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Saturation properties of nuclear matter 

•  Constant binding energy per nucleon  

•  Saturation density 

•  Naïve mean-field picture breaks down 
– State-dependent effective interaction 

•  Density dependent interction 

– Energy density functional 

MeV 16)( ≈≈ pnSA
B

13 fm 35.1fm 16.0 −− ≈⇒≈ Fkρ

E ρ[ ]⇒ h ρ[ ] ϕi = εi ϕi h ρ[ ] ≡ δE
δρ



Basic%equa3on�

•  TDHF%eq.%(TDKS%eq.)%

•  TDHFB%eq.%(TDBdGKS%eq.)�
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TimeFdependent%DFT%(TDDFT)%

δVKS(t) =
δVKS
δρ

δρ(t)

The collective motion is induced by the motion of the potential. 

Complete analogue of the unified model by Bohr and Mottelson 
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Induced (screening) field 

VKS(t)

Time-dependent Kohn-Sham equation (1984) 



Small-amplitude approximation 
--- Linear response (RPA) equation --- 

•  Tedious calculation of residual interactions 

•  Computationally very demanding, 
especially for deformed systems. 
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However, in principle, the self-consistent single-particle Hamiltonian 
should contain everything. We can avoid explicit calculation of 
residual interactions. 



Finite Amplitude Method 

δh(ω) = 1
η
h ρη!" #$− h ρ0[ ]( )

ρη ≡ ψi ψi
'∑

ψi = ϕi +η Xi (ω) , ψi
' = ϕi +η Yi (ω)
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Residual fields can be estimated by the finite difference method: 

Programming of the RPA code becomes very much trivial, because we 
only need calculation of the single-particle potential, with different bras 
and kets. 

T.N., Inakura, Yabana, PRC76 (2007) 024318. 

Starting from initial amplitudes X(0) and Y(0), one can use an iterative 
method to solve the following linear-response equations. 



1.  Set the initial amplitudes X(0) and Y(0) 

2.  Calculate the residual fields δh by the FAM formula 

3.  Now, we can calculate the l.h.s. of the following equations: 

4.  Update the amplitude to (X(1),Y(1)) by an iterative algorithm, such as 
the conjugate gradient method and its derivatives 

Step-by-step numerical procedure 
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Iterative approaches to strength functions: 
   Johnson et al., CPC 120, 155 (1999) 
   Toivanen et al., PRC 81, 034312 (2010); Carlsson et al., PRC 86, 014307 (2012) �



Finite%amplitude%method%for%superfluid%systems%
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Residual fields can be calculated by 

QRPA equations are 
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Avogadro and TN, PRC 84, 014314 (2011) 



FAM%meets%HFBRAD%

qp cut-off at 60 MeV 

All 2qp states are included. 

Calculation by Terasaki et al.  
(PRC71, 034310 (2005): Green line 

Our result: Red line 

Test calculation: IS monopole 

Linearization parameter 

59 10~10 −−=η



FAM meets HFBTHO 
 
•  I discussed with Mario about the possibility of HFBTHO+FAM 

–  UNEDF Annual Meeting at Pack Forest, WA, USA (2009) 

•  A symposium in November, 2010 
–  Mario visited us at RIKEN after the symposium. 
–  Mario and Markus started working on HFBTHO+FAM. 
–  The first-shot result before Christmas, 2010 
–  The paper was published in July, 2011 



GMR in 240Pu (g.s. & f. i) 
(Space: 20 major shells) 

Computational advantage in FAM 
M. Stoitsov, et al., PRC 84, 041305 (2011) 



Explicit%construc3on%of%(Q)RPA%matrix%
with%FAM%

•  An%advantageous%feature%in%the%itera3ve%solver%with%FAM%
(iFFAM)%
–  No%need%to%calculate%the%(Q)RPA%matrix%explicitly%
–  Computa3onally%fast%and%simple%

•  Disadvantage%in%iFFAM%
–  NormalFmode%eigenstates%are%missing%

•  (Q)RPA%matrix%construc3on%with%FAM%(mFFAM)%
– Again,%it%is%very%easy%and%computa3onally%efficient!%



RPA matrix (revisited) 

δhph =
∂hph
∂ρp 'h ' ρ0

δρp 'h ' +
∂hph
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mFFAM�
ρη ≡ ρ0 +ηδρ = ψi ψi

'

i∈h
∑

ψi = ϕi +η Xi , ψi
' = ϕi +η Yi

Xi = ϕm Xmi
m>A
∑ , Yi = ϕm Ymi

*

m>A
∑

δρph = ρη( )ph η = Xph

δρhp = ρη( )hp η =Yph

Repeat the calculation with all possible (m,i)-pairs. 
Then, all the RPA matrix elements are explicitly calculated. 

