GPU/CPU work sharing
on high level parallel programming

&
Collaboration with applications

Taisuke Boku
Leader, HPC Division
Center for Computational Sciences

University of Tsukuba

CCS Ext. Review 2014 .
2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

My major topics in HPC Division, CCS

= TCA/PEACH2 R&D
s GPU/CPU work sharing on XMP—-dev

m Collaborative code development on domain science
= LES (with Global Environmental Science Division)
GPU porting from original Fortran

= TD-DFT (Astrophysics and Nuclear Physics Division)
Performance tuning and scalable coding

s GT5D (under G8RCI program, JAEA)
GPU porting from original Fortran

s GTC-P (under G8RCI program, Princeton)
XMP porting from original C

CCS Ext. Review 2014

2 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

GPU/CPU work sharing based on XMP-
dev/StarPU

(Collaborative work with
INRIA Bordeaux)

CCS Ext. Review 2014
2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Background

s GPGPU is widely used for HPC
= Impact of NVIDIA CUDA, OpenCL
s Programming became easy on single node
» > Many GPU cluster appear on TOP500 list

s Problem of programming on GPU cluster

a| Inter-node programming model (such as MPI) .Iconlqlzjlex
-Include program
s Data management among CPU and GPU source
s > Programmability and productivity are very low
s GPU is very powerful, but...
s CPU’ s performance have been improved.
= We cannot neglect its performance.
CCS Ext. Review 2014 @ N

4 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Purpose

s High productivity programming on GPU clusters
s Utilization of both GPU and CPU resources

s Work sharing of the loop execution

s Implementation and Evaluation of XMP—-dev/StarPU
= Statically
= It is difficult to decide the balance among resources

s Dynamically

= Decide in execute time of application
= High usability

CCS Ext. Review 2014

S 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

‘XcalabIeMP (XMP)

m A PGAS language designed for distributed memory systems

= Directive—base; easy to understand

= array distribution, inter-node communication, loop work sharing on CPU, etc-*-

= Low programming cost
= little change from the original sequential program
m XMP is developed by a working group by many Japanese
universities and HPC companies

)
CCS Ext. Review 2014 @

6 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

‘XcalabIeMP acceleration device extension (XMP—-dev)

1 | intx[N], y[N];
m Developed HPCS laboratory, 2
. , 3 | #pragma xmp nodes p(4)
University of Tsukuba, and RIKEN 4 | #pragmaxmp template t{0:N-1)
5 | #pragma xmp distribute t(BLOCK) ontop
AIC S 6 | #pragmaxmp align[i] witht(i):: x,y
7
. " 8 - t -
s XMP-dev is an extension of XMP for 5 | M
. 10
accelerator—equipped cluster 11 | [rpragma xmp loop on t)
..) . 12 for (i=0;i<N;i+t) { -
= Additional directives (manage 13 || (il = func(i); on Host |
14 ylil = func(i);
accelerators) 15 || 1
, 16
[Mapping data onto accelerator s 17 | [#pragma xmp device replicate (x, y) Data
device memory . t Allocation
20 ata Co|
= Data transfer between CPU and 21 || #pragma xmp device replicate_syncin (x, y) €= DH?sft:y
accelerator §§ #pragma xmp device loop on t(i) —
' i 24 for (i=0;i < N; i++) Execution
= Work sharing on loop with i vl
accelerator device (ex. GPU cores) 26
27 Data Copy
28 | #pragma xmp device replicate_sync out (y]€= Device to
29 } Host
30 |}

CCS Ext. Review 2014
7 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

‘ StarPU

m Developed by INRIA Bordeaux,
France

m StarPU is a runtime system

= allocates and dispatches resource

s schedules the task execution X
dynamically

m All the target data is recorded and
managed in a data pool shared by all X_

computation resources. h
= guarantees the coherence of data
among multiple task executions
I GPU

CPU
core

CCS Ext. Review 2014

8 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Implementation of Prototype XMP—-dev/StarPU

s We combine XMP—-dev and StarPU to enhance the function and
performance
= GPU/CPU work sharing on multi-node GPU cluster

s Advantage of XMP—-dev
= Using not only GPU, but also CPU power

s Advantage of StarPU

= [t is not necessary to write complex StarPU code

CCS Ext. Review 2014 .
9 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Implementation of
Prototype XMP—-dev/StarPU

Global array (aligned array with XMP-dev)

Local array Local array managed by
XMP-dev

e el ' o e e B B S e S e e A A S Sl S S e S S S S R S e A Gy S S e S A S e el S S S S - 1
1Rep|icated array A Replicated array }\

CPll core | GPI CPLl core | GPI
CPU care | GPU CPLl core | GPU managed by
CPL care | CPL care | StarPU

CPU core CPU core
nodel node2

XMP-dev
inter-node communication
data distribution
StarPU
data transfer between GPU and CPU
CCS Ext. Review 2014 GPU/CPU work sharing on single-node

10 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Problem of Prototype Implementation

s Prototype implementation is low performance
= Only 45% of XMP-dev/CUDA (only GPU)

m Performance gap between GPU and CPU core
= Divide Replicated array equally
= Large execution time gap in same task size
m >Performance decrement by that gap

s Equalizing load balancing

= Allocate proper task size to resources

CCS Ext. Review 2014 h
11 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Load Balancing on XMP-dev/StarPU

For proper allocating---

s Define a parameter named “CPU Weight”
= 0 = CPU Weight = 1.0

s Set the region of Replicated array for CPU
= >Load balancing

s CPU Weight is affected

= Problem

= Problem size | i | SFb
L | r |

= Application feature N*CPU Weight ‘l’ N*(1 -CPU Weight)

m etc.

CCS Ext. Review 2014 <@>

12 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

“Dynamic’ Load Balancing on XMP—-dev/StarPU

= Introduce “reset weight directive”

double cpu_weight;
#pragma xmp device reset_weight (cpu_weight) :: list

s Example

double new_cpu_weight;
for (intt = 0; t < TIMESTEP; t++) {

double cpu_ratio = cpu_time / (cpu_time + gpu_time) * 100;

if (cpu_ratio > 50) new_cpu_weight -= 0.01;
else new_cpu_weight += 0.01;

#pragma xmp device reset_weight (new_cpu_weight)

g

CCS Ext. Review 2014
Center for Computational Sciences, Univ. of Tsukuba

13 2014/02/19

‘Performance Evaluation

m Benchmarks
= N-body

s Matrix—Matrix Multiplication (MM)
s XMP-dev/StarPU vs. XMP—-dev/CUDA (only GPU)

s Node specification

CPU

Memory

GPU

CUDA toolkit
MPI
Interconnection

of node

CCS Ext. Review 2014
14 2014/02/19

Intel Xeon E5-2670 * 2 (16 cores)
DDR3 128GB

NVIDIA Tesla M2090 * 4

4.2

MVAPICH2 1.8.1

Infiniband QDR 4x 2 rails

2~16

Center for Computational Sciences, Univ. of Tsukuba

Evaluation : task size annealing

Environment
HA-PACS GPU Cluster

N-Body MM CCS, U. of Tsukuba
B CPU time = GPU time —CPU Weight mmm CPU time mmGPU time ——CPU Weight
160 0.25 1.2 0.25
140 - |
0.2 ! - 0.2
‘ B . .
120 1IN
B |\ 7os |1
2100 - N\ " A i a
) - 0.15 =) 0.15 =
o o
E 2 E g
) B
e 80 - = e 0.6 - =
§ 60 - - 01 QO § - 01 Q
40 -
- 0.05 - 0.05
0.2 -
N]I]I
0 - -0 0 - -0
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
TIME STEP TIME STEP

CCS Ext. Review 2014

S

15 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Performance gain to GPU—-only case

(N-body)

=
o

m 102400

Environment
HA-PACS GPU Cluster
CCS, U. of Tsukuba

204800 m 409600 m819200

=
N

[E=Y
— N
l

Relative performance
o
o

o
N
]

o o
Y (@)
|
I I N A

o
!

1GPU

CCS Ext. Review 2014

16 2014/02/19

1GPU

2GPU

4node

1GPU | 2GPU | 4GPU
‘ 8node ‘

1GPU | 2GPU | 4GPU

16node L

S

Center for Computational Sciences, Univ. of Tsukuba

Performance gain to GPU-only case

(M M) Environment
HA-PACS GPU Cluster

CCS, U. of Tsukuba

4096 8192 m 12288 m16384 = 20480

=
o

=
N

—
N
|

|
|

Relative performance
o o
o)) oo
| |
| |

©
N
|

o
N
|

o

1GPU 2GPU 1GPU 2GPU ‘
4node ‘ 8node ‘

CCS Ext. Review 2014

17 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Nuclear Fusion Code Development

(1) GPU version of GT5D
(2) XMP version of GTC-P

(collaborative work with
JAEA Japan and Princeton U.)

CCS Ext. Review 2014 .
18 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Coordinate System on GT5D

m [orus domain: physical 3D space domain

s Plasma particle movement: 2D velocity domain

Z.
.)'Z;
<§ R = "iiiiiiillllill ‘
o A I
\&z M&w masnetic
— hi'fi’i'*i’n‘u*i'i'i* \

CCS Ext. Review 2014

19 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Porting GT5D to HA-PAGCS

m GT5D Fortran code —> PGI CUDA Fortran

m [here are some parts with overlapped execution over CPU and GPU, but basically use
CPU only for MPI communication

s Since HA-PACS node has 16 cores (2 sockets) and
4 GPUs, mapping MPI process
with 4core : 1TGPU and running
4threads (OpenMP) on each CPU1 CPU2
MPI process | |

m Large functions correspond to |
CUDA Kernels and main body |
loops are also implemented as
“pseudo function” of CUDA
Kernels

GPU1 GPU2 GPU3 GPU4

rank0 rankl rank2 rank3

CCS Ext. Review 2014

20 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

‘BCDF function (stencil) implementation

k
.Q_Y?.r.'a.rz.r?esi...8?9.?99.._............_......_....[......._....?b"””dar%

- .—‘

[GPU -> CPU trans.] [kl inner]
4 /
.dim. MPI i
R,Z):
[R2ZN o] [(¢, vy)dim. exch}
h
[CPU -> GPU trans.J [kzinner]
| >
... PRSI

[kzboundar;}

CCS Ext. Review 2014
21 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Performance on

communication overlapping

CPU Calc. Transfer
timedev4
timedev4 Boundary | {) 2.3ms cudaMemcpy*
event
: : : : : : timedev4 bcdf
o Inner 1 8-9ms -0ms Packing
e I ~\ ASynchronize
bedf 102
.2Mms
bcdf Exch. Inner
MPI Exchange ||%°™ A
_ v
J I?r?:e_f 24.3ms
bcdf
J 13.8ms| ' Eych. Boundary
. 3.7ms
without A event
[4dx_s 141ms
: Bounda '
with Y \!

. b

CCS Ext. Review 2014

2014/02/19

S

Center for Computational Sciences, Univ. of Tsukuba

performance improvement by GPU
2.5~4x faster than CPU (1 GPU vs 4-core CPU)

300

250

200
150-
10m- CPU (4core)
5B
Opl-
& &

»?@ %@ @ ® §§> ga@
L c@ F ¥ ¥ P ¥
T &&EE

[sw] uoneiay Jad sawi 29x3]

Kernels [

CCS Ext. Review 2014 <@>
23 2014/02/19 Center for Computational Scie,Ee_s‘_

function level performance

1600

1400

12006

1008

80 CPU (4core)

GPU

600

400

N
(@)
2]

[sw] uoneay Jad swn 2ax3p

OG-
l4dx_rf l4dx_sP] l4dx_IE |4dx_nlE

Kernels O

main function l4dx_r is 2.2x faster than CPU but others are
not enough

CCS Ext. Review 2014 <@>

24 2014/02/19 Center for Computational

‘ Overall Performance

CPU 33.9 -
GPU (no-Overlap) 14.7 2.31
GPU (Overlap) 13.7 2.47

s Performance comparison with “16 core CPU” vs “4GPU (+16 core CPUs)”
= 2.47x speedup
= Main bottlenecks
= BCDF: MPI call

= FLD_SFLS: requires MPI comm. and PIC data summation over large field, and
currently not using atomic operation

s LFP: a number of small amount of data copy between CPU and GPU

CCS Ext. Review 2014 <@>

25 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

Porting GTC-P to XMP

m GTC-P: Princeton version of GTC (Gyrokinetic Toroidal Code) for particle
oriented fluid dynamics with turbulence

s Since it is a sort of PIC (Particle In Cell) code, we need to treat both variables
on mesh—distributed fixed physical domain and particles moving around in these
grids at every time step

m Global view (distributed array) is suitable for mesh—distributed domain space to
be directly mapped on node grid for minimized communication

m Particle data is difficult to map on nodes statically as well as to localize and bind
to local domain data

m Strategy:
= 3D space domain variables — in global view model

= Particle data moving around space — in local view model with coarray

m [his strategy can be applied commonly for most of PIC code including MD

)
CCS Ext. Review 2014 @

26 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

‘Image of mixed communication view

double fX]LY];
® double p[3][3][N/2], pn[3][3][N/2];
© double myp[N]; /* myp is for my particles now */
@ #pragma xmp align [i][j] with tpl(ij):: f
#pragma xmp shadow f[1:1][1:1]
#pragma xmp coarray pn:[k,*]

Q
v

for(t=0; t<TIME; t++}

/* f (space domain) computation */
#pragma xmp reflect(f)

/* f, myp, pn computation */

/* calculate the coordinate of particles in myp
@ then pack to p[0][01[*] ™ p[2][2][*] */
for(i=; i<3; i++)

for(j=0; j<3; j++)

if(i'=1 && j'=1){
pn[2-i][2—j]1[0:N/2]:[mex+i—1,mey+j—1]
=p[i]j1[0:N/2];
}

#pragma xmp sync_memory

J

CCS Ext. Review 2014 <@>

27 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

v

<o
Q

Preliminary performance on mixed model

weak scaling (kA4 JL.AF])

14
—-12 - I — L __i
210
a 8 v . —¢
i 6 - “+=MP
o,
i 5 =X MP
0o
16 32 64 128
Lot
strong scaling (5)
12
=10 TN
’i;‘ . TN ~+=MPI
-‘n'E > ==X MP
0 -
16 32 64 128

B0

CCS Ext. Review 2014 <@>

28 2014/02/19 Center for Computational Sciences, Univ. of Tsukuba

