
Division of Astrophysics and Nuclear 
Physics: Nuclear Physics Group 

(Parallel session #2)�

Takashi Nakatsukasa 

@CCS, Univ. of Tsukuba, 2014.2.19�



Graduate Student 
Y. Fukuoka 

(expected to receive his PhD in March) 

Stochastic generation of low-energy 
configurations and configuration mixing 

calculation with Skyrme interactions 

Fukuoka, Shinohara, Funaki, Nakatsukasa, Yabana, PRC 88, 014321 (2013)�



Microscopic structure theories�
•  Ab-inito-type approaches 

– GFMC, NCSM, CCM, etc. 
– Computationally very demanding for heavier nuclei  

•  Shell model approaches 
– CI calculation in a truncated space 
– Difficulties in cross-shell excitations 

•  Microscopic cluster models 
– RGM, GCM, etc. 
–  Interaction is tuned for each nucleus 

•  Energy density functional approaches 
– New configuration-mixing (multi-ref.) calculation 



Toward low-energy complete spectroscopy 

•  Beyond the mean field 
–  Correlations, excited states 

•  Beyond (Q)RPA 
–  States very different from the g.s. 

•  Beyond GCM 
–  Lift a priori generator coordinates 

Toward the theoretical complete spectroscopy of low-
lying states with an effective Hamiltonian and with a 
very large model space: 

�Stochastic� approach to configuration mixing 

Shinohara, Ohta, Nakatsukasa, Yabana, PRC 84, 054315 (2006) �



1.  Generation and selection of Slater det�s in 
the 3D Cartesian Coordinate space 

2.  Projection on good Jπ (3D rotation) 

3.  Solution of generalized eigenvalue eq. 

Configuration mixing with parity and 
angular momentum projection 
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Imaginary-time evolution�CONFIGURATION MIXING CALCULATION FOR . . . PHYSICAL REVIEW C 74, 054315 (2006)
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FIG. 1. Schematic picture of the energy surface. Two crosses
represents minima of the energy surface. Three paths, (A), (B), and
(C), show imaginary-time trajectories starting from different initial
Slater determinants. The dotted arrow of (B) indicates the trajectory
(B) passes through a shoulder state.

Figure 1 shows a schematic picture of the imaginary-time
calculations starting from different initial configurations. The
imaginary-time iteration has a property suitable for generating
the basis to calculate the long-range correlations. It quickly
removes high-energy components of the wave function in a
early stage of the iteration. The Slater determinant is expected
to rapidly fall onto a potential energy surface important for
low-energy modes of excitation. This is the very property we
want, because we should exclude Slater determinants that take
account of the short-range correlation in the Hamiltonian.
Therefore, we simply dispose all the Slater determinants
generated in the first few hundred iterations of the imaginary-
time evolution and then select Slater determinants after the
rate of energy decrease becomes relatively slow.

A series of Slater determinants generated with the
imaginary-time calculation starting from an arbitrary initial
state eventually converge to a self-consistent solution; either
the Hartree-Fock ground state [paths (A) and (B) in Fig. 1]
or local minima solutions [path (C) in Fig. 1]. During the
iterations, it sometimes happens that the configuration changes
very slowly and the state stays almost unchanged for a long
period of the iterations [a part presented by the dotted arrow
of path (B)]. This is called a shoulder state. Although these
shoulder states are not self-consistent solutions, they may play
an important role for the low-lying excitation spectra and the
ground-state correlation.

We repeat the imaginary-time iteration many times starting
from different initial configurations. We construct the initial
Slater determinants by a stochastic procedure: The single-
particle orbitals of the initial Slater determinant are in a
Gaussian form whose centers are randomly chosen. After
generating large number of imaginary-time trajectories, we
may expect that those Slater determinants span the complete
space for calculation of the long-range correlations.

