
Center for Computational Sciences, Univ. of Tsukuba

GPU/CPU work sharing
on high level parallel programming

&
Collaboration with applications

Taisuke Boku
Leader, HPC Division

Center for Computational Sciences

University of Tsukuba

2014/02/19

CCS Ext. Review 2014

1

Center for Computational Sciences, Univ. of Tsukuba

My major topics in HPC Division, CCS

 TCA/PEACH2 R&D

 GPU/CPU work sharing on XMP-dev

 Collaborative code development on domain science
 LES (with Global Environmental Science Division)

 GPU porting from original Fortran

 TD-DFT (Astrophysics and Nuclear Physics Division)
 Performance tuning and scalable coding

 GT5D (under G8RCI program, JAEA)
 GPU porting from original Fortran

 GTC-P (under G8RCI program, Princeton)
 XMP porting from original C

2014/02/19

CCS Ext. Review 2014

2

Center for Computational Sciences, Univ. of Tsukuba

GPU/CPU work sharing based on XMP-
dev/StarPU

(Collaborative work with

 INRIA Bordeaux)

2014/02/19

CCS Ext. Review 2014

3

Center for Computational Sciences, Univ. of Tsukuba

Background

 GPGPU is widely used for HPC
 Impact of NVIDIA CUDA, OpenCL

 Programming became easy on single node

 > Many GPU cluster appear on TOP500 list

 Problem of programming on GPU cluster
 Inter-node programming model (such as MPI)

 Data management among CPU and GPU

 > Programmability and productivity are very low

 GPU is very powerful, but...
 CPU’s performance have been improved.

 We cannot neglect its performance.

2014/02/19

・Complex
・Include program
source

4

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Purpose

 High productivity programming on GPU clusters

 Utilization of both GPU and CPU resources
 Work sharing of the loop execution

 Implementation and Evaluation of XMP-dev/StarPU
 Statically

 It is difficult to decide the balance among resources

 Dynamically
 Decide in execute time of application

 High usability

2014/02/19 5

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

XcalableMP (XMP)

 A PGAS language designed for distributed memory systems
 Directive-base; easy to understand

 array distribution, inter-node communication, loop work sharing on CPU, etc…

 Low programming cost

 little change from the original sequential program

 XMP is developed by a working group by many Japanese
universities and HPC companies

2014/02/19 6

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

XcalableMP acceleration device extension (XMP-dev)

 Developed HPCS laboratory,
University of Tsukuba, and RIKEN
AICS

 XMP-dev is an extension of XMP for
accelerator-equipped cluster

 Additional directives (manage
accelerators)

 Mapping data onto accelerator’s
device memory

 Data transfer between CPU and
accelerator

 Work sharing on loop with
accelerator device (ex. GPU cores)

2014/02/19 7

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

StarPU

 Developed by INRIA Bordeaux,
France

 StarPU is a runtime system

 allocates and dispatches resource

 schedules the task execution
dynamically

 All the target data is recorded and
managed in a data pool shared by all
computation resources.

 guarantees the coherence of data
among multiple task executions

2014/02/19

x

x_
h

CPU0
CPU0

CPU0 CPU
core

GPU0
GPU

8

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Implementation of Prototype XMP-dev/StarPU

 We combine XMP-dev and StarPU to enhance the function and
performance
 GPU/CPU work sharing on multi-node GPU cluster

 Advantage of XMP-dev
 Using not only GPU, but also CPU power

 Advantage of StarPU
 It is not necessary to write complex StarPU code

2014/02/19 9

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Implementation of
Prototype XMP-dev/StarPU

2014/02/19 10

 CPU core GPU

node1

Replicated array

Global array (aligned array with XMP-dev)

 CPU core
 CPU core

 CPU core

GPU

Local array

 CPU core GPU

node2

Replicated array

 CPU core
 CPU core

 CPU core

GPU

Local array managed by
 XMP-dev

managed by
 StarPU

XMP-dev
inter-node communication
data distribution

StarPU
data transfer between GPU and CPU
GPU/CPU work sharing on single-node CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Problem of Prototype Implementation

 Prototype implementation is low performance
 Only 45% of XMP-dev/CUDA (only GPU)

 Performance gap between GPU and CPU core
 Divide Replicated array equally

 Large execution time gap in same task size

 >Performance decrement by that gap

 Equalizing load balancing
 Allocate proper task size to resources

2014/02/19 11

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Load Balancing on XMP-dev/StarPU

• For proper allocating…

 Define a parameter named “CPU Weight”
 0 ≦ CPU Weight ≦ 1.0

 Set the region of Replicated array for CPU

 >Load balancing

 CPU Weight is affected

 Problem

 Problem size

 Application feature

 etc.

2014/02/19 12

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

“Dynamic” Load Balancing on XMP-dev/StarPU

 Introduce “reset_weight directive”

 Example

2014/02/19 13

double cpu_weight;
#pragma xmp device reset_weight (cpu_weight) :: list

double new_cpu_weight;
for (int t = 0; t < TIMESTEP; t++) {
 …
 double cpu_ratio = cpu_time / (cpu_time + gpu_time) * 100;

 if (cpu_ratio > 50) new_cpu_weight -= 0.01;
 else new_cpu_weight += 0.01;

#pragma xmp device reset_weight (new_cpu_weight)
}

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Performance Evaluation

 Benchmarks
 N-body

 Matrix-Matrix Multiplication (MM)

 XMP-dev/StarPU vs. XMP-dev/CUDA (only GPU)

 Node specification

 CPU Intel Xeon E5-2670 * 2 (16 cores)

