Resonances in Lattice QCD

External Review on CCS，2014／02／19
Naruhito Ishizuka with PACS－CS ， University of Tsukuba

Results of ρ meson decay by PACS－CS

1．Introduction

Now，we can calculate hadron masses at physical quark mass by lattice QCD．

But，it is only for stable particles ．．．．．．
Hadron masses at physical quark mass

：for unstable particle（ ρ, K^{*}, Δ ） energies of ground states on finite volume are plotted．

These are not resonance masses．

Calculations of resonance mass and decay width of unstable particles still remain．

Comment on time correlation function

Calculation of mass of stable particle
$\mathcal{O}(t)$ ：Heisenberg op．on lattice

$$
\begin{aligned}
& \langle 0| \mathcal{O}(t) \mathcal{O}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \left.=\sum_{H}|\langle 0| \mathcal{O}| H\right\rangle\left.\right|^{2} \cdot \mathrm{e}^{-E_{H} \cdot\left(t-t_{0}\right)} \\
& |H\rangle: \text { energy eigenstate } \\
& E_{H} \quad: \text { energy eigevalue }
\end{aligned}
$$

for $t \gg t_{0}$

$$
\left.\sim|\langle 0| \mathcal{O}| H_{0}\right\rangle\left.\right|^{2} \cdot \mathrm{e}^{-E_{0} \cdot\left(t-t_{0}\right)}
$$

\rightarrow energy of ground state ：E_{0} by exp－fit

for ρ meson（ resonance state ）

（ $\rho->\pi \pi$ by strong interaction ）
$\left.\langle 0| \rho^{\dagger}(t) \rho(0)|0\rangle=\sum_{\alpha}|\langle 0| \rho| \alpha\right\rangle\left.\right|^{2} \cdot \mathrm{e}^{-E_{\alpha} t}$
：multi exp．form with $E_{\alpha} \in \mathbb{R}$
（：same form as for stable particle ）
naive expectation ：
for unstable particle

$$
E=M+i \Gamma \quad(M, \Gamma \in \mathbb{R})
$$

time correlator $\sim \mathrm{e}^{-M t} \cdot \mathrm{e}^{-i \Gamma t}$
：This is only true
in infinite volume limit ！
infinite volume finite volume

Decay width can not be directly obtained from correlation function on the lattice．

Approach from momentum space

ex）ρ meson decay
Lattice calc ：

$$
\begin{gather*}
\langle 0| \pi\left(p_{1}\right) \pi\left(p_{2}\right) \pi\left(p_{3}\right) \pi\left(p_{4}\right)|0\rangle \sim \sin \delta(k) \mathrm{e}^{i \delta(k)} \\
\delta(k) \rightarrow \Gamma
\end{gather*}
$$

Wrong ！！

Lattice QCD is formulated on the Euclidian space－time．
p_{j} ：Euclid mom．on the lattice
$\delta(k)$ ：un－physical

Is study of resonance from lattice QCD possible ？

YES！

We can calculate scattering phase shift by finite size method， and obtain information of resonance from it．

Finite size method Lüscher CMP105（86）153，NPB354（91）531．

Ex）for rit system
In $L \times L \times L$ periodic box（：lattice ）
Energy of π ：

$$
E=\sqrt{m_{\pi}^{2}+k^{2}} \quad k^{2}=(2 \pi / L)^{2} \cdot n, n \in \mathbb{Z}
$$

Energy of $\pi \pi$ ：

$$
E=2 \sqrt{m_{\pi}^{2}+k^{2}} \quad k^{2}=(2 \pi / L)^{2} \cdot n, n \notin \mathbb{Z} \quad(: \text { discrete })
$$

$$
\frac{1}{\tan \delta_{0}(k)}=\frac{4 \pi}{k} \cdot \frac{1}{L^{3}} \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \frac{1}{p_{n}^{2}-k^{2}} \quad\left(\mathbf{p}_{n}=\mathbf{n} \cdot(2 \pi) / L\right)
$$

：SC．phase shift in infinite volume

：Lüscher＇s formula

Energy of two－pion on the lattice

SC．phase shift in infinite volume

Physical meaning of Lüscher＇s formula

for 1 dim case

No interacting two－pion on the lattice $\quad \lambda=(2 \pi) / k$

Other possible methods ：

1．From time correlation function
Extraction the resonance parameter from a time correlation function by using an effective theory．
：strongly depends on an effective theory．
Recently：model indep．method at $L=$ huge
U．－G．Meissner et．al，NPB846（2011）1
2．From spectrum density
V．Bernard et．al．，JHEP 08（2008） 024
Calculations of energies on many lattice volumes for very higher states are necessary．
：impossible in QCD ！！

