Division of Astrophysics and Nuclear Physics: Nuclear Physics Group (Parallel session #1)

Takashi Nakatsukasa

@CCS, Univ. of Tsukuba, 2014.2.19

Members of Nuclear Theory Group

- Staff members
 - Kazuhiro Yabana (3-alpha reaction, TDDFT)
 - Yukio Hashimoto (TDHFB)
 - Jun Terasaki (Double beta decay)
 - Takashi Nakatsukasa [from April 2014]
- PD
 - Yasutaka Taniguchi*
- Graduate students
 - Yuta Fukuoka^{*} (Config. mixing cal.) \rightarrow T.N.
 - Kazuyuki Sekizawa (Transfer reaction)
 - Others (??)

*Absent

Nuclear response and dynamics in TDDFT [TDHF(B)]

- Yukio Hashimoto (TDHFB)
- Jun Terasaki (Double beta decay)
- Kazuhiro Yabana (TDDFT in Cond. Matt. Phys.)
- Kazuyuki Sekizawa (TDHF: Transfer reaction)

Saturation properties of nuclear matter

Constant binding energy per nucleon

$$B_A \approx S_{n(p)} \approx 16 \text{ MeV}$$

- Saturation density $\rho \approx 0.16 \text{ fm}^{-3} \implies k_F \approx 1.35 \text{ fm}^{-1}$
- Naïve mean-field picture breaks down
 - State-dependent effective interaction
 - Density dependent interction
 - Energy density functional

$$E[\rho] \Rightarrow h[\rho] |\varphi_i\rangle = \varepsilon_i |\varphi_i\rangle \qquad h[\rho] = \frac{\delta E}{\delta \rho}$$

Basic equation

• TDHF eq. (TDKS eq.)

$$i\frac{\partial}{\partial t}\varphi_{i}(t) = \left\{-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{\rm KS}[\rho(t)]\right\}\varphi_{i}(t)$$

• TDHFB eq. (TDBdGKS eq.)

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

Time-dependent DFT (TDDFT)

Time-dependent Kohn-Sham equation (1984)

$$i\frac{\partial}{\partial t}\varphi_{i}(t) = \left\{-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{\text{KS}}[\rho(t)] - \varepsilon_{i}\right\}\varphi_{i}(t)$$
$$V_{\text{KS}}[\rho(t)] = V_{0} + \delta V_{\text{KS}}(t)$$
Induced (screening) field

$$\delta V_{\rm KS}(t) = \frac{\delta V_{\rm KS}}{\delta \rho} \delta \rho(t)$$

The collective motion is induced by the motion of the potential.

Complete analogue of the unified model by Bohr and Mottelson

Small-amplitude approximation ---- Linear response (RPA) equation ---

$$\begin{cases} \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{cases} \begin{pmatrix} X_{mi}(\omega) \\ Y_{mi}(\omega) \end{pmatrix} = -\begin{pmatrix} \begin{pmatrix} V_{ext} \end{pmatrix}_{mi} \\ \begin{pmatrix} V_{ext} \end{pmatrix}_{im} \end{pmatrix} \end{cases}$$
$$A_{mi,nj} = (\varepsilon_m - \varepsilon) \delta_{mn} \delta_{ij} + \begin{vmatrix} \phi_m | \frac{\partial h}{\partial \rho_{nj}} \\ \phi_n | \frac{\partial h}{\partial \rho_{nj}} \\ \rho_0 \end{vmatrix} = \begin{vmatrix} \phi_m | \frac{\partial h}{\partial \rho_{jn}} \\ \phi_n | \frac{\partial h}{\partial \rho_{jn}} \\ \rho_0 \end{vmatrix}$$
• Tedious calculation of residual interactions
• Computationally very demanding.

• Computationally very demanding, especially for deformed systems.

However, in principle, the self-consistent single-particle Hamiltonian should contain everything. We can avoid explicit calculation of residual interactions.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC76 (2007) 024318.

