Division of Astrophysics and Nuclear Physics: Nuclear Physics Group (Parallel session \#1)

Takashi Nakatsukasa

@CCS, Univ. of Tsukuba, 2014.2.19

Members of Nuclear Theory Group

- Staff members
- Kazuhiro Yabana (3-alpha reaction, TDDFT)
- Yukio Hashimoto (TDHFB)
- Jun Terasaki (Double beta decay)
- Takashi Nakatsukasa [from April 2014]
- PD
- Yasutaka Taniguchi*
- Graduate students
- Yuta Fukuoka* (Config. mixing cal.) \rightarrow T.N.
- Kazuyuki Sekizawa (Transfer reaction)
- Others (??)

Nuclear response and dynamics in TDDFT [TDHF(B)]

- Yukio Hashimoto (TDHFB)
- Jun Terasaki (Double beta decay)
- Kazuhiro Yabana (TDDFT in Cond. Matt. Phys.)
- Kazuyuki Sekizawa (TDHF: Transfer reaction)

Saturation properties of nuclear matter

- Constant binding energy per nucleon

$$
B / A \approx S_{n(p)} \approx 16 \mathrm{MeV}
$$

- Saturation density

$$
\rho \approx 0.16 \mathrm{fm}^{-3} \Rightarrow k_{F} \approx 1.35 \mathrm{fm}^{-1}
$$

- Naïve mean-field picture breaks down
- State-dependent effective interaction
- Density dependent interction
- Energy density functional

$$
E[\rho] \Rightarrow \quad h[\rho]\left|\varphi_{i}\right\rangle=\varepsilon_{i}\left|\varphi_{i}\right\rangle \quad h[\rho] \equiv \frac{\delta E}{\delta \rho}
$$

Basic equation

- TDHF eq. (TDKS eq.)

$$
i \frac{\partial}{\partial t} \varphi_{i}(t)=\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{KS}}[\rho(t)]\right\} \varphi_{i}(t)
$$

- TDHFB eq. (TDBdGKS eq.)

$$
i \frac{\partial}{\partial t}\binom{U_{\mu}(t)}{V_{\mu}(t)}=\left(\begin{array}{cc}
h(t)-\lambda & \Delta(t) \\
-\Delta^{*}(t) & -(h(t)-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(t)}{V_{\mu}(t)}
$$

Time-dependent DFT (TDDFT)

Time-dependent Kohn-Sham equation (1984)
$i \frac{\partial}{\partial t} \varphi_{i}(t)=\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{KS}}[\rho(t)]-\varepsilon_{i}\right\} \varphi_{i}(t)$

$$
V_{\mathrm{KS}}[\rho(t)]=V_{0}+\delta V_{\mathrm{KS}}(t)
$$

Induced (screening) field

$$
\delta V_{\mathrm{KS}}(t)=\frac{\delta V_{\mathrm{KS}}}{\delta \rho} \delta \rho(t)
$$

The collective motion is induced by the motion of the potential.

Complete analogue of the unified model by Bohr and Mottelson

Small-amplitude approximation --- Linear response (RPA) equation ---

$$
\begin{gathered}
\left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=-\binom{\left(V_{\mathrm{ext}}\right)_{m i}}{\left(V_{\mathrm{ext}}\right)_{i m}} \\
A_{m i, n j}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{m n} \delta_{i j}+\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{n j}}\left|\phi_{\rho_{0}}\right\rangle \\
B_{m i, n j}=\left\langle\phi_{i}\right| \frac{\partial h}{\partial \rho_{j n}}| |_{\rho_{0}} \left\lvert\, \begin{array}{l}
\text { • Tedious calculation of residual interactions } \\
\text { • Computationally very demanding, } \\
\text { especially for deformed systems. }
\end{array}\right.
\end{gathered}
$$

However, in principle, the self-consistent single-particle Hamiltonian should contain everything. We can avoid explicit calculation of residual interactions.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC76 (2007) 024318.

Residual fields can be estimated by the finite difference method:

$$
\begin{aligned}
& \delta h(\omega)=\frac{1}{\eta}\left(h\left[\rho_{\eta}\right]-h\left[\rho_{0}\right]\right) \\
& \rho_{\eta} \equiv \sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}^{\prime}\right| \\
& \left|\psi_{i}\right\rangle=\left|\varphi_{i}\right\rangle+\eta\left|X_{i}(\omega)\right\rangle, \quad\left\langle\psi_{i}^{\prime}\right|=\left\langle\varphi_{i}\right|+\eta\left\langle Y_{i}(\omega)\right|
\end{aligned}
$$

Starting from initial amplitudes $\mathrm{X}^{(0)}$ and $\mathrm{Y}^{(0)}$, one can use an iterative method to solve the following linear-response equations.

$$
\begin{aligned}
& \omega\left|X_{i}(\omega)\right\rangle=\left(h_{0}-\varepsilon_{i}\right)\left|X_{i}(\omega)\right\rangle+\hat{Q}\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\}\left|\phi_{i}\right\rangle \\
& \omega\left\langle Y_{i}(\omega)\right|=-\left\langle Y_{i}(\omega)\right|\left(h_{0}-\varepsilon_{i}\right)-\left\langle\phi_{i}\right|\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\} \hat{Q}
\end{aligned}
$$

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.

Step-by-step numerical procedure

1. Set the initial amplitudes $X^{(0)}$ and $Y^{(0)}$
2. Calculate the residual fields $\delta \mathrm{h}$ by the FAM formula

$$
\begin{aligned}
& \delta h(\omega)=\frac{1}{\eta}\left(h\left[\left\langle\psi^{\prime}\right|,|\psi\rangle\right]-h_{0}\right) \\
& \left|\psi_{i}\right\rangle=\left|\phi_{i}\right\rangle+\eta\left|X_{i}(\omega)\right\rangle, \quad\left\langle\psi_{i}^{\prime}\right|=\left\langle\phi_{i}\right|+\eta\left\langle Y_{i}(\omega)\right|
\end{aligned}
$$

3. Now, we can calculate the I.h.s. of the following equations:

$$
\left.\begin{array}{l}
\left(\omega-h_{0}+\varepsilon_{i}\right)\left|X_{i}(\omega)\right\rangle-\delta h(\omega)\left|\phi_{i}\right\rangle=V_{\text {ext }}(\omega)\left|\phi_{i}\right\rangle \\
\left\langle Y_{i}(\omega)\right|\left(\omega+h_{0}-\varepsilon_{i}\right)+\left\langle\phi_{i}\right| \delta h(\omega)=-\left\langle\phi_{i}\right| V_{\text {ext }}(\omega)
\end{array}\right\} \Rightarrow A \vec{x}=\vec{b}
$$

4. Update the amplitude to $\left(\mathrm{X}^{(1)}, \mathrm{Y}^{(1)}\right)$ by an iterative algorithm, such as the conjugate gradient method and its derivatives

Iterative approaches to strength functions:
Johnson et al., CPC 120, 155 (1999)
Toivanen et al., PRC 81, 034312 (2010); Carlsson et al., PRC 86, 014307 (2012)

Finite amplitude method for superfluid systems

Avogadro and TN, PRC 84, 014314 (2011)
Residual fields can be calculated by

$$
\begin{array}{ll}
\delta h(\omega)=\frac{1}{\eta}\left\{h\left[\bar{V}_{\eta}^{*}, V_{\eta}\right]-h_{0}\right\} & V_{\eta}=V+\eta U^{*} Y, \quad \bar{V}_{\eta}^{*}=V^{*}+\eta U X \\
\delta \Delta(\omega)=\frac{1}{\eta}\left\{\Delta\left[\bar{V}_{\eta}^{*}, U_{\eta}\right]-\Delta_{0}\right\} & U_{\eta}=U+\eta V^{*} Y
\end{array}
$$

QRPA equations are

$$
\begin{aligned}
\left(E_{\mu}+E_{v}-\omega\right) X_{\mu \nu}+\delta H_{\mu \nu}^{20}=F_{\mu \nu}^{20} & \\
\left(E_{\mu}+E_{v}+\omega\right) Y_{\mu \nu}+\delta \widetilde{H}_{\mu \nu}^{02^{*}}=F_{\mu \nu}^{02} & \left(\begin{array}{cc}
\delta H_{\mu \nu} \\
\delta \widetilde{H}_{\mu \nu} &
\end{array}\right)=W^{+}\left(\begin{array}{cc}
\delta h & \delta \Delta \\
\delta \widetilde{\Delta}^{+} & -\delta h^{+}
\end{array}\right) W \\
& W=\left(\begin{array}{cc}
U & V^{*} \\
V & U^{*}
\end{array}\right)
\end{aligned}
$$

FAM meets HFBRAD

Test calculation: IS monopole

Our result: Red line qp cut-off at 60 MeV

All 2qp states are included.
Calculation by Terasaki et al.
(PRC71, 034310 (2005): Green line $\stackrel{\leftrightarrows}{\omega}$

FAM meets HFBTHO

- I discussed with Mario about the possibility of HFBTHO+FAM
- UNEDF Annual Meeting at Pack Forest, WA, USA (2009)
- A symposium in November, 2010
- Mario visited us at RIKEN after the symposium.
- Mario and Markus started working on HFBTHO+FAM.
- The first-shot result before Christmas, 2010
- The paper was published in July, 2011

Computational advantage in FAM

M. Stoitsov, et al., PRC 84, 041305 (2011)

GMR in ${ }^{240} \mathrm{Pu}$ (g.s. \& f. i)
(Space: 20 major shells)

QRPA			FAM
$v_{\text {crit }}$	Size of A, B matrices	Memory (in GB)	Memory (in GB)
${ }^{40} \mathrm{Mg}$			
10^{-3}	32039×32039	16.4	
10^{-4}	53386×53386	45.6	
10^{-5}	53823×53823	46.35	
10^{-10}	130936×130936	274.31	
10^{-15}	189271×189271	473.18	
10^{-20}	211159×211159	713.41	0.572
100 Zr			
10^{-3}	83970×83970	112.81	
10^{-4}	140229×140229	314.63	
10^{-5}	160633×160633	412.85	
10^{-10}	189500×189500	574.56	
10^{-15}	230274×230274	848.41	
10^{-20}	230304×230304	848.64	0.572

Explicit construction of (Q)RPA matrix with FAM

- An advantageous feature in the iterative solver with FAM (i-FAM)
- No need to calculate the (Q)RPA matrix explicitly
- Computationally fast and simple
- Disadvantage in i-FAM
- Normal-mode eigenstates are missing
- (Q)RPA matrix construction with FAM (m-FAM)
- Again, it is very easy and computationally efficient!

RPA matrix (revisited)

$$
\begin{gathered}
\left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega^{(n)}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X^{(n)}}{Y^{(n)}}=0 \\
A_{p h, p^{\prime} h^{\prime}}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{p p^{\prime}} \delta_{h h^{\prime}}+\left.\frac{\partial h_{p h}}{\partial \rho_{p^{\prime} h^{\prime}}}\right|_{\rho_{0}} \\
B_{p h, p^{\prime} h^{\prime}}=\left.\frac{\partial h_{p h}}{\partial \rho_{h^{\prime} p^{\prime}}}\right|_{\rho_{0}}
\end{gathered}
$$

FAM can provide the following quantities for a given vector

$$
\delta h_{p h}=\sum_{p^{\prime} h^{\prime}}\left(\frac{\partial h_{p h}}{\left.\partial \rho_{p^{\prime} h^{\prime}}\right|_{\rho_{0}}} \delta \rho_{p^{\prime} h^{\prime}}+\left.\frac{\partial h_{p h}}{\partial \rho_{h^{\prime} p^{\prime}}}\right|_{\rho_{0}} \delta \rho_{h^{\prime} p^{\prime}}\right)
$$

$X_{p h}$ $Y_{p h}$

m-FAM

$\rho_{\eta} \equiv \rho_{0}+\eta \delta \rho=\sum_{i \in h}\left|\psi_{i}\right\rangle\left\langle\psi_{i}^{\prime}\right|$
Avogadro and TN, PRC87, 014331 (2013)
$\left|\psi_{i}\right\rangle=\left|\varphi_{i}\right\rangle+\eta\left|X_{i}\right\rangle, \quad\left\langle\psi_{i}\right|=\left\langle\varphi_{i}\right|+\eta\left\langle Y_{i}\right|$

$$
\begin{aligned}
& \delta \rho_{p h}=\left(\rho_{\eta}\right)_{p h} / \eta=X_{p h} \\
& \delta \rho_{h p}=\left(\rho_{\eta}\right)_{h p} / \eta=Y_{p h}
\end{aligned}
$$

$\left|X_{i}\right\rangle=\sum_{m>A}\left|\varphi_{m}\right\rangle X_{m i}, \quad\left|Y_{i}\right\rangle=\sum_{m>A}\left|\varphi_{m}\right\rangle Y_{m i}^{*}$
Adopting the following vector leads to "A" matrix $A_{p h, m i}^{m>A}$

$$
\begin{aligned}
& X_{p^{\prime} h^{\prime}}=\delta_{p^{\prime} m} \delta_{h^{\prime} i} \\
& Y_{p^{\prime} h^{\prime}}=0
\end{aligned} \longleftrightarrow \delta h_{p h}=\sum_{p^{\prime} h^{\prime}}\left(\left.\frac{\partial h_{p h}}{\partial \rho_{p^{\prime} h^{\prime}}}\right|_{\rho_{0}} \delta \rho_{p^{\prime} h^{\prime}}+\left.\frac{\partial h_{p h}}{\left.\partial \rho_{h^{\prime} p^{\prime}}\right|_{\rho_{0}}}\right|_{h^{\prime} p^{\prime}}\right)=\left.\frac{\partial h_{p h}}{\partial \rho_{m i}}\right|_{\rho_{0}}
$$

Adopting the following vector leads to " B " matrix $\quad B$ ph,mi

$$
\begin{aligned}
& X_{p^{\prime} h^{\prime}}=0 \\
& Y_{p^{\prime} h^{\prime}}=\delta_{p^{\prime} m} \delta_{h^{\prime} i} \quad \longleftrightarrow \delta h_{p h}=\sum_{p^{\prime} h^{\prime}}\left(\frac{\partial h_{p h}}{\partial \rho_{p^{\prime} h^{\prime}}}\left|\delta \rho_{\rho_{0}}+\frac{\partial h_{p h}}{\partial \rho_{h^{\prime} p^{\prime}}| |_{\rho_{0}}}\right|_{h^{\prime} p^{\prime}} \delta \rho_{i m}\right)=\left.\frac{\partial h_{p h}}{\partial \rho_{i m}}\right|_{\rho_{0}}
\end{aligned}
$$

Repeat the calculation with all possible (m,i)-pairs.
Then, all the RPA matrix elements are explicitly calculated.

Test numerical calculation

HFBRAD+FAM (QRPA)

- m-FAM is efficient for small matrix.
- Computational time for the m-FAM scales like $\mathrm{N}^{2} \sim \mathrm{~N}^{3}$
- i-FAM scales like N

E(qp) cut off	$2 \times$ N(2qp)	i-FAM	m-FAM
60 MeV	3482	1	0.16
80 MeV	4656	1.43	0.38
100 MeV	5842	1.93	0.60
160 MeV	9528	4.08	2.56

FAM-(Q)RPA

N. Hinohara, M. Kortelainen, W. Nazarewicz, Phys. Rev. C 87, 064309 (2013)

- QRPA eigenmodes by contour integration in the complex frequency plane

$$
X_{\mu \nu}^{n} \propto \frac{1}{2 \pi i} \oint_{C_{n}} X_{\mu \nu}(\omega) d \omega, \quad Y_{\mu \nu}^{n} \propto \frac{1}{2 \pi i} \oint_{C_{n}} Y_{\mu \nu}(\omega) d \omega
$$

- Test application with the HFBTHO code

Relativistic TDMF (Covariant TDDFT)

Liang, Nakatsukasa, Niu, Meng, Phys. Rev. C 87, 054310 (2013)

- Dirac sea effects are automatically included.
- Minor extra computational cost for rearrangement terms.

