
FFT and Parallel Numerical

Libraries

Daisuke Takahashi

Center for Computational Sciences

University of Tsukuba

2014/2/19 External Review 1

2014/2/19 External Review 2

Outline

• Overview of Research Results

• Collaborations

• Fast Fourier Transform (FFT)

– FFTE: A High-Performance FFT Library

– Performance Results of Parallel 1-D FFT on the

K computer

• Parallel Numerical Libraries: High Precision

Arithmetic Operations

– Triple and Quadruple Precision BLAS on GPUs

– CUMP: The CUDA Multiple Precision Arithmetic Library

• Summary

Overview of Research Results (1/3)

• Fast Fourier Transform (FFT)

– Implementation of Parallel 1-D FFT on GPU Clusters

[Takahashi, IEEE CSE 2013]

– An Implementation of Parallel 2-D FFT Using Intel AVX

Instructions on Multi-Core Processors [Takahashi,

ICA3PP 2012]

– An Implementation of Parallel 1-D FFT on the K computer

[Takahashi (U. Tsukuba), Uno and Yokokawa (RIKEN),

IEEE HPCC 2012]

– An Implementation of Parallel 3-D FFT with 2-D

Decomposition on a Massively Parallel Cluster of Multi-

core Processors [Takahashi, PPAM 2009]

2014/2/19 External Review 3

Overview of Research Results (2/3)
• Triple and Quadruple Precision BLAS on GPUs

– Implementation and Evaluation of Triple Precision BLAS

Subroutines on GPUs [Mukunoki and Takahashi, IPDPSW

2012]

– Implementation and Evaluation of Quadruple Precision

BLAS Functions on GPUs [Mukunoki and Takahashi,

PARA 2010]

• Multiple-Precision Arithmetic

– Implementation of Multiple-Precision Floating-Point

Arithmetic Library for GPU Computing [Nakayama and

Takahashi, PDCS 2011]

– Parallel implementation of multiple-precision arithmetic

and 2,576,980,370,000 decimal digits of π calculation

[Takahashi, Parallel Computing, 2010]
2014/2/19 External Review 4

Overview of Research Results (3/3)

• Sparse Matrix-Vector Multiplication on GPUs

– Optimization of Sparse Matrix-vector Multiplication for

CRS Format on NVIDIA Kepler Architecture GPUs

[Mukunoki and Takahashi, ICCSA 2013]

– Automatic Tuning of Sparse Matrix-Vector Multiplication

for CRS format on GPUs

[Yoshizawa and Takahashi, IEEE CSE 2012]

– Optimization of Sparse Matrix-Vector Multiplication by

Auto Selecting Storage Schemes on GPU

[Kubota and Takahashi, ICCSA 2011]

2014/2/19 External Review 5

Collaborations (1/2)

• Collaboration between computer science and
material science
– Density-funtional theory (DFT) code includes Gram-

Schmidt orthogonalization of a large set of wave
functions.

– Implemented an effective algorithm for Gram-Schmidt
orthogonalization with matrix multiplication.

– J.-I. Iwata, D. Takahashi (U. Tsukuba), A. Oshiyama (U.
Tokyo), T. Boku, K. Shiraishi, S. Okada and K. Yabana
(U.Tsukuba): A massively-parallel electronic-structure
calculations based on real-space density functional
theory, J. Comput. Phys. (2010).

2014/2/19 External Review 6

Collaborations (2/2)
• Collaboration between computer science and

molecular science
– 3D reference interaction site model (3D-RISM)

– The ordinary parallel 3D-RISM program has a limitation
on the number of parallelism because of the limitations
of the 3-D FFT with slab-wise decomposition.

– Implemented a parallel 3-D FFT with 2-D (pencil-wise)
decomposition.

– The new 3D-RISM program achieved good scalability
on the K computer.

– Y. Maruyama (Keio U.), N. Yoshida (Kyushu U.),
H. Tadano, D. Takahashi, M. Sato (U. Tsukuba) and
F. Hirata (Inst. of Mol. Sciences): Massively Parallel
Implementation of 3D-RISM Calculation with Volumetric
3D-FFT, J. Comput. Chem. (submitted).

2014/2/19 External Review 7

FFTE: A High-Performance FFT

Library

• FFTE is a Fortran subroutine library for

computing the Fast Fourier Transform (FFT) in

one or more dimensions.

• It includes real, complex, mixed-radix and

parallel transforms.

• FFTE is typically faster than other publically-

available FFT implementations, and is even

competitive with vendor-tuned libraries.