Residual fields can be estimated by the finite difference method:

$$\begin{split} \delta h(\omega) &= \frac{1}{\eta} \Big(h \big[\rho_{\eta} \big] - h \big[\rho_{0} \big] \Big) \\ \rho_{\eta} &= \sum \big| \psi_{i} \big\rangle \big\langle \psi_{i}^{'} \big| \\ \big| \psi_{i} \big\rangle &= \big| \varphi_{i} \big\rangle + \eta \big| X_{i}(\omega) \big\rangle, \quad \big\langle \psi_{i}^{'} \big| &= \big\langle \varphi_{i} \big| + \eta \big\langle Y_{i}(\omega) \big| \end{split}$$

Starting from initial amplitudes $X^{(0)}$ and $Y^{(0)}$, one can use an iterative method to solve the following linear-response equations.

$$\omega |X_i(\omega)\rangle = (h_0 - \varepsilon_i) |X_i(\omega)\rangle + \hat{Q} \{\delta h(\omega) + V_{\text{ext}}(\omega)\} |\phi_i\rangle$$
$$\omega \langle Y_i(\omega)| = -\langle Y_i(\omega)|(h_0 - \varepsilon_i) - \langle \phi_i| \{\delta h(\omega) + V_{\text{ext}}(\omega)\} \hat{Q}$$

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.

Step-by-step numerical procedure

- 1. Set the initial amplitudes $X^{(0)}$ and $Y^{(0)}$
- 2. Calculate the residual fields δh by the FAM formula

$$\delta h(\omega) = \frac{1}{\eta} \left(h \left[\left\langle \psi' \middle|, \middle| \psi \right\rangle \right] - h_0 \right)$$
$$\left| \psi_i \right\rangle = \left| \phi_i \right\rangle + \eta \left| X_i(\omega) \right\rangle, \quad \left\langle \psi'_i \right| = \left\langle \phi_i \right| + \eta \left\langle Y_i(\omega) \right|$$

3. Now, we can calculate the l.h.s. of the following equations:

$$\begin{aligned} & \left(\omega - h_0 + \varepsilon_i\right) |X_i(\omega)\rangle - \delta h(\omega) |\phi_i\rangle = V_{\text{ext}}(\omega) |\phi_i\rangle \\ & \left\langle Y_i(\omega) | \left(\omega + h_0 - \varepsilon_i\right) + \left\langle \phi_i | \delta h(\omega) = -\left\langle \phi_i | V_{\text{ext}}(\omega) \right\rangle \right\} \Rightarrow A\vec{x} = \vec{b} \\ & \vec{x} = \begin{pmatrix} |X_i(\omega)\rangle \\ & \left\langle Y_i(\omega) | \right\rangle, \quad \vec{b} = \begin{pmatrix} V_{\text{ext}}(\omega) |\phi_i\rangle \\ & -\left\langle \phi_i | V_{\text{ext}}(\omega) \right\rangle \end{aligned}$$

4. Update the amplitude to $(X^{(1)}, Y^{(1)})$ by an iterative algorithm, such as the conjugate gradient method and its derivatives

Iterative approaches to strength functions: Johnson et al., CPC 120, 155 (1999) Toivanen et al., PRC 81, 034312 (2010); Carlsson et al., PRC 86, 014307 (2012)

Finite amplitude method for superfluid systems

Avogadro and TN, PRC 84, 014314 (2011)

Residual fields can be calculated by

$$\delta h(\omega) = \frac{1}{\eta} \left\{ h \left[\overline{V_{\eta}}^{*}, V_{\eta} \right] - h_{0} \right\}$$
$$\delta \Delta(\omega) = \frac{1}{\eta} \left\{ \Delta \left[\overline{V_{\eta}}^{*}, U_{\eta} \right] - \Delta_{0} \right\}$$

$$V_{\eta} = V + \eta U^* Y, \quad \overline{V_{\eta}}^* = V^* + \eta U X$$
$$U_{\eta} = U + \eta V^* Y$$