Magic numbers for low-energy E1 strength

Pygmy dipole resonance (PDR)
Inakura, et al

Development of neutron radius

Horiuchi, Inakura, Nakatsukasa, Suzuki, PRC 86, 024614 (2012)

Photoabsorption cross sections

Inakura, T.N., Yabana, PRC 84, 021302 (R) (2011); PRC 88, 051305(R) (2013)

E1 strength functions

Pygmy dipoles \& neutron skins

Inakura, Nakatsukasa, Yabana, PRC 88, 051305(R) (2013); 84, 021302(R) (2011)

Low-energy E1 strength in exotic nuclei

 Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013) Ebata, Nakatsukasa, Inakura, in preparation.- Constrain the neutron skin thickness and the NM EOS?
- Yes, but better in very neutron rich!
- Data on ${ }^{84} \mathrm{Ni}$ are better than ${ }^{68} \mathrm{Ni}$
- Influence the r-process?
- Significantly influence the direct neutron capture process near the neutron drip line
- We need calculation with a proper treatment of the continuum.

Shape phase transition

Linear response and photoabsorption cross section

Yoshida, Nakatsukasa, PRC 83, 021304(R) (2011)

核変形と巨大共鳴（IS，IV；L＝0～3）

Yoshida，Nakatsukasa，PRC 88， 034309 （2013）

Sm isotopes：experiment at RCNP（2003）

密度汎関数の比較

$$
m^{*} / m=0.8 \sim 0.9
$$

非圧縮率

$K=210 \sim 230 \mathrm{MeV}$

TDDFT simulation of nuclear fusion reaction

Fusion barrier threshold
Guo, Nakatsukasa, EPJWC 38, 09003 (2012)

Toward a universal Energy Density Functional (EDF)

- Improvement of the EDF is essential for accurate description of nuclear properties
- Pairing energy functional
- Correlations beyond the Kohn-Sham scheme

Pairing energy functional

Yamagami, Shimizu, Nakatsukasa, PRC 80, 064301 (2009)

Δ_{n}

$$
\eta_{1}=1 / 4, \eta_{2}=5 / 2
$$

$$
H_{p a i r}(\vec{r})=\frac{V_{0}}{4} \sum_{\tau=n, p} g_{\tau}\left[\rho, \tau_{3} \rho_{1}\right]\left\{\tilde{\rho}_{\tau}(\vec{r})\right\}^{2}
$$

$$
\cdots \Delta_{\mathrm{n}, \mathrm{HFB}}(\alpha) / \Delta_{\mathrm{n}}^{(1 / 2}
$$

$$
g_{\tau}\left[\rho, \rho_{1}\right]=1-\eta_{0} \frac{\rho}{\rho_{0}}-\eta_{1} \frac{\tau_{3} \rho_{1}}{\rho_{0}}-\eta_{2}\left(\frac{\rho_{1}}{\rho_{0}}\right)^{2} 0.5
$$

$$
0.0
$$

$\frac{\Delta_{\mathrm{n}}\left({ }^{1}\right.}{0.0}$

DFT with proton-neutron mixing

Sato, Dobaczewski, Nakatsukasa, Satula, PRC 88, 061301(R) (2013)
pn-mixing DFT code has been developed with a collaboration with a Warsaw group.

Future subjects:
Properties of $\mathrm{T}=0$ and $\mathrm{T}=1$ pairing Charge-exchange reaction

$$
E\left[\rho_{n}, \rho_{p}\right] \Rightarrow E\left[\rho_{0}, \vec{\rho}_{1}\right]
$$

$$
\hat{H}^{\prime}=\hat{H}-\vec{\lambda} \cdot \vec{T}
$$

Related presentation

- Time-dependent density functional theory - Yukio Hashimoto (TDHFB) - Jun Terasaki (Double beta decay)
- Kazuhiro Yabana (TDDFT in Cond. Matt. Phys.)
- Kazuyuki Sekizawa (Transfer reaction)
- Multi-reference DFT
- Yukio Hashimoto (GCM with TAC)
- Yuta Fukuoka* (Stochastic config. mixing cal.)

$$
\rightarrow \text { T.N. }
$$

- Triple-alpha reaction
- Kazuhiro Yabana (Imaginary-time approach)