3．From＂potential＂extracted from BS－function
Solving Shrodinger eq．
HAL collaboration 2012
－－＞existence of resonance
Study of a resonance with these methods has not been succeeded yet．

2．Previous works of ρ meson decay

$$
\begin{array}{lll}
N_{f}=2 & : \mathbf{u}, \mathbf{d} & \left(m_{u}=m_{d}\right) \\
N_{f}=2+1: \mathbf{u}, \mathrm{d}, \mathbf{s} & \left(m_{u}=m_{d}<m_{s}\right)
\end{array}
$$

$$
\begin{gathered}
\mathcal{L}=g_{\rho \pi \pi} \cdot \epsilon^{a b c} \rho_{\mu}^{a} \pi^{b} \stackrel{\leftrightarrow}{\partial}_{\mu} \pi^{c} \\
\text { exp. }: g_{\rho \pi \pi}=5.878(22) \\
\quad m_{\rho}=775.5(0.4) \mathrm{MeV} \\
\Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{\rho}^{3}}{m_{\rho}^{2}}=146.4(1.1) \mathrm{MeV}
\end{gathered}
$$

1）CP－PACS PRD76（07）094506．

$$
\begin{aligned}
& N_{f}=2(\text { Wilson }), a=0.21 \mathrm{fm}, L=2.5 \mathrm{fm}, m_{\pi}=330 \mathrm{MeV} \\
& \quad g_{\rho \pi \pi}=6.25(67)
\end{aligned}
$$

2）M．Göckeler，R．Horsley，Y．Nakamura et．al．（ QCDSF ）arXiv：0810．5337（Lat08）

$$
\begin{aligned}
& N_{f}=2(\text { Wilson }), a=0.072-0.084 \mathrm{fm}, m_{\pi}=240-810 \mathrm{MeV} \\
& g_{\rho \pi \pi}=5.3_{-1.5}^{+2.1}
\end{aligned}
$$

3）X．Feng，K．Jansen，D．B．Renner（ ETMC ）arXiv：0910．4871（Lat09）

$$
N_{f}=2(\mathrm{tmQCD}), a=0.086 \mathrm{fm}, L=2.1 \mathrm{fm}, m_{\pi}=391 \mathrm{MeV}
$$

$$
g_{\rho \pi \pi}=6.16(48)
$$

4）ETMC Lat10（ arXiv：1011．4288）． PRD83（2011）094505．

$$
N_{f}=2(\mathrm{tmQCD}) \quad a=0.079 \mathrm{fm}
$$ （ Iso－spin sym．is broken ：$\rho^{+} \neq \rho^{0}$ ）

$L=2.5 \mathrm{fm}, m_{\pi}=290,330 \mathrm{MeV}$
$L=1.9 \mathrm{fm}, m_{\pi}=420,480 \mathrm{MeV}$

$$
\begin{aligned}
& \text { exp. : } g_{\rho \pi \pi}=5.878(14) \\
& \quad m_{\rho}=775.49(34) \mathrm{MeV}
\end{aligned}
$$

11

5）C．B．Lang et．al．PRD84（2011）054503．
$N_{f}=2$（Wilson）$\quad a=0.124 \mathrm{fm}$
$L=2 \mathrm{fm}, m_{\pi}=266 \mathrm{MeV}$

$$
\frac{k^{3}}{\tan \delta(k)} / \sqrt{s}=\frac{6 \pi}{g_{\rho \pi \pi}^{2}} \cdot\left(m_{\rho}^{2}-s\right)
$$

$$
g_{\rho \pi \pi}=5.13(20)
$$

$$
\left.m_{\rho}=792(7)(8)\right) \mathrm{MeV}
$$

$$
\text { at } m_{\pi}=266 \mathrm{MeV}
$$

2．Results of ρ meson decay（2009－2011）

Gauge conf．：

$N_{f}=2+1$（Wilson），Iwasaki Gauge action
$a=0.091 \mathrm{fm}, L=2.9 \mathrm{fm}$
$m_{\pi}=300,410 \mathrm{MeV}$
generated by PACS－CS col． PRD79（2009）034503．

Computer ：PACS－CS

Calc．points

We consider 4 irreps．：$(0,0,0) \mathbf{T}_{1},(0,0,1) \mathbf{E},(0,0,1) \mathbf{A}_{2},(1,1,0) \mathbf{B}_{1}$ on 3 momentuma frames with $\mathbf{P}_{\text {tot }}=(0,0,0),(0,0,1),(1,1,0)$