QRPA equations are

$$(E_{\mu} + E_{\nu} - \omega)X_{\mu\nu} + \delta H^{20}_{\mu\nu} = F^{20}_{\mu\nu}$$
$$(E_{\mu} + E_{\nu} + \omega)Y_{\mu\nu} + \delta \widetilde{H}^{02*}_{\mu\nu} = F^{02}_{\mu\nu}$$

$$\begin{pmatrix} \delta H_{\mu\nu} \\ \delta \widetilde{H}_{\mu\nu} \end{pmatrix} = W^{+} \begin{pmatrix} \delta h & \delta \Delta \\ \delta \widetilde{\Delta}^{+} & -\delta h^{+} \end{pmatrix} W$$
$$W = \begin{pmatrix} U & V^{*} \\ V & U^{*} \end{pmatrix}$$

FAM meets HFBRAD

FAM meets HFBTHO

- I discussed with Mario about the possibility of HFBTHO+FAM
 - UNEDF Annual Meeting at Pack Forest, WA, USA (2009)
- A symposium in November, 2010
 - Mario visited us at RIKEN after the symposium.
 - Mario and Markus started working on HFBTHO+FAM.
 - The first-shot result before Christmas, 2010
 - The paper was published in July, 2011

Computational advantage in FAM

M. Stoitsov, et al., PRC 84, 041305 (2011)

GMR in ²⁴⁰ Pu (g.s. & f. i)			QRPA		FAM
(Space: 20 major shells)		v_{crit}	Size of A, B matrices	Memory (in GB)	Memory (in GB)
2000	$ \begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	${}^{40}{ m Mg}$ 10^{-3} 10^{-4}	32039×32039 53386×53386	16.4 45.6	
14/MeV)		10^{-5} 10^{-10} 10^{-15} 10^{-20}	53823×53823 130936×130936 189271×189271 211159×211159	46.35 274.31 473.18 713.41	0 572
$S(\omega) (e^{2} ff)$	$\Delta_{n}=0.458 \text{ MeV}, \Delta_{p}=0.587 \text{ MeV} -$	10^{100} Zr 10^{-3}	83970×83970	112.81	0.572
1000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ \omega (\text{MeV}) \end{array}$	$ \begin{array}{c} 10^{-4} \\ 10^{-5} \\ 10^{-10} \\ 10^{-15} \\ 10^{-20} \end{array} $	140229×140229 160633×160633 189500×189500 230274×230274 230304×230304	314.63 412.85 574.56 848.41 848.64	0.572

Explicit construction of (Q)RPA matrix with FAM

- An advantageous feature in the iterative solver with FAM (i-FAM)
 - No need to calculate the (Q)RPA matrix explicitly
 - Computationally fast and simple
- Disadvantage in i-FAM
 - Normal-mode eigenstates are missing
- (Q)RPA matrix construction with FAM (m-FAM) — Again, it is very easy and computationally efficient!

$$\begin{aligned} & \text{RPA matrix (revisited)} \\ & \left\{ \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega^{(n)} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X^{(n)} \\ Y^{(n)} \end{pmatrix} = 0 \\ & A_{ph,p'h'} = (\varepsilon_m - \varepsilon) \delta_{pp'} \delta_{hh'} + \frac{\partial h_{ph}}{\partial \rho_{p'h'}} \Big|_{\rho_0} \\ & B_{ph,p'h'} = \frac{\partial h_{ph}}{\partial \rho_{h'p'}} \Big|_{\rho_0} \end{aligned}$$

FAM can provide the following quantities for a given vector $\begin{pmatrix} X_{ph} \\ Y_{ph} \end{pmatrix}$

$$\delta h_{ph} = \sum_{p'h'} \left(\frac{\partial h_{ph}}{\partial \rho_{p'h'}} \bigg|_{\rho_0} \delta \rho_{p'h'} + \frac{\partial h_{ph}}{\partial \rho_{h'p'}} \bigg|_{\rho_0} \delta \rho_{h'p'} \right)$$

m-FAM

Repeat the calculation with all possible (m,i)-pairs. Then, all the RPA matrix elements are explicitly calculated.