δhph =
∂hph
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Adopting the following vector leads to “A” matrix 

Adopting the following vector leads to “B” matrix 
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Test%numerical%calcula3on�

E(qp)%cut%off� 2%x%N(2qp)� iFFAM� mFFAM�

60%MeV% 3482� 1� 0.16�

80%MeV% 4656� 1.43� 0.38�

100%MeV% 5842� 1.93� 0.60�

160%MeV% 9528� 4.08� 2.56�

•  m-FAM is efficient for 
small matrix. 

•  Computational time for 
the m-FAM scales like 
N2~N3  

•  i-FAM scales like N 

HFBRAD+FAM (QRPA)�



FAMF(Q)RPA�

•  QRPA%eigenmodes%by%contour%integra3on%in%
the%complex%frequency%plane%

– Test%applica3on%with%the%HFBTHO%code�

N. Hinohara, M. Kortelainen, W. Nazarewicz, Phys. Rev. C 87, 064309 (2013)�

Xµν
n ∝

1
2πi

Xµν (ω)dω
Cn
∫ , Yµν

n ∝
1
2πi

Yµν (ω)dω
Cn
∫

Imω

Cn

Reω



Rela3vis3c%TDMF%(Covariant%TDDFT)�

Introduction Theoretical Framework Numerical Details Results and Discussion Summary and Perspectives

E↵ects of Dirac sea

E↵ects of Dirac sea on ISGMR

? ISGMR in 208Pb and 132Sn by i-FAM and m-FAM with and w/o Dirac sea.

The configurations including Dirac sea are very important for relativistic RPA. Ring:2001

This e↵ect on m1/m0 of ISGMR, 208Pb: 4.00 MeV 132Sn: 4.26 MeV

X The existence of Dirac sea does not introduce extra di�culties for FAM.

X In i-FAM (r-space representation), the e↵ects of Dirac sea can be included implicitly
and automatically.

Liang, Nakatsukasa, Niu, Meng, Phys. Rev. C 87, 054310 (2013)�

•  Dirac%sea%effects%are%automa3cally%included.%
•  Minor%extra%computa3onal%cost%for%
rearrangement%terms.�



Magic numbers for low-energy E1 strength 

N=Z 
N=15 (Up%to%10%MeV)%

N=29 
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Inakura, et al Pygmy dipole resonance (PDR)�



Development%of%neutron%radius%
Horiuchi, Inakura, Nakatsukasa, Suzuki, PRC 86, 024614 (2012) 
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Gibelin et al, PRL 
101, 212503 (2008)  

Glauber%calcula3on%using%the%density%
distribu3on%obtained%with%the%DFT.%

M.%Takechi%et%al,%
MPLA25,%1878%
(2010).%



Photoabsorption cross sections 

•  SkM* functional 
•  3D Cartesian mesh 
•  Rbox = 15 fm  

Inakura, T.N., Yabana, PRC 84, 021302 (R) (2011); PRC 88, 051305(R) (2013) 

E1 strength functions�



Pygmy%dipoles%&%neutron%skins�
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FIG. 1: (Color online) Correlations between the PDR
strength SPDR in 132Sn and the neutron skin thickness ∆rnp

in 208Pb. The cross denotes a result obtained with the orig-
inal SkM∗ parameter set. Other symbols represent results
with the modified parameter set as shown in the right panel.
The solid line indicates a linear fit. The correlation coefficient
for these parameter set is also shown. See the text for detail.

pairing correlation is neglected for simplicity, which has
little impact on E1 modes [7].
Definition of PDR strength, PDR fraction, and corre-

lation coefficient— We define the PDR strength as

SPDR ≡

∫ ωc

0
S(E1;E)dE =

En<ωc
∑

n

B(E1;n), (1)

with the PDR cutoff energy ωc. The PDR fraction fPDR

is the ratio of the integrated photoabsorption cross sec-
tion below ωc to the total integrated cross section.

fpdr =

∫ ωc σabs(E)dE
∫

σabs(E)dE
=

∑En<ωc

n EnB(E1;n)
∑

n EnB(E1;n)
, (2)

In Eqs. (1) and (2), we fix the cutoff at ωc = 10 MeV.
Many former works adopted the same definition [10, 12],
because of its simplicity. In light spherical neutron-rich
nuclei, the value of ωc = 10 MeV can reasonably sepa-
rate the PDR peaks from the GDR. However, for heavier
nuclei, the separation becomes more ambiguous. It is es-
pecially difficult for deformed nuclei. Later, we introduce
another definition of the PDR strength using a variable
ωc, to check the validity.
To quantify the correlation between two quantities, we

use the correlation coefficient r. When we have data
points for (xi, yi) with i = 1, · · · , Nd, it is defined by

r ≡

∑Nd

i=1(xi − x̄)(yi − ȳ)
√

∑Nd

i=1(xi − x̄)2
√

∑Nd

j=1(yj − ȳ)2
, (3)

where x̄ and ȳ are the mean values of xi and yi, respec-
tively. The absolute value of r does not exceed the unity.
A perfect linear correlation, yi = axi + b, corresponds to
r = ±1 with the same sign as that of parameter a. In the
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FIG. 2: (Color online) (a)-(c) Correlations between SPDR and
∆rnp in 68,78,84Ni. See the caption of Fig. 1. Calculated
correlation coefficients are also shown. (d) fpdr as functions
of ∆rnp for even-even Ni isotopes, calculated with the SkM∗

parameter set. See the text for detail.

followings, the correlation with r > 0 (r < 0) is referred
to as “positive” (“negative”) correlation.
Neutron skin thickness in 208Pb — First, we confirm

the result in Ref. [10]. Reference [10] reported that the
SPDR for 132Sn has only a weak correlation with the neu-
tron skin thickness defined by ∆rnp ≡

√

〈r2〉n −
√

〈r2〉p
of 208Pb. In Fig. 1, the SPDR for 132Sn is shown as a func-
tion of the neutron skin thickness, ∆rnp, of 208Pb. The
plotted 21 points are obtained by calculating ∆rnp and
SPDR with the SkM∗ functional, and with slightly modi-
fied values of 10 Skyrme parameters (t0,1,2,3, x0,1,2,3, W0,
and α). It seems to indicate some correlation, however,
the calculated points are somewhat scattered.
Using these 21 sample values (Nd = 21), the corre-

lation coefficient r is calculated according to Eq. (3).
In the present case of Fig. 1, we obtain the coefficient
r = 0.55. The correlations between ∆rnp in 208Pb and
SPDR in 68Ni and 78Ni, are also weak with r = 0.5− 0.6.
Thus, the PDR strength in these spherical (magic) nuclei
indicate a positive correlation with the skin thickness in
208Pb, however, the correlation is weak. This is qualita-
tively consistent with the result in Ref. [10].
Correlation between SPDR and ∆rnp — Next, we dis-

cuss the same correlation, but between the ∆rnp and
SPDR in the same nucleus. In Fig. 2, we show the results
for 68Ni (N = 40), 78Ni (N = 50), and 84Ni (N = 56).
The scattered data points in Fig. 2 (a) suggest a rel-
atively weak correlation in 68Ni, while the correlation
becomes moderately strong for 78Ni. The calculated cor-
relation coefficients are r = 0.69 and 0.76 for 68,78Ni,
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FIG. 1: (Color online) Correlations between the PDR
strength SPDR in 132Sn and the neutron skin thickness ∆rnp

in 208Pb. The cross denotes a result obtained with the orig-
inal SkM∗ parameter set. Other symbols represent results
with the modified parameter set as shown in the right panel.
The solid line indicates a linear fit. The correlation coefficient
for these parameter set is also shown. See the text for detail.

pairing correlation is neglected for simplicity, which has
little impact on E1 modes [7].
Definition of PDR strength, PDR fraction, and corre-

lation coefficient— We define the PDR strength as

SPDR ≡

∫ ωc

0
S(E1;E)dE =

En<ωc
∑

n

B(E1;n), (1)

with the PDR cutoff energy ωc. The PDR fraction fPDR

is the ratio of the integrated photoabsorption cross sec-
tion below ωc to the total integrated cross section.

fpdr =

∫ ωc σabs(E)dE
∫

σabs(E)dE
=

∑En<ωc

n EnB(E1;n)
∑

n EnB(E1;n)
, (2)

In Eqs. (1) and (2), we fix the cutoff at ωc = 10 MeV.
Many former works adopted the same definition [10, 12],
because of its simplicity. In light spherical neutron-rich
nuclei, the value of ωc = 10 MeV can reasonably sepa-
rate the PDR peaks from the GDR. However, for heavier
nuclei, the separation becomes more ambiguous. It is es-
pecially difficult for deformed nuclei. Later, we introduce
another definition of the PDR strength using a variable
ωc, to check the validity.
To quantify the correlation between two quantities, we

use the correlation coefficient r. When we have data
points for (xi, yi) with i = 1, · · · , Nd, it is defined by

r ≡

∑Nd

i=1(xi − x̄)(yi − ȳ)
√

∑Nd

i=1(xi − x̄)2
√

∑Nd

j=1(yj − ȳ)2
, (3)

where x̄ and ȳ are the mean values of xi and yi, respec-
tively. The absolute value of r does not exceed the unity.
A perfect linear correlation, yi = axi + b, corresponds to
r = ±1 with the same sign as that of parameter a. In the
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FIG. 2: (Color online) (a)-(c) Correlations between SPDR and
∆rnp in 68,78,84Ni. See the caption of Fig. 1. Calculated
correlation coefficients are also shown. (d) fpdr as functions
of ∆rnp for even-even Ni isotopes, calculated with the SkM∗

parameter set. See the text for detail.

followings, the correlation with r > 0 (r < 0) is referred
to as “positive” (“negative”) correlation.
Neutron skin thickness in 208Pb — First, we confirm

the result in Ref. [10]. Reference [10] reported that the
SPDR for 132Sn has only a weak correlation with the neu-
tron skin thickness defined by ∆rnp ≡

√

〈r2〉n −
√

〈r2〉p
of 208Pb. In Fig. 1, the SPDR for 132Sn is shown as a func-
tion of the neutron skin thickness, ∆rnp, of 208Pb. The
plotted 21 points are obtained by calculating ∆rnp and
SPDR with the SkM∗ functional, and with slightly modi-
fied values of 10 Skyrme parameters (t0,1,2,3, x0,1,2,3, W0,
and α). It seems to indicate some correlation, however,
the calculated points are somewhat scattered.
Using these 21 sample values (Nd = 21), the corre-

lation coefficient r is calculated according to Eq. (3).
In the present case of Fig. 1, we obtain the coefficient
r = 0.55. The correlations between ∆rnp in 208Pb and
SPDR in 68Ni and 78Ni, are also weak with r = 0.5− 0.6.
Thus, the PDR strength in these spherical (magic) nuclei
indicate a positive correlation with the skin thickness in
208Pb, however, the correlation is weak. This is qualita-
tively consistent with the result in Ref. [10].
Correlation between SPDR and ∆rnp — Next, we dis-

cuss the same correlation, but between the ∆rnp and
SPDR in the same nucleus. In Fig. 2, we show the results
for 68Ni (N = 40), 78Ni (N = 50), and 84Ni (N = 56).
The scattered data points in Fig. 2 (a) suggest a rel-
atively weak correlation in 68Ni, while the correlation
becomes moderately strong for 78Ni. The calculated cor-
relation coefficients are r = 0.69 and 0.76 for 68,78Ni,

Inakura, Nakatsukasa, Yabana, PRC 88, 051305(R) (2013); 84, 021302(R) (2011) 



•  Constrain the neutron skin 
thickness and the NM EOS? 
–  Yes, but better in very neutron rich! 
–  Data on 84Ni are better than 68Ni 

•  Influence the r-process? 
–  Significantly influence the direct 

neutron capture process near the 
neutron drip line 

–  We need calculation with a proper 
treatment of the continuum. 

Goriely, 
PLB436, 10 

Low-energy E1 strength in exotic nuclei 
Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013) 

Ebata, Nakatsukasa, Inakura, in preparation. 
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Linear response and photoabsorption cross section 

SkM*%func3onal%

Intrinsic%Q%moment%

Yoshida, Nakatsukasa, PRC 83, 021304(R) (2011) �



����	���(IS,IV; L=0~3)�
Yoshida, Nakatsukasa, PRC 88, 034309 (2013) �

IS-GMR�

IS-GDR�

IS-GDR�

IS-GMR�

Sm isotopes: experiment at RCNP (2003)�
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m = 0.8 ~ 0.9

K = 210 ~ 230 MeV



Fusion barrier threshold�

Frozen density (FD) approx.�

TDDFT�

Experimental 
data�

TDDFT%simula3on%of%nuclear%fusion%reac3on%
Guo, Nakatsukasa, EPJWC 38, 09003 (2012)   
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Fig. 10: Calculated fusion threshold energies are compared with those obtained by the frozen density approx-

imation V FD
B . The energy differences between the fusion threshold and V FD

B are shown as functions of the

effective fissility defined in [Swiatecki, Nucl. Phys. A 376, 275 (1982)]. The comparison with the experimental

values V exp
B are also shown for light systems.

3.2.3.5 Fusion hindrance studied with the time-dependent density-functional sim-

ulation

L. Guo and T. Nakatsukasa, EPJ Web Conf. 38, 09003 (2012).

RIKEN Accel. Prog. Rep. 44, 46 (2011); 45, 44 (2012);

It is empirically known that the fusion is significantly hindered for the case that colliding two

nuclei whose proton numbers Z1 and Z2 are relatively heavy, typically with the charge product of

projectile and target larger than 1,600 (Z1Z2 ≥ 1, 600). This hindrance was interpreted by Swiatecki

in terms of the extra-push energy beyond the Coulomb barrier which is necessary to overcome the

fission barrier of a compound system. The dissipation effect is also important to quantify the extra-

push energy. In order to clarify the microscopic origin of the extra-push energy, the dynamical fusion

threshold has been investigated, from light to heavy systems, with a TDDFT simulation study with

modern Skyrme energy functionals.

The fusion threshold energy obtained with the numerical simulation is compared to a static

estimate of the nucleus-nucleus potential (“frozen density (FD) approximation”),

V FD(R) = E[ρP+T ](R)− E[ρP ]− E[ρT ], (6)

using the ground-state density of the projectile ρP and target ρT . The maximum value of V FD(R) is

regarded as the fusion barrier height V FD
B . The fusion threshold energy obtained with the TDDFT

simulation is compared with V FD
B in Fig. 10. In relatively light systems, the calculated fusion

threshold energies are always smaller than the static values VFD(R) by a few MeV. This is due

“Extra-push energy”   



Toward a universal Energy 
Density Functional (EDF)�

•  Improvement of the EDF is essential for 
accurate description of nuclear properties 

•  Pairing energy functional 
•  Correlations beyond the Kohn-Sham 

scheme�



Pairing energy functional�
Yamagami, Shimizu, Nakatsukasa, PRC 80, 064301 (2009)�
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DFT with proton-neutron mixing�
Sato, Dobaczewski, Nakatsukasa, Satula, PRC 88, 061301(R) (2013)�
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pn-mixing DFT code has been developed 
with a collaboration with a Warsaw group. 
 
Future subjects: 
  Properties of T=0 and T=1 pairing 
  Charge-exchange reaction 

E ρn,ρp
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Related presentation�
•  Time-dependent density functional theory 

– Yukio Hashimoto (TDHFB) 
– Jun Terasaki (Double beta decay) 
– Kazuhiro Yabana (TDDFT in Cond. Matt. Phys.) 
– Kazuyuki Sekizawa (Transfer reaction) 

•  Multi-reference DFT 
– Yukio Hashimoto (GCM with TAC) 
– Yuta Fukuoka* (Stochastic config. mixing cal.) 
      # T.N. 

•  Triple-alpha reaction 
– Kazuhiro Yabana (Imaginary-time approach) 

*Absent�


