left| \widehat{V_{W_l}^F} \right| \Phi \right\rangle = -\frac{W_l}{2} \sum_{\tau} \int d\vec{r} \int d\vec{r}' \rho(\vec{r}\sigma, \vec{r}'\sigma') \,\rho(\vec{r}'\sigma', \vec{r}\sigma) \exp\{-(\vec{r} - \vec{r}')^2 / \mu_l^2\}$$
$$\rho(\vec{r}\sigma, \vec{r}'\sigma') \equiv \sum_{i,\sigma} \phi_i^*(\vec{r}, \sigma) \phi_i(\vec{r}', \sigma') \quad \text{Computational cost}: \ N_x^6 \times N_i$$

 \checkmark Same scaling of orbit as the case of Skyrme interaction

 \checkmark scaling of space is power of two

Method 1: finite spherical lattice

$$W_{l} \text{ Fock term}$$

$$V_{W_{l}}^{F} = -\frac{W_{l}}{2} \sum_{\tau} \int d\vec{r} \int d\vec{r}' \rho(\vec{r}\sigma, \vec{r}'\sigma') \rho(\vec{r}'\sigma', \vec{r}\sigma) \exp\{-(\vec{r} - \vec{r}')^{2}/\mu_{l}^{2}\}$$

$$\rho(\vec{r}\sigma, \vec{r}'\sigma') \equiv \sum_{i,\sigma} \phi_{i}^{*}(\vec{r}, \sigma) \phi_{i}(\vec{r}', \sigma')$$

The range of Gogny interaction is about 4 fm.

it is sufficient to integrate r' inside 4fm sphere.

Numerical cost : $N_x^3 \times M \times N_i$ cf. Skyrme interaction $N_x^3 \times N_i$

✓ Same scaling as the case of Skyrme interaction, except M

Summary

Shinohara et al, PRC 74, 054315 (2006) Fukuoka et al, PRC 88, 014321 (2013)

- Complete low-lying spectroscopy with the Skyrme Hamiltonian
- Capable of describing various excited states in a unified way

<u>Problems</u>

- 2nd 0⁺ state in ¹⁶O
 - Energy too high by about 3 MeV
 - B(E2) Underestimated
 - Center of mass? Weak-coupling phenomena?
- Moment of inertia of ²⁰Ne
 - Too large
 - Pairing?
- Hoyle state in ¹²C
 - Too small radius? Effect of the spin-orbit interaction?

<u>Future issues</u>

- Coordinate-space calculation with finite-range interaction
- Reaction studies