Test numerical calculation

HFBRAD+FAM (QRPA)

- m-FAM is efficient for small matrix.
- Computational time for the m-FAM scales like N²~N³

5000 m-EAN LEAM. 4000 s (m^a mev) 3000 ¹²⁰Sn, 0⁺ 2000 1000 5 10 Π 30 35 40 45 E (MeV)

i-FAM scales like N

E(qp) cut off	2 x N(2qp)	i-FAM	m-FAM
60 MeV	3482	1	0.16
80 MeV	4656	1.43	0.38
100 MeV	5842	1.93	0.60
160 MeV	9528	4.08	2.56

FAM-(Q)RPA

N. Hinohara, M. Kortelainen, W. Nazarewicz, Phys. Rev. C 87, 064309 (2013)

 QRPA eigenmodes by contour integration in the complex frequency plane

– Test application with the HFBTHO code

Relativistic TDMF (Covariant TDDFT)

Liang, Nakatsukasa, Niu, Meng, Phys. Rev. C 87, 054310 (2013)

- Dirac sea effects are automatically included.
- Minor extra computational cost for rearrangement terms.

Development of neutron radius

Glauber calculation using the density distribution obtained with the DFT.

Photoabsorption cross sections

Inakura, T.N., Yabana, PRC 84, 021302 (R) (2011); PRC 88, 051305(R) (2013)

Pygmy dipoles & neutron skins

Inakura, Nakatsukasa, Yabana, PRC 88, 051305(R) (2013); 84, 021302(R) (2011)

Low-energy E1 strength in exotic nuclei

Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013)

Ebata, Nakatsukasa, Inakura, in preparation.

- Constrain the neutron skin thickness and the NM EOS?
 - Yes, but better in very neutron rich!
 - Data on ⁸⁴Ni are better than ⁶⁸Ni
- Influence the r-process?
 - Significantly influence the direct neutron capture process near the neutron drip line
 - We need calculation with a proper treatment of the continuum.

Shape phase transition

2323 -

2191

-6+

---- 4+

Linear response and photoabsorption cross section

Yoshida, Nakatsukasa, PRC 83, 021304(R) (2011)

核変形と巨大共鳴(IS,IV; L=0~3)

TDDFT simulation of nuclear fusion reaction

Toward a universal Energy Density Functional (EDF)

- Improvement of the EDF is essential for accurate description of nuclear properties
- Pairing energy functional
- Correlations beyond the Kohn-Sham scheme

Pairing energy functional

Yamagami, Shimizu, Nakatsukasa, PRC 80, 064301 (2009)

DFT with proton-neutron mixing

Sato, Dobaczewski, Nakatsukasa, Satula, PRC 88, 061301(R) (2013)

pn-mixing DFT code has been developed with a collaboration with a Warsaw group.

Future subjects: Properties of T=0 and T=1 pairing Charge-exchange reaction

$$E[\rho_n, \rho_p] \Rightarrow E[\rho_0, \vec{\rho}_1]$$

$$\hat{H}' = \hat{H} - \vec{\lambda} \cdot \vec{T}$$

Related presentation

- Time-dependent density functional theory
 - Yukio Hashimoto (TDHFB)
 - Jun Terasaki (Double beta decay)
 - Kazuhiro Yabana (TDDFT in Cond. Matt. Phys.)– Kazuyuki Sekizawa (Transfer reaction)
- Multi-reference DFT
 - Yukio Hashimoto (GCM with TAC)
 - Yuta Fukuoka^{*} (Stochastic config. mixing cal.)
 → T.N.
 ^{*Absent}
- Triple-alpha reaction
 - Kazuhiro Yabana (Imaginary-time approach)