$\sqrt{s} / m_{\rho} \quad$（ignoring particle int．）

Finite size formula

M．Lüscher，NPB354（1991）531．
K．Rummainnen and S．Gottlib，NPB450（1995）397． ETMC，arXiv：1011．5288．
Relation between $\delta(k)$ and E

$$
\begin{gathered}
\frac{1}{\tan \delta(k)}= \begin{cases}V_{00} & \text { for }(0,0,0) \mathbf{T}_{1} \\
V_{00}-V_{20} & \text { for }(0,0,1) \mathbf{E} \\
V_{00}+2 \cdot V_{20} & \text { for }(0,0,1) \mathbf{A}_{2} \\
V_{00}-V_{20}+\sqrt{6} \cdot V_{22} & \text { for }(1,1,0) \mathbf{B}_{1}\end{cases} \\
V_{l m}\left(k ; \mathbf{P}_{\text {tot }}\right)=\frac{1}{\gamma q^{l+1}} \frac{1}{\pi^{3 / 2} \sqrt{2 l+1}} \mathrm{e}^{-i m \pi / 4} \cdot Z_{l m}(1 ; q ; \mathbf{d}) \quad(: \text { Real }) \\
\sqrt{E^{2}-P_{\text {tot }}^{2}}=\sqrt{s}=2 \sqrt{m_{\pi}^{2}+k^{2}} \\
q=k L /(2 \pi) \quad \mathbf{d}=\mathbf{P}_{\text {tot }} L /(2 \pi) \\
Z_{l m}(s ; q ; \mathbf{d})=\sum_{\mathbf{r} \in D(\mathbf{d})}^{\mathcal{Y}_{l m}(\mathbf{r}) \cdot\left(|\mathbf{r}|^{2}-q^{2}\right)^{-s}} \\
D(\mathbf{d})=\left\{\mathbf{r} \mid \mathbf{r}=\hat{\gamma}^{-1}(\mathbf{n}+\mathbf{d} / 2), \mathbf{n} \in \mathbb{Z}^{3}\right\} \\
\hat{\gamma}^{-1}: \operatorname{Inv.} \text { Lorentz boost with } \gamma=E / \sqrt{s}
\end{gathered}
$$

For $(0,0,1) \mathbf{A}_{2}$ and $(1,1,0) \mathbf{B}_{1} \quad \sqrt{\sqrt{s} / m_{\rho}}$
For $(0,0,0) \mathbf{T}_{1}$ and $(0,0,1) \mathbf{E}$ energies of ground state are extracted from correlation function of ρ meson as usual calculations of hadron masses．

Energies are extracted by variational method．

$$
\begin{aligned}
& \mathcal{O}_{1}(t)=\rho(\mathbf{p}, t) \\
& \mathcal{O}_{2}(t)=\pi^{-}(\mathbf{p}, t) \pi^{+}(\mathbf{0}, t)-\pi^{+}(\mathbf{p}, t) \pi^{-}(\mathbf{0}, t) \\
& \qquad \text { for } \mathbf{p}=(0,0,1),(1,1,0)
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
G_{i j}(t)= & \left\langle\mathcal{O}_{i}^{\dagger}(t)\right.
\end{array} \mathcal{O}_{j}(0)\right\rangle \text { matrix }\right)
$$

Assuming 2 states dominant for $t \gg t_{s}$

$$
\begin{aligned}
\operatorname{Ev}\left[G(t) G^{-1}\left(t_{0}\right)\right]_{\alpha} & =\mathrm{e}^{-W_{\alpha} \cdot\left(t-t_{0}\right)} \quad(\alpha=1,2) \\
W_{\alpha} & : \text { energy eigenvalue }
\end{aligned}
$$

Calc．of $G(t)$

These are calculated
by the stochastic source and the source method．

Results at $m_{\pi}=410 \mathrm{MeV}$

Results at $m_{\pi}=300 \mathrm{MeV}$

effective mass $\log G(t) / G(t+1) \sim E$

Results of SC．phase shift
$N_{f}=2+1$ (Wilson) $\quad a=0.091 \mathrm{fm}$
$L=2.9 \mathrm{fm}, m_{\pi}=300,410 \mathrm{MeV}$

$$
\begin{aligned}
g_{\rho \pi \pi} & =5.51 \pm 0.40 \\
m_{\rho} & =892.8 \pm 5.5 \pm 13 \mathrm{MeV}
\end{aligned}
$$

exp．：$g_{\rho \pi \pi}=5.878(14)$

$$
m_{\rho}=775.49(34) \mathrm{MeV}
$$

$$
\frac{k^{3}}{\tan \delta(k)} / \sqrt{s}=\frac{6 \pi}{g_{\rho \pi \pi}^{2}} \cdot\left(m_{\rho}^{2}-s\right)
$$

$$
\begin{aligned}
g_{\rho \pi \pi} & =5.98 \pm 0.56 \\
m_{\rho} & =863 \pm 23 \pm 12 \mathrm{MeV}
\end{aligned}
$$