Figure 2 is an example of the actual imaginary-time
calculations for 16O, showing the energy expectation value,
E(Nit) = 〈!(Nit)|H |!(Nit)〉, as a function of the iteration
number, Nit. The path is similar to (B) in Fig. 1, passing
through a shoulder state. In Nit < 100, the energy expectation
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FIG. 2. An example of the imaginary-time evolution in 16O
started from a randomly generated Slater determinant. Solid line
indicates energy expectation value of the Slater determinant, |!(Nit)〉,
as a function of iteration number, Nit. Snapshots of the density
distribution at every 500 iterations are shown. The dashed and the
dash-dotted line indicate energy of even and odd parity component
of the Slater determinant, respectively. The imaginary-time step of
"τ = 0.001 h̄/MeV is adopted in the calculation.

value decreases very rapidly. From Nit = 200 to 1500, the
energy decreases very slowly, corresponding to a shoulder
state. We have found that this shoulder state corresponds
to the cluster structure of 12C+α, which is considered as
a dominant component of the first excited state of 16O
in the cluster model studies. The dashed and dash-dotted
curves are the energy expectation value after parity projection,
E(±)(Nit) = 〈!(±) (Nit)|H | !(±)(Nit)〉/〈!(±)(Nit)|!(±)(Nit)〉,
where |!(±)(Nit)〉 = P ±|!(Nit)〉.

B. Selection of Slater determinants

During the imaginary-time iterations of Ntotal steps, Slater
determinants for every Ns iterations are taken as candidates
of the basis states. Thus, the Slater determinants at Nc

it =
Ns, 2Ns, . . . , knNs are nominated first. The number of Slater
determinants taken from a single path is kn = Ntotal/Ns .
The typical numbers are Ns = 50 and Ntotal = 2000, leading
to kn = 40. However, we cannot include all these Slater
determinants in the basis set of the configuration mixing
calculation, because too many Slater determinants lead to a
numerical instability caused by the overcompleteness. Thus,
we need to reduce their number. Here, we impose two
additional constraints on those candidates:

(i) E(Nc
it ) < EHF + 30 MeV.

(ii) Overlap between any pair of selected Slater determinants
must be less than 0.7 (see below for details).

The condition (a) means that the energy expectation value of
each Slater determinant, E(Nc

it ) = 〈!(Nc
it )|H |!(Nc

it )〉, should
not be so large because we are interested in low-lying states
and the long-range correlations only. In the present work, we
adopt the cut-off energy as 30 MeV above the Hartree-Fock
ground-state energy.

The second condition is directly related to the linear
independence among the Slater determinants. To determine
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•  Quickly removing 
high-energy (high-
momentum) 
components 

•  Slowly moving on 
low-energy 
collective surface 

•  Finding local minima�

Efficient method to construct configurations associated with many 
kinds of low-energy collective motions�



Generation of basis states: 
Imaginary-time method in 3D coordinate space 

A well-known method in the Skyrme HF calculations�

3D space is discretized in lattice 

Single-particle orbital: 

NiMrkkii ,,1,)}({)( ,1  == =rr φφ

Imaginary-time Method 

Long-range correlations in terms of the configuration mixing 
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Generation of many S-det�s 

Gaussian wave 
packets (n & p) 
whose positions are 
determined by 
random numbers. 

Initial state 

Imaginary-time evolution 
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3D real space 

# of iterations�
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Screening of Slater determinants�
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# of iterations�
200
0�

100
0�

30 MeV�

Φi H Φi < EHF +30 MeV

Φi Φ j < 0.7 ( j =1,M )

12C�

Φi is adopted as the (M+1)-th basis 
configuration, if it satisfies �

EHF + 30 MeV�

Every one-hundred iterations, 
we pick up a Slater determinant� Φi



Parity and angular momentum projected state 

ΨM
J  (±) =

2J +1
8π 2

gK dΩDMK
J  * (Ω)R̂(Ω) Φ(±)∫

K
∑

yz z
ˆˆ ˆ-i J-i J -i JR̂( ) = e e eβα γΩ Parity-projected SD 

Construct the angular momentum eigenstate 
by the explicit 3D rotation 

3D angular momentum projection�



Further Selection … 
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Numerical detail�

8.0fm�
0.8fm�

•  Computational cost : 
    512CPU x 11.5 h @YITP 
    (20 Ne, PROJECTION)�

•  Three-dimensional (3D) Cartesian mesh 
– Mesh size: 0.8 fm 
– All the mesh points inside the sphere of radius 

of 8 fm 
•  Euler angles 

– Discretization 
                                   points 

•  Numerical difficulties 
– Limiting number of SD 
– 50 Slater determinantns 
– About 10 h computation time                        

with the use of 512 processors 

α,β,γ( ) = (18,30,18)



$  Ten different sets of Slater 
determinants, generated  with 
different random numbers. 

$  Low-energy spectra within 
several hundred keV 

$  Transition strength within about  
10 % 

, …….(10 sets)�, �
2012/3/6 � ���

How complete is the calculation?�

12C�



Exp:   M. Chernykh et al.,  PRL 98,032501 (2007) 
AMD:  Y. Kanada-En’yo, PTP117,655(2007) 
GCM: E. Uegaki, et al., PTP57,4 (1977)1262 
RGM: M. Kamimura,  NPA351,456-480(1981) 
NCSM :  P. Navrátil and W. E. Ormand, PRC 68, 034305 (2003) 

B(E2) in units of e2fm4� Calculation assuming three-alpha clusters�

Tuning of the interaction�
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Hoyle state : 02
+�

41.2% �

36.1% �

����

31.7% 
28.9% 

86.9% 
86.2% 

����
EXP �

present�

89.8% �

superposition of 
many SDs �

POSITIVE parity �

%  Correlation energy is 5 MeV 
%  Hoyle state is around 9 MeV 
%  Ground-state rotational band �

70% for 
HF state 

3-alpha linear chain �



12C Negative-parity excited states�

K π =1−

11
− : 77%
21
− : 75%

K π = 3−

31
− :81%
41
− : 76%

Overlap�

Reliable results for the lowest state in each Jπ 

Similar to the AMD result  



Hoyle state�

5.4± 0.2

Radius�

Monopole transition�
M (E0;01

+ → 02
+ ) = 4.5± 0.2 e fm2

Experiment�

6.5− 6.7 Other cal. based on the 
gaussian anzats�

Linear-chain state�
Hoyle state�

Exp, FMD:   M. Chernykh et al.,  PRL 98,032501 (2007) 
AMD:   Y. Kanada-En’yo, PTP117,655(2007) 
GCM: E. Uegaki, et al., PTP57,4 (1977)1262 
RGM: M. Kamimura,  NPA351,456-480(1981)�



HF state: 80% �

16O" POSITIVE parity �

%  correlation energy is  about 3 MeV 



16O Positive-parity states�

Expt. :  D. Tilley, et al., Nucl. 
Phys. A 636, 249 (1998) 

AMD :  N. Furutachi, et al., 
Prog. Thoer. Phys. 119, 
403 (2008) 

OCM:  Y. Suzuki, Prog. 
Theor. Phys, 55, 1751 
(1976) 

SM :  W. C. Haxton and C. 
Johnson, Phys. Rev. Lett. 
65, 1325 (1990) 

Excitation energies are significantly lower than AMD. 

Phenomenological fitting involved�



%  particle-hole excitation is good agreement with 
experimental values 

parity doublet partner �

NEGATIVE parity�16O"

Calc.�Expt.�K π = 0−

12
− : 67%
33
− : 45%
51
− : 58%

1p1h 
excitations�



Hartree-Fock state: 80% 

20Ne: Positive-parity states�

•  Well reproduce B(E2) values 
•  Too large moment of inertia�

overlap�

Calc.�Expt.�

77/43 

01
+ :86%
21
+ :84%
41
+ :80%

Arrows :B(E2) values [ e2fm4  ]



20Ne: ������
��	�
���������� �

^↑16↓O +$&����Overlap 

Calc.�Expt.�

Arrows :B(E2) values [ e2fm4  ]

11
− : 60%
32
− : 60%

21
− : 91%
32
− :87%
44
− :88%
51
− : 78%
61
− : 77%

K π = 2−

0p( )−1 sd( )5  structure



2012/3/6 28 

 Gogny interaction 

𝜌 𝑟𝜎, 𝑟′𝜎′ ≡ ෍𝜙௜
∗ 𝑟, 𝜎 𝜙௜ 𝑟′, 𝜎′

௜,ఙ

 

