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1. Introduction

general modes of nuclear rotation
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triaxial, strongly deformed (TSD) bands has been given,
but one possible and unique consequence of a rotating
nucleus with a triaxial shape is the existence of “wobbling
bands” [2].

In an investigation of the isotopes '®*!%*Lu with the Eu-
roball 1T array [11], a second band (TSD2) with similar
properties as the previously known 13/ band (TSD1) has
been observed in '%3Lu [12]. This second band was found
to decay to TSD1, but no connections could be established.
The new band was considered [12] a candidate for a wob-
bling excitation. The present work firmly establishes the

WO b b I I n g b an dand as a wobbling excitation built on TSD1.
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FIG. 1. Partial level scheme of '®*Lu showing the two TSD
bands together with the connecting transitions and the ND struc-
tures to which the TSD states decay.

To find and investigate the nature of the connecting
transitions between TSD2 and TSD1, an experiment was
performed with Euroball IV [11] in Strasbourg equipped
with the BGO inner ball. With the **La(*Si,5n)'%*Lu
reaction and a beam energy of 152 MeV, approximately
2.4 X 10° events with 3 or more Compton suppressed y
rays in the Ge detectors and 8 or more y rays detected in
the BGO inner ball were collected and used in 3D and 4D
coincidence analyses.

The band TSD2 could be extended to both lower (6/)
and higher (4%) spins, and 9 connecting transitions to
TSDI1 were established; see Fig. 1. Furthermore, TSD1
has been extended 107 higher in spin. Gated spectra illus-
trating the connecting transitions and their angular depen-
dence, as well as in-band transitions in TSD1 and TSD2
in the same energy range, are shown in Fig. 2. The popu-
lation of TSD1 and TSD2 relative to yrast are ~10% and
~2.5%, respectively.

A determination of the multipolarity of the connecting
transitions is crucial. The directional correlation of y rays
from the oriented states (DCO ratios) [13] were obtained
for the strongest connecting transitions using “25°”
and “90°” data. In addition, angular distribution ratios
were produced from the same data. Linear polarization
measurements were also attempted using the two “90°”
rings of Clover detectors [11]. In all cases the data were
selected by clean gates in TSD1 in any angle in the spin
range 21/2 — 45/2h. The spin alignment, parametrized
as o /I for a Gaussian dist{ibution of the m-substate popu-
lation, P, (I) = CXP("Q;"W) [14], was determined for a
number of stretched electric quadrupole (E2) transitions in
the same spin region as the connecting transitions. There
was no detectable spin dependence. An average value is
o /I = 0.25 = 0.02. Both the angular correlation and an-
gular distribution data are consistent with mixed M 1/E2
multipolarity for the connecting transitions. ~ Within
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FIG. 2. Spectra from the angular distribution matrices gated
on the 450 keV transition in TSD1. Connecting transitions are
marked by arrows. Most other unmarked transitions belong to
the decay of TSDI.
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2. Three-dimensional cranked HFB
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Constraints used in HFB calculation

(Je) = Jocos {J;) = Josin
<Jy> =0

(yz) =0 {zz)=0 (zy)=0
(Ny=2Z (N,y=N




Starting points of tilted wave functions
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Energy vs tilt angle
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TAR states and K=8 band
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TAR states ( K=8 band)
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