$\underline{20}$

3．Comparison with other groups

9）Pelissier et．al．
PRD87（2013）014503．
$N_{f}=2$（Wilson）$\quad a=0.1255 \mathrm{fm}$
$m_{\pi}=300 \mathrm{MeV}$
$V=24^{2} \times \eta 24 \times 48(\eta=1.0,1.25,2.0)$

$$
\begin{aligned}
& g_{\rho \pi \pi}=6.67(42) \\
& m_{\rho}=827(3)(5) \mathrm{MeV} \\
& \quad \text { at } m_{\pi}=300 \mathrm{MeV}
\end{aligned}
$$

10）HSC Collaboration

PRD87（2013）034505．
$N_{f}=2+1$（Wilson）$\quad a=0.12 \mathrm{fm}$
$L=1.9,2.4,2.9 \mathrm{fm}, m_{\pi}=391 \mathrm{MeV}$

$$
\begin{aligned}
& g_{\rho \pi \pi}=4.83(13)(2) \\
& m_{\rho}=863.5(19)(6) \mathrm{MeV} \\
& \quad \text { at } m_{\pi}=391 \mathrm{MeV}
\end{aligned}
$$

Comparison

- ETMC	\circ Lang et．al．• Pelissier et．al．
- PACS－CS	\bullet HSC

exp．：$g_{\rho \pi \pi}=5.878(14)$

$$
m_{\rho}=775.49(34) \mathrm{MeV}
$$

We find discrepancies．
Precise calc．near physical quark mass and cont．limit needs ！！

Comparison for dim．less values

Discrepancies still remain．

4．Summary

We calculate SC．phase shift for $I=1$ two－pion system．
We evaluate coupling constant and resonance energy from it．

$$
\begin{aligned}
& \text { exp. : } \\
& g_{\rho \pi \pi}=5.878(22) \\
& m_{\rho}=775.5(0.4) \mathrm{MeV} \\
& \Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{\rho}^{3}}{m_{\rho}^{2}}=146.4(1.1) \mathrm{MeV}
\end{aligned}
$$

Our results ：
－$N_{f}=2+1$（Wilson）$\quad a=0.091 \mathrm{fm}$
$L=2.9 \mathrm{fm}, m_{\pi}=410 \mathrm{MeV}$

$$
\begin{aligned}
& g_{\rho \pi \pi}=5.65 \pm 0.44 \\
& m_{\rho}=892.7 \pm 5.2 \mathrm{MeV} \\
& \Gamma_{\rho}=135 \pm 21 \mathrm{MeV} \\
& \quad \text { (assuming }: g_{\rho \pi \pi}: \text { const.) } \\
& \hline
\end{aligned}
$$

－$N_{f}=2+1$（Wilson）$a=0.091 \mathrm{fm}$
$L=2.9 \mathrm{fm}, \underline{m_{\pi}=300 \mathrm{MeV}}$

We find ：

$$
\begin{aligned}
& g_{\rho \pi \pi}=5.95 \pm 0.57 \\
& m_{\rho}=860 \pm 18 \mathrm{MeV} \\
& \Gamma_{\rho}=150 \pm 28 \mathrm{MeV} \\
& \quad\left(\text { assuming }: g_{\rho \pi \pi}: \text { const. }\right)
\end{aligned}
$$

Discrepancies among lattice calculations for both resonance mass and effective constant．

Precise calc．near physical quark mass and cont．limit needs ！！

In Feature works ：

－We have to study at phys．point．
To set $\sqrt{s} \sim m_{\rho}$

$$
\begin{aligned}
& \text { for } m_{\pi} \rightarrow 0 \\
& \quad \pi(\mathbf{p}) \pi(-\mathbf{p}) \quad \text { with } \quad \mathbf{p}: \text { larger } \\
& \text { Stat. Error. } \rightarrow \text { large }
\end{aligned}
$$

1．We have to improve the operator of π with high momentum．

2．How extract energies of high exicited state？

3．Other methods ？
－We have to study other resonances．

$$
\begin{aligned}
& K^{*}, \Delta \ldots \\
& \text { ao, } K, \sigma \ldots \\
& \text { charm resonance }(X, Y, Z \ldots)
\end{aligned}
$$

\sqrt{s} / m_{ρ} of πm at physical point
for $\mathbf{P}_{\text {tot }}=0$
on $L=6 \mathrm{fm}$

