FFT and Parallel Numerical Libraries

Daisuke Takahashi
Center for Computational Sciences
University of Tsukuba
Outline

• Overview of Research Results
• Collaborations
• Fast Fourier Transform (FFT)
 – FFTE: A High-Performance FFT Library
 – Performance Results of Parallel 1-D FFT on the K computer
• Parallel Numerical Libraries: High Precision Arithmetic Operations
 – Triple and Quadruple Precision BLAS on GPUs
 – CUMP: The CUDA Multiple Precision Arithmetic Library
• Summary
Overview of Research Results (1/3)

- Fast Fourier Transform (FFT)
 - Implementation of Parallel 1-D FFT on GPU Clusters [Takahashi, IEEE CSE 2013]
 - An Implementation of Parallel 2-D FFT Using Intel AVX Instructions on Multi-Core Processors [Takahashi, ICA3PP 2012]
 - An Implementation of Parallel 1-D FFT on the K computer [Takahashi (U. Tsukuba), Uno and Yokokawa (RIKEN), IEEE HPCC 2012]
 - An Implementation of Parallel 3-D FFT with 2-D Decomposition on a Massively Parallel Cluster of Multi-core Processors [Takahashi, PPAM 2009]
Overview of Research Results (2/3)

• Triple and Quadruple Precision BLAS on GPUs
 – Implementation and Evaluation of Triple Precision BLAS Subroutines on GPUs [Mukunoki and Takahashi, IPDPSW 2012]
 – Implementation and Evaluation of Quadruple Precision BLAS Functions on GPUs [Mukunoki and Takahashi, PARA 2010]

• Multiple-Precision Arithmetic
 – Implementation of Multiple-Precision Floating-Point Arithmetic Library for GPU Computing [Nakayama and Takahashi, PDCS 2011]
 – Parallel implementation of multiple-precision arithmetic and 2,576,980,370,000 decimal digits of π calculation [Takahashi, Parallel Computing, 2010]
Overview of Research Results (3/3)

• Sparse Matrix-Vector Multiplication on GPUs
 – Optimization of Sparse Matrix-vector Multiplication for CRS Format on NVIDIA Kepler Architecture GPUs
 [Mukunoki and Takahashi, ICCSA 2013]
 – Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS format on GPUs
 [Yoshizawa and Takahashi, IEEE CSE 2012]
 – Optimization of Sparse Matrix-Vector Multiplication by Auto Selecting Storage Schemes on GPU
 [Kubota and Takahashi, ICCSA 2011]
Collaborations (1/2)

• Collaboration between computer science and material science
 – Density-functional theory (DFT) code includes Gram-Schmidt orthogonalization of a large set of wave functions.
 – Implemented an effective algorithm for Gram-Schmidt orthogonalization with matrix multiplication.
Collaborations (2/2)

• Collaboration between computer science and molecular science
 – 3D reference interaction site model (3D-RISM)
 – The ordinary parallel 3D-RISM program has a limitation on the number of parallelism because of the limitations of the 3-D FFT with slab-wise decomposition.
 – Implemented a parallel 3-D FFT with 2-D (pencil-wise) decomposition.
 – The new 3D-RISM program achieved good scalability on the K computer.
FFTE: A High-Performance FFT Library

- FFTE is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
- It includes real, complex, mixed-radix and parallel transforms.
- FFTE is typically faster than other publically-available FFT implementations, and is even competitive with vendor-tuned libraries.
- Available at http://www.ffte.jp/
Features

- Parallel transforms
 - Shared / Distributed memory parallel computers (OpenMP, MPI and OpenMP + MPI)
- High portability
 - Fortran + OpenMP + MPI
- Data layout
 - 1-D and 2-D decomposition (for parallel 3-D FFT)
- HPC Challenge Benchmark
 - FFTE’s 1-D parallel FFT routine has been incorporated into the HPC Challenge (HPCC) benchmark.
Approach: Parallel 1-D FFT

• Many FFT algorithms work well when the data sets fit into a cache.
• When the problem size exceeds the cache size, however, the performance of these FFT algorithms decreases dramatically.
• The key issue of the design for large FFTs is to minimize the number of cache misses.
• The six-step FFT algorithm requires two multicolumn FFTs and three data transpositions.
• For extremely large FFTs, each column FFT cannot fit into the cache.
• In this case, the six-step FFT can be recursively applied to each column FFT.
• We call this a recursive six-step FFT algorithm.
Parallel 1-D FFT Algorithm Based on Six-Step FFT

Global Transpose

Global Transpose

Global Transpose

Global Transpose
Recursive Six-Step FFT Algorithm

- With the multicolumn FFTs in the six-step FFT algorithm, the Stockham autosort FFT algorithm [Swarztrauber 84] works well until the \(\sqrt{n} \) -point each column FFT exceeds the cache size.
- However, for extremely large FFTs (e.g., \(n = 2^{40} \) -point FFT), each \(\sqrt{n} \) -point column FFT is not small enough to fit into the L2 cache.
- When each \(\sqrt{n} \) -point column FFT exceeds the cache size, the six-step FFT should be used.
- This means that we can recursively use the six-step FFT for each column FFT.
Performance Results

• To evaluate the implemented parallel 1-D FFT, we compared
 – Recursive six-step FFT-based parallel FFT
 – Six-step FFT-based parallel FFT

• Target machine: K computer
 – 82944 nodes, 16 GB per node, 128 GFlops per node, 1.27 PB total main memory, communication bandwidth 5 GB/s per node in each direction, and 10.6 PFlops peak performance.
 – We used 1 node to 8192 nodes.
 – A Tofu-optimized Message Passing Interface based on the Open MPI library was used.
Performance of Parallel 1-D FFTs on the K computer, N=2^{28}×number of nodes

Number of nodes

GFlops

Recursive
Six-Step
FFT
Six-Step
FFT

18.017 TFlops
16.540 TFlops
Breakdown of Execution Time in Recursive Six-Step FFT on the K computer, $N=2^{28}\times$ number of nodes

![Graph showing breakdown of execution time with number of nodes on the x-axis and time in seconds on the y-axis. The graph includes green bars for communication and red bars for computation.](image-url)
High Precision Arithmetic Operations

• Demand for high precision arithmetic operations
 – To compute ill-conditioned problems
 – Long-time and large-scale simulation: an accumulation of round-off error may become more serious problem

• Double-double (DD) type quadruple precision arithmetic libraries
 – DDFUN90 [Bailey], QD [Bailey et al.]

• Multiple precision arithmetic libraries
 – The GNU multiple precision arithmetic library (GMP)
 – MPFUN90 [Bailey], ARPREC [Bailey et al.]

• Extended precision BLAS
 – CPU: XBLAS [Li et al.], MBLAS [Nakata]
 – GPU: MBLAS (NVIDIA GPUs) [Nakata], Quadruple precision GEMM (AMD GPUs) [Nakasato 2011], Triple and quadruple precision AXPY, GEMV and GEMM (NVIDIA GPUs) [Mukunoki 2012]
Triple and Quadruple Precision Formats

- DD (Double-Double) type quadruple precision represents one quadruple precision value a using two double precision values a_{hi} and a_{lo}:
 $$a = a_{hi} + a_{lo}, \text{ where } |a_{lo}| \leq 0.5\text{ulp}(a_{hi})$$

- D+S (Double+Single) type triple precision represents one triple precision value a using one double precision value a_{hi} and one single precision value a_{lo}:
 $$a = a_{hi} + a_{lo}, \text{ where } |a_{lo}| \leq 0.5\text{ulp}(a_{hi})$$

† Exponent is 8 bits: size of exponent depends on lower part’s exponent
• Computation cost of triple and quadruple precision subroutines is 20x more than double precision subroutines in theory.
• But only 1.6-1.7x (triple) and 2.1x (quadruple) of double in practice.
• Triple and quadruple precision AXPY and GEMV are memory-bound on the GPU (evident from Bytes/Flop ratios of GPU and subroutines).
• GEMM is compute-bound in all precision on the GPU.

• Computation cost of DD-type operations is 20x more than double precision in theory, but only 13x slower in practice.
Overview of CUMP

- CUMP is a free library for arbitrary precision arithmetic on CUDA, operating on floating point numbers.
- It is based on the GMP, and its functions have a GMP-like regular interface.
- Three arithmetic operations (addition, subtraction, and multiplication) are currently available.
Performance Results for Elementwise Addition

For vector size $N \geq 24576$, CUMP on GPUs (GTX580 and C2050) is faster than GMP on CPUs (Core i7 920 and Opteron 6134 x 2).

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/
For 1,000 decimal digit numbers, GMP on CPU (Opteron 6134 x 2) is faster than CUMP on GPUs.

CUMP does not support fast multiplication algorithms (e.g., Karatsuba, Toom-Cook and FFT).

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/
Summary (1/2)

• We briefly introduced the FFTE library and performance results of parallel 1-D FFT on the K computer.

• The performance of the recursive six-step FFT-based parallel FFT remains at a high level even for larger problem sizes due to the recursive approach and the cache blocking.

• Global FFT on the K computer (82,944 nodes) achieved first place (205.9 TFlops) in the 2012 HPC Challenge Class 1 Awards.
Summary (2/2)

• High precision arithmetic operations will become increasingly necessary for emerging Exa-scale computing era.

• Accelerators (GPUs and MICs, etc.) are a good candidate for high precision arithmetic operations.

• Triple precision is useful for memory-bound operations, in cases where quadruple precision is not required, but double precision is not sufficient.