• Available at http://www.ffte.jp/

2014/2/19 External Review 8

http://www.ffte.jp/
http://www.ffte.jp/

Features

• Parallel transforms
– Shared / Distributed memory parallel computers

(OpenMP, MPI and OpenMP + MPI)

• High portability
– Fortran + OpenMP + MPI

• Data layout
– 1-D and 2-D decomposition (for parallel 3-D FFT)

• HPC Challenge Benchmark
– FFTE’s 1-D parallel FFT routine has been

incorporated into the HPC Challenge (HPCC)
benchmark.

2014/2/19 External Review 9

Approach: Parallel 1-D FFT
• Many FFT algorithms work well when the data

sets fit into a cache.

• When the problem size exceeds the cache size,
however, the performance of these FFT
algorithms decreases dramatically.

• The key issue of the design for large FFTs is to
minimize the number of cache misses.

• The six-step FFT algorithm requires two
multicolumn FFTs and three data transpositions.

• For extremely large FFTs, each column FFT
cannot fit into the cache.

• In this case, the six-step FFT can be recursively
applied to each column FFT.

• We call this a recursive six-step FFT algorithm.
2014/2/19 External Review 10

2014/2/19 External Review 11

Parallel 1-D FFT Algorithm Based on

Six-Step FFT

Global

Transpose

Global

Transpose

Global

Transpose

𝑛1

𝑛2

𝑛2

𝑛1

𝑛1

𝑛2
𝑛1

𝑛2

𝑃0 𝑃1 𝑃2 𝑃3

𝑃0 𝑃1 𝑃2 𝑃3

2014/2/19

Recursive Six-Step FFT Algorithm

• With the multicolumn FFTs in the six-step FFT

algorithm, the Stockham autosort FFT algorithm

[Swarztrauber 84] works well until the 𝑛 -point

each column FFT exceeds the cache size.

• However, for extremely large FFTs (e.g., 𝑛 = 240 -

point FFT), each 𝑛 -point column FFT is not small

enough to fit into the L2 cache.

• When each 𝑛 -point column FFT exceeds the

cache size, the six-step FFT should be used.

• This means that we can recursively use the six-step

FFT for each column FFT.

12 External Review

2014/2/19

Performance Results

• To evaluate the implemented parallel 1-D FFT, we

compared

– Recursive six-step FFT-based parallel FFT

– Six-step FFT-based parallel FFT

• Target machine: K computer

– 82944 nodes, 16 GB per node, 128 GFlops per node,

1.27 PB total main memory, communication bandwidth 5

GB/s per node in each direction, and 10.6 PFlops peak

performance.

– We used 1 node to 8192 nodes.

– A Tofu-optimized Message Passing Interface based on

the Open MPI library was used.

13 External Review

14

Performance of Parallel 1-D FFTs on the

K compuer, N=2^28×number of nodes

1

10

100

1000

10000

100000

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

Number of nodes

G
F

lo
p

s

Recursive

Six-Step

FFT
Six-Step

FFT

18.017 TFlops

16.540 TFlops

2014/2/19 External Review

2014/2/19

Breakdown of Execution Time in Recursive Six-Step

FFT on the K computer, N=2^28×number of nodes

0

5

10

15

20

25

30

1 4 16 64 25
6

10
24

40
96

Number of nodes

T
im

e
 (

s
e
c
)

Communication

Computation

15 External Review

High Precision Arithmetic Operations
• Demand for high precision arithmetic operations

– To compute ill-conditioned problems

– Long-time and large-scale simulation: an accumulation of round-off

error may become more serious problem

• Double-double (DD) type quadruple precision arithmetic

libraries

– DDFUN90 [Bailey], QD [Bailey et al.]

• Multiple precision arithmetic libraries

– The GNU multiple precision arithmetic library (GMP)

– MPFUN90 [Bailey], ARPREC [Bailey et al.]

• Extended precision BLAS

– CPU: XBLAS [Li et al.], MBLAS [Nakata]

– GPU: MBLAS (NVIDIA GPUs) [Nakata], Quadruple precision GEMM

(AMD GPUs) [Nakasato 2011], Triple and quadruple precision AXPY,

GEMV and GEMM (NVIDIA GPUs) [Mukunoki 2012]
2014/2/19 External Review 16

Triple and Quadruple Precision Formats
• DD (Double-Double) type quadruple precision represents

one quadruple precision value 𝒂 using two double

precision values 𝒂𝒉𝒊 and 𝒂𝒍𝒐:

 𝒂 = 𝒂𝒉𝒊 + 𝒂𝒍𝒐, where |𝒂𝒍𝒐| ≤ 𝟎. 𝟓ulp(𝒂𝒉𝒊)

• D+S (Double+Single) type triple precision represents

one triple precision value 𝒂 using one double precision

value 𝒂𝒉𝒊 and one single precision value 𝒂𝒍𝒐:

 𝒂 = 𝒂𝒉𝒊 + 𝒂𝒍𝒐, where |𝒂𝒍𝒐| ≤ 𝟎. 𝟓ulp(𝒂𝒉𝒊)

𝒂𝒍𝒐 (52 bits)

Significand (52+52=104 bits) Exponent (11 bits)
Sign

(1 bit)

𝒂𝒉𝒊 (52 bits) 𝒂𝒍𝒐 (23 bits)

Significand (52+23=75 bits) Exponent (8 bits) Sign

(1 bit)

† Exponent is 8 bits: size of exponent depends on lower part’s exponent

𝒂𝒉𝒊 (52 bits)

2014/2/19 External Review 17

Relative Execution Time on Tesla C2050

• Computation cost of triple and quadruple precision subroutines is

20x more than double precision subroutines in theory.

• But only 1.6-1.7x (triple) and 2.1x (quadruple) of double in practice.

• Triple and quadruple precision AXPY and GEMV are memory-bound

on the GPU (evident from Bytes/Flop ratios of GPU and subroutines).

2014/2/19 External Review 18

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1024 102400 10240000

R
e
l
a
t
i
v
e

E
x
e
c
u
t
i
o
n

T
i
m
e

N

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2048 4096 6144 8192

R
e
l
a
t
i
v
e

E
x
e
c
u
t
i
o
n

T
i
m
e

M=N

AXPY (𝒚 = 𝜶𝒙 + 𝒚) GEMV (𝒚 = 𝜶𝑨𝒙 + 𝜷𝒚)

1.6x

2.1x 2.1x

1.7x

Triple

Double

(CUBLAS4.0)

Double

(CUBLAS4.0)

• GEMM is compute-bound in all precision on the GPU.

• Computation cost of DD-type operations is 20x more

than double precision in theory, but only 13x slower in

practice.

2014/2/19 External Review 19

1

3

5

7

9

11

13

15

0 512 1024 1536 2048

R
e
l
a
t
i
v
e

E
x
e
c
u
t
i
o
n

T
i
m
e

N=M=K

GEMM (𝑪 = 𝜶𝑨𝑩 + 𝜷𝑪) 14x

13x

Double

(CUBLAS4.0)

Triple

Quadruple

Relative Execution Time on Tesla C2050

Overview of CUMP

• CUMP is a free library for arbitrary precision

arithmetic on CUDA, operating on floating point

numbers.

• It is based on the GMP, and its functions have a

GMP-like regular interface.

• Three arithmetic operations (addition, subtraction,

and multiplication) are currently available.

• Available at

http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/

2014/2/19 External Review 20

http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/
http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/
http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/

Performance Results for

Elementwise Addition

2014/2/19 External Review 21

• For vector size N >= 24576, CUMP on GPUs (GTX580
and C2050) is faster than GMP on CPUs (Core i7 920 and
Opteron 6134 x 2).

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/

Performance Results for

Elementwise Multiplication

2014/2/19 External Review 22

• For 1,000 decimal digit numbers, GMP on CPU (Opteron

6134 x 2) is faster than CUMP on GPUs.

• CUMP does not support fast multiplication algorithms

(e.g., Karatsuba, Toom-Cook and FFT).

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/

Summary (1/2)

• We briefly introduced the FFTE library and

performance results of parallel 1-D FFT on the K

computer.

• The performance of the recursive six-step FFT-

based parallel FFT remains at a high level even

for larger problem sizes due to the recursive

approach and the cache blocking.

• Global FFT on the K computer (82,944 nodes)

achieved first place (205.9 TFlops) in the 2012

HPC Challenge Class 1 Awards.

2014/2/19 External Review 23

Summary (2/2)

• High precision arithmetic operations will become

increasingly necessary for emerging Exa-scale

computing era.

• Accelerators (GPUs and MICs, etc.) are a good

candidate for high precision arithmetic

operations.

• Triple precision is useful for memory-bound

operations, in cases where quadruple precision

is not required, but double precision is not

sufficient.

2014/2/19 External Review 24