Φ 𝑉ௐ೗
ி෢ Φ   = −

𝑊௟
2 ෍∫ 𝑑𝑟∫ 𝑑𝑟ᇱ𝜌(𝑟𝜎, 𝑟′𝜎′)  𝜌 𝑟ᇱ𝜎ᇱ, 𝑟𝜎 exp  {− 𝑟 − 𝑟ᇱ ଶ/𝜇௟ଶ}

ఛ

 

Computational cost :  𝑵𝒙
  𝟔 × 𝑵𝒊 

Computational cost of finite range interaction 

 Same scaling of orbit as the case of Skyrme interaction 
 scaling of space is power of two 

Φ 𝑉௧଴ி෢ Φ = −
𝑡଴
2 𝑥଴෍ 𝜙௜𝜙௝ 𝛿 𝑟ଵ − 𝑟ଶ 𝑃෠௥𝑃෠ఙ𝑃෠ఛ 𝜙୧𝜙௝

௜,௝

 

              = −
𝑡଴
2 𝑥଴෍∫ 𝑑𝑟

ఛ

𝜌 𝑟   ଶ 

 Skyrme interaction 

Computational cost : 𝑵𝒙
  𝟑 × 𝑵𝒊 

𝜌 𝑟 = ෍𝜙௜
∗ 𝑟, 𝜎 𝜙௜(𝑟, 𝜎)

௜,ఙ

   

We try two method to reduce computational cost.  

# of orbits 

𝑵𝒙
    points 



𝑊௟  Fock term 

𝜌 𝑟𝜎, 𝑟′𝜎′ ≡ ෍𝜙௜
∗ 𝑟, 𝜎 ϕ௜ 𝑟′, 𝜎′

௜,ఙ

 

The range of Gogny interaction is about 4 fm. 

𝑉ௐ೗
ி = −

𝑊௟
2 ෍∫ 𝑑𝑟∫ 𝑑𝑟ᇱ𝜌(𝑟𝜎, 𝑟′𝜎′)  𝜌 𝑟ᇱ𝜎ᇱ, 𝑟𝜎 exp  {− 𝑟 − 𝑟ᇱ ଶ/𝜇௟ଶ}

ఛ

 

it is sufficient to integrate 𝑟’ inside 4fm sphere. 

 Same scaling as the case of Skyrme 
interaction, except M 

Method 1: finite spherical lattice 

2012/3/6 29 

Numerical cost : 𝑵𝒙
  𝟑 ×𝑴 ×𝑵𝒊 

𝑟 
Radius ~4fm  

20fm 

20
fm

 

r⃗ : 8,000 points 

r⃗ ‘:  ~500 points 

cf. Skyrme interaction 
     𝑵𝒙

  𝟑 × 𝑵𝒊 

𝑵𝒙
  𝟑 

𝑴 



Skyrme(SLy4)�

Gogny(D1S)�

positive parity �

Integral points: 
(α, β, γ)=(18, 20, 18) 
512 core x  9h 
31 SDs �

cf. Skyrme 
(α, β, γ)=(18, 30, 18) 
512 core x 1.8h 
45 SDs �

SR16000@YITP �

7.5 times �

CPU time�

%  Computational cost is  times 
%  Energy spectrum is almost same �

12C�



Skyrme(SLy4)�

Gogny(D1S)�

negative parity�

%  Energy spectrum is almost same�

12C�



Summary 
•  Complete low-lying spectroscopy with the Skyrme Hamiltonian 
•  Capable of describing various excited states in a unified way 

Problems 
•   2nd 0+ state in 16O 

–  Energy too high by about 3 MeV 
–  B(E2) Underestimated 
–  Center of mass?    Weak-coupling phenomena? 

•  Moment of inertia of 20Ne 
–  Too large 
–  Pairing? 

•  Hoyle state in 12C 
–  Too small radius?  Effect of the spin-orbit interaction? 

Future issues 
•  Coordinate-space calculation with finite-range interaction 
•  Reaction studies 

Shinohara et al, PRC 74, 054315 (2006) 
Fukuoka et al, PRC 88, 014321 (2013) 


