

Tightly Coupled Accelerators Architecture

Yuetsu Kodama

Division of High Performance Computing Systems Center for Computational Sciences University of Tsukuba, Japan

1 External Review

2014/02/19

What is "Tightly Coupled Accelerators (TCA)" ?

Concept:

- Direct connection between accelerators (GPUs) over the nodes
 - Eliminate extra memory copies to the host
 - Improve latency, improve strong scaling with small data size

Using PCIe as a communication device between accelerator

- Most accelerator devices and other I/O devices are connected by PCIe as end-point (slave device)
- An intelligent PCIe device logically enables an end-point device to directly communicate with other end-point devices
- PEACH2: PCI Express Adaptive Communication Hub ver. 2
 - In order to configure TCA, each node is connected to other nodes through PEACH2 chip.

Design policy of PEACH2

Implement by FPGA with four PCIe Gen.2 IPs

- Altera Stratix IV GX
- Prototyping, flexible enhancement

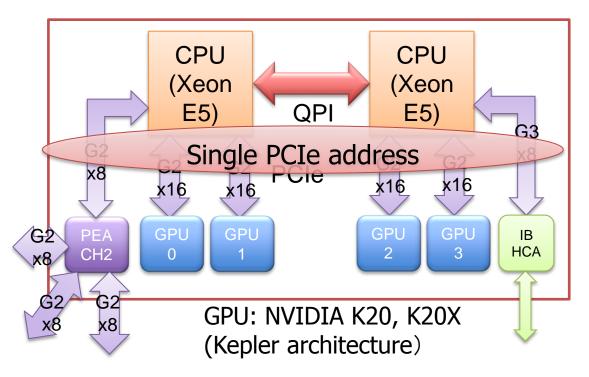
Sufficient communication bandwidth

- PCI Express Gen2 x8 for each port
- Sophisticated DMA controller
 - Chaining DMA

Latency reduction

- Hardwired logic
- Low-overhead routing mechanism
 - Efficient address mapping in PCIe address area using unused bits
 - Simple comparator for decision of output port

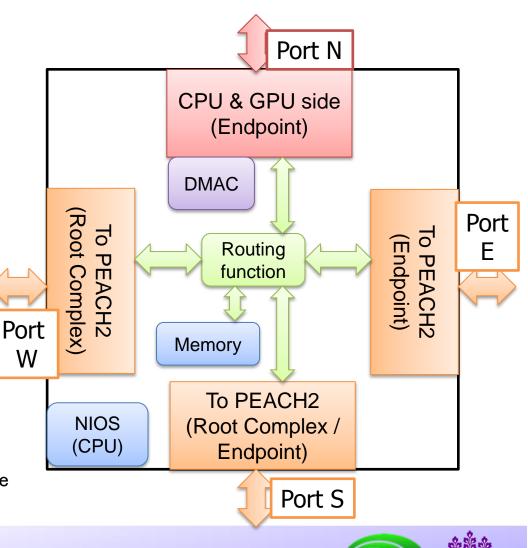
Not only is it proof-of-concept implementation, but it will also be available for product-run in GPU cluster.



TCA node structure example

PEACH2 can access every GPUs

- NVIDIA Kepler architecture + CUDA 5.0 "GPUDirect Support for RDMA"
- Performance over QPI is quite bad.
 => support only for <u>GPU0, GPU1</u>
- Connect among 3 nodes using PEACH2



Overview of PEACH2 chip

- Fully compatible with PCIe Gen2 spec.
- <u>Root and EndPoint must be</u> <u>paired</u> according to PCIe spec.
- Port N: connected to the host and GPUs
- Port E and W: form the ring topology
- Port S: connected to the other ring
 - Selectable between Root and Endpoint
- Write only except Port N
 - Instead, "Proxy write" on remote node realizes pseudo-read.

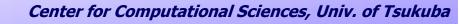
2014/02/19

Communication by PEACH2

PIO

CPU can store the data to remote node directly using mmap.

DMA


- Chaining mode
 - DMA requests are prepared as the DMA descript chained in the host memory.
 - DMA transactions are operated automatically according to the DMA descriptors by hardware.

Register mode

 DMA requests are registered into the PEACH2 by up to 16.

2014/02/19

- Lower overhead than chaining mode by omitting transfer for descriptors from host
- Block stride transfer function

Source Destination

Next

Lenath

Flags

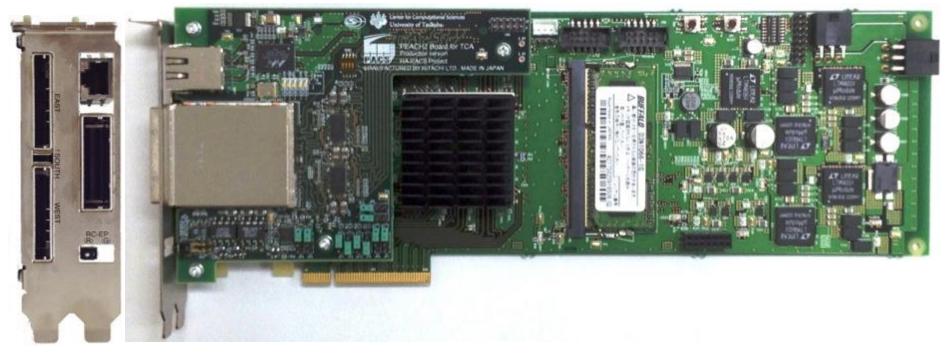
Descriptor0

Descriptor1

Descriptor2

Descriptor3

. . .


Descriptor (n-

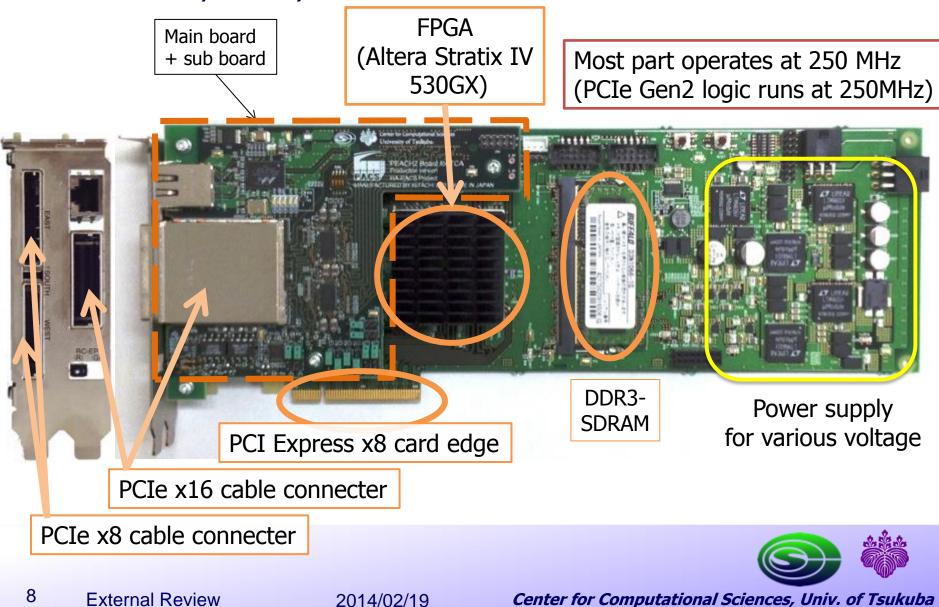
PEACH2 board (Production version for HA-PACS/TCA)

PCI Express Gen2 x8 peripheral board

Compatible with PCIe Spec.

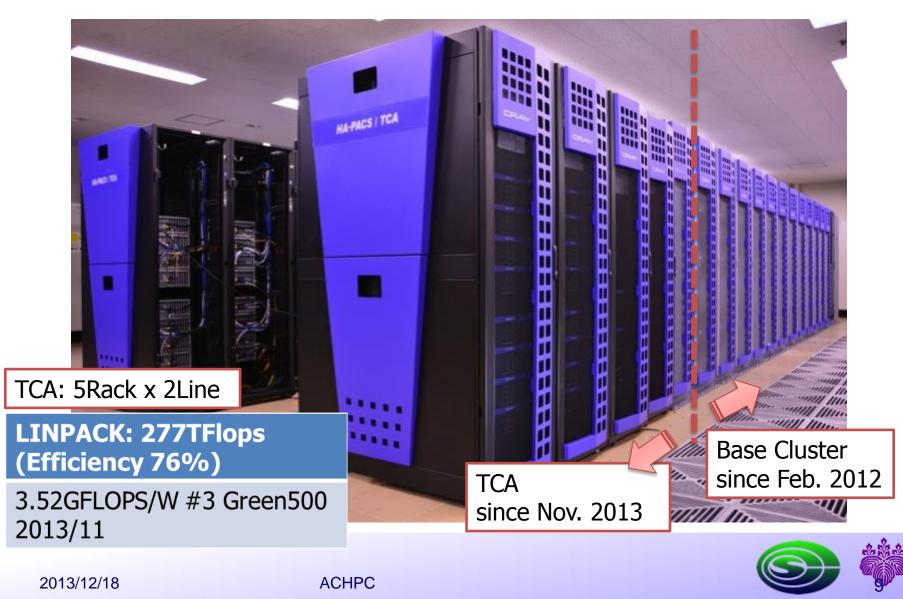
Side View

Top View

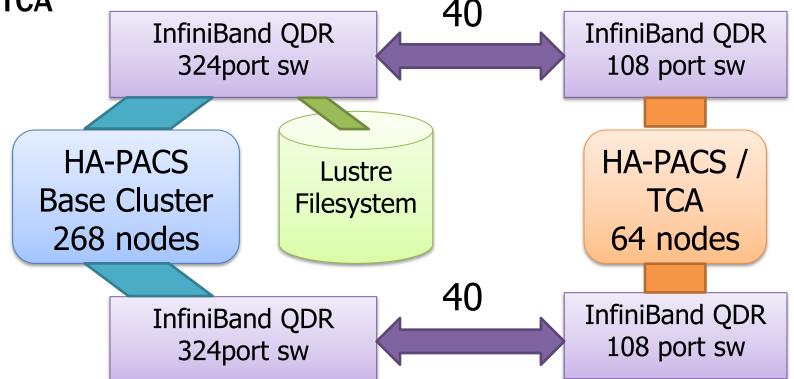


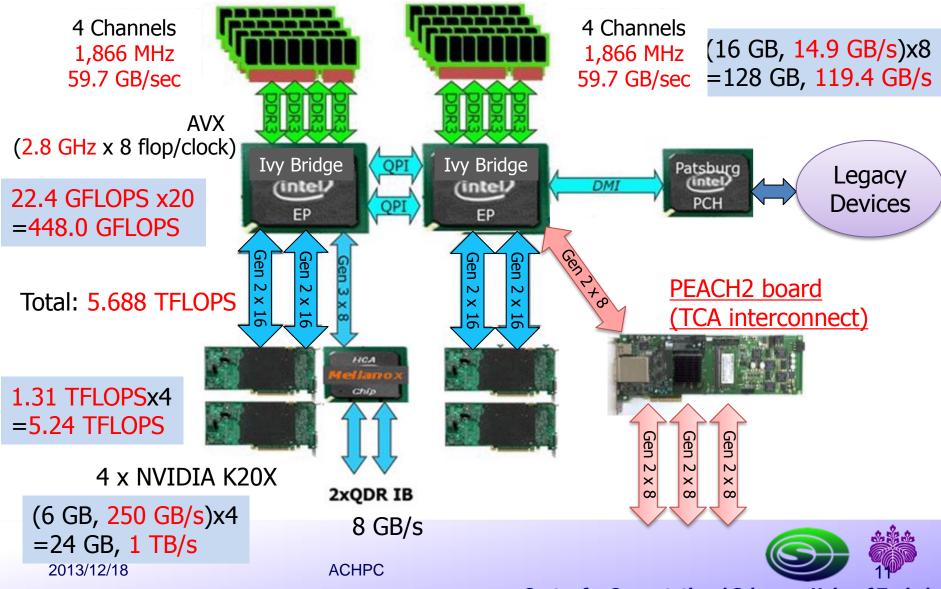
7 External Review

2014/02/19


PEACH2 board (Production version for HA-PACS/TCA)

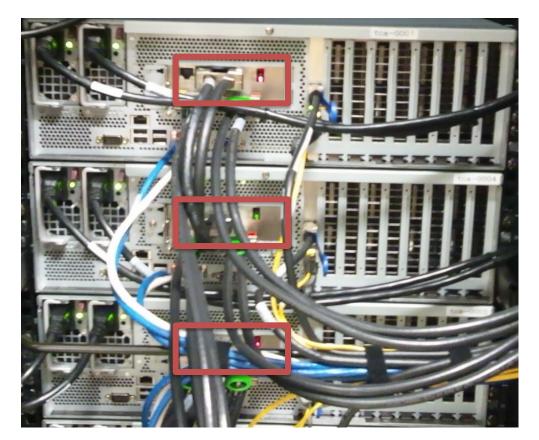
HA-PACS System




HA-PACS Total System

421 TFLOPS, Efficiency 54%, 41st 2012.6 Top500 1.15 GFLOPS/W 277 TFLOPS, Efficiency 76%, 134th 2013.11 Top500 3.52 GFLOPS/W 3rd 2013.11 Green500

HA-PACS/TCA (Computation node)


HA-PACS/TCA

front view (8 node/rack) 3U height

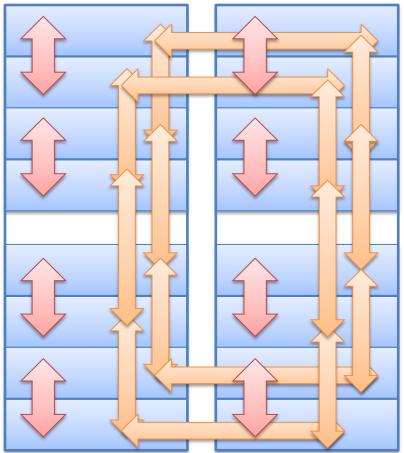
PEACH2 boards are installed and connected cables

rear view

12 AXIES2013

2013/12/19

HA-PACS/TCA



2013/12/19

TCA sub-cluster (16 nodes)

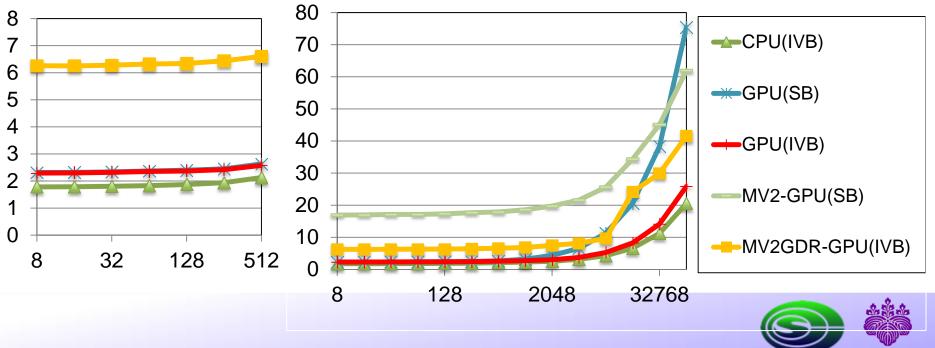
- TCA has four sub-clusters, and TCA sub cluster consists of two racks.
 - 2x8 torus (one example)
 - A ring consists of 8 nodes (between East port and West port, Orange links)
 - Two rings are connected at each node(between both South port, Red links)
- We can use 32 GPUs in a subcluster seamlessly as same as multi-GPUs in a node.
 - only use 2GPU in a node because of bottleneck of QPI
- Sub-clusters are connected by IB(QDR 2port)

Evaluation items

Ping-pong performance between nodes

- Latency and bandwidth
- Written as application
- Comparison with MVAPICH2 1.9 (with CUDA support) for GPU-GPU communication and MVAPICH2-GDR (with support GPU Direct support for RDMA) using IB (dual QDRx4 that bandwidth is twice of TCA)
- In order to access GPU memory by the other device, "GPU Direct support for RDMA" in CUDA5 API is used.
 - Special driver named "TCA p2p driver" to enable memory mapping is developed.
- "PEACH2 driver" to control the board is also developed.

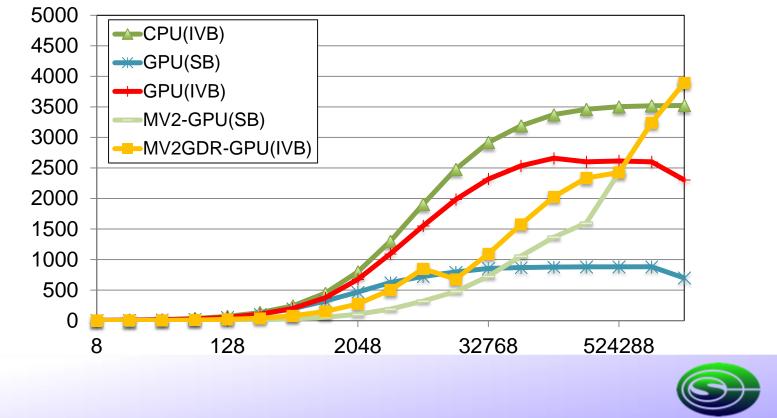
Ping-pong Latency



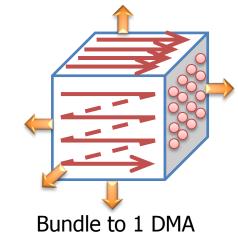
Minimum Latency

- PIO (CPU to CPU): 0.9us
- DMA:CPU to CPU: 1.9us GPU to GPU: 2.3us

(cf. MVAPICH2 1.9:19 us



Ping-pong Bandwidth


- CPU-CPU DMA Max. 3.5GByte/sec (95% of theoretical peak)
- GPU-GPU DMA Max. 2.6GByte/sec
 - GPU(SB) was saturated at 880MByte/sec because of poor performance of PCIe switch in CPU
 - GPU(IVB) is faster than MV2GDR less than 512KB message size

Programming for TCA cluster

- Data transfer to remote GPU within TCA can be treated like multi-GPU in a node.
- In particular, suitable for stencil computation
 - Good performance at nearest neighbor communication due to direct network
 - Chaining DMA can bundle data transfers for every "Halo" planes
 - XY-plane: contiguous array
 - XZ-plane: block stride
 - YZ-plane: stride
 - In each iteration, DMA descriptors can be reused and only a DMA kick operation is needed

=> Improve strong scaling with small data size

2014/02/19

Current activities

Develop API for user programming

 similar to CudaMemcpy API. It enables use GPUs in a sub cluster seamlessly as same as Multi-GPUs in a node using CudaMemcpy API.

XMP for TCA

cooperating with RIKEN AICS, we develop XMP for TCA.

Function offloading on TCA

 a reduction mechanism between GPUs in a sub cluster will be offloaded on TCA cooperating with Keio-Univ. Amano lab. and astrophysics group in CCS

QUDA (QCD libraries for CUDA)

• TCA feature will be added to QUDA cooperating with NVIDIA.

Supported by JST/CREST program entitled "Research and Development on Unified Environment of Accelerated Computing and Interconnection for Post-Petascale Era."

2014/02/19

Summary

TCA: Tightly Coupled Accelerators

 TCA enables direct communication among accelerators as an element technology becomes a basic technology for next gen's accelerated computing in exa-scale era.

PEACH2 board: Implementation for realizing TCA using PCIe technology

- Bandwidth: max. 3.5 Gbyte/sec between CPUs (over 95% of theoretical peak)
 Min. Latency: 0.9 us (PIO), 1.9 us (DMA between CPUs), 2.3 us (DMA between GPUs)
- GPU-GPU communication over the nodes can be demonstrated with 16 node cluster.
- By the ping-pong program, PEACH2 can achieve lower latency than existing technology, such as MVAPICH2 in small data size.

HA-PACS/TCA with 64 nodes was installed on the end of Oct. 2013.

- Actual proof system of TCA architecture with 4 GPUs per each node
- Development of the HPC application using TCA, and production-run

2014/02/19

Related Work

Non Transparent Bridge (NTB)

- NTB appends the bridge function to a downstream port of the PCI-E switch.
- Inflexible, the host must recognize during the BIOS scan
- It is not defined in the standard of PCI-E and is incompatible with the vendors.

APEnet+ (Italy)

- GPU direct copy using Fermi GPU, different protocol from TCA is used.
- Latency between GPUs is around <u>5us</u>?
- Original 3–D Torus network, QSFP+ cable

MVAPICH2 + GPUDirect

- CUDA5 + Kepler
- Latency between GPUs is reported as 6us.