Memory DDR3 128GB

GPU NVIDIA Tesla M2090 * 4

CUDA toolkit 4.2

MPI MVAPICH2 1.8.1

Interconnection Infiniband QDR 4x 2 rails

of node 2~16

2014/02/19 14

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Evaluation : task size annealing

0

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19

C
P

U
 W

e
ig

h
t

E
x

e
c
u

ti
o

n
 t

im
e

 [
s
e

c
]

TIME STEP

CPU time GPU time CPU Weight

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

C
P

U
 W

e
ig

h
t

E
x

e
c
u

ti
o

n
 t

im
e

 [
s
e

c
]

TIME STEP

CPU time GPU time CPU Weight

N-Body MM

Environment
HA-PACS GPU Cluster
CCS, U. of Tsukuba

2014/02/19

CCS Ext. Review 2014

15

Center for Computational Sciences, Univ. of Tsukuba

Performance gain to GPU-only case
(N-body)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1GPU 2GPU 4GPU 1GPU 2GPU 4GPU 1GPU 2GPU 4GPU 1GPU 2GPU 4GPU

2node 4node 8node 16node

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c
e

102400 204800 409600 819200

Environment
HA-PACS GPU Cluster
CCS, U. of Tsukuba

2014/02/19

CCS Ext. Review 2014

16

Center for Computational Sciences, Univ. of Tsukuba

Performance gain to GPU-only case
(MM)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1GPU 2GPU 1GPU 2GPU 1GPU 2GPU

4node 8node 16node

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c
e

4096 8192 12288 16384 20480

Environment
HA-PACS GPU Cluster
CCS, U. of Tsukuba

2014/02/19

CCS Ext. Review 2014

17

Center for Computational Sciences, Univ. of Tsukuba

Nuclear Fusion Code Development
 (1) GPU version of GT5D
 (2) XMP version of GTC-P

(collaborative work with

JAEA Japan and Princeton U.)

2014/02/19

CCS Ext. Review 2014

18

Center for Computational Sciences, Univ. of Tsukuba

 Torus domain: physical 3D space domain

 Plasma particle movement: 2D velocity domain

Coordinate System on GT5D

2014/02/19

CCS Ext. Review 2014

19

ion

electron

magnetic
force

Center for Computational Sciences, Univ. of Tsukuba

Porting GT5D to HA-PACS

 GT5D Fortran code -> PGI CUDA Fortran

 There are some parts with overlapped execution over CPU and GPU, but basically use
CPU only for MPI communication

 Since HA-PACS node has 16 cores (2 sockets) and
4 GPUs, mapping MPI process
with 4core : 1GPU and running
4threads (OpenMP) on each
MPI process

 Large functions correspond to
CUDA Kernels and main body
loops are also implemented as
“pseudo function” of CUDA
Kernels

2014/02/19

CCS Ext. Review 2014

20

CPU1 CPU2

GPU1 GPU2 GPU3 GPU4

rank0 rank1 rank2 rank3

Center for Computational Sciences, Univ. of Tsukuba

BCDF function (stencil) implementation

21

Overlapped Region
boundary

boundary

inner

inner

dim. exch.
dim. MPI
exch.

GPU -> CPU trans.

CPU -> GPU trans.

2014/02/19

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Performance on communication overlapping

22

timedev4 Boundary

bcdf
MPI Exchange

bcdf
Packing

timedev4

cudaMemcpy*

timedev4
Inner

Synchronize

CPU Calc. Transfer

bcdf
Exch. Boundary

l4dx_s
Boundary

event

14.1ms

2.3ms

8.9ms 8.0ms

23.5ms

13.8ms

bcdf
Exch. Inner

l4dx_s
Inner

10.2ms

24.3ms

event
3.7ms

impl.
tme
[ms]

without 77.2

with 63.5

2014/02/19

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

performance improvement by GPU

0	

5	

10	

15	

20	

25	

30	

m
ed
ev
1	

m
ed
ev
2	

m
ed
ev
3	

m
ed
ev
4	

m
ed
ev
5	

m
ed
ev
6	

m
ed
ev
7	

m
ed
ev
8	

m
ed
ev
9	

1回
あ

た
り

の
計

算
時

間
[m

s]
	

関数名	

CPU(4コア)	

GPU	

2.5~4x faster than CPU (1 GPU vs 4-core CPU)

2014/02/19

CCS Ext. Review 2014

23

E
xe

c tim
e
 p

e
r ite

ra
tio

n
 [m

s]

Kernels

CPU (4core)

GPU

Center for Computational Sciences, Univ. of Tsukuba

function level performance

0	

20	

40	

60	

80	

100	

120	

140	

160	

l4dx_r	 l4dx_s	 l4dx_l	 l4dx_nl	

1回
あ

た
り

の
計

算
時

間
[m

s]
	

関数名	

CPU(4コア)	

GPU	

main function l4dx_r is 2.2x faster than CPU but others are
not enough

2014/02/19

CCS Ext. Review 2014

Kernels

E
xe

c tim
e
 p

e
r ite

ra
tio

n
 [m

s]

CPU (4core)

GPU

24

Center for Computational Sciences, Univ. of Tsukuba

Overall Performance

 Performance comparison with “16 core CPU” vs “4GPU (+16 core CPUs)”
⇒ 2.47x speedup

 Main bottlenecks

 BCDF: MPI call

 FLD_SFLS: requires MPI comm. and PIC data summation over large field, and
currently not using atomic operation

 LFP: a number of small amount of data copy between CPU and GPU

2014/02/19

CCS Ext. Review 2014

25

time/iteration[s
]

Speedup to CPU

CPU 33.9 -

GPU (no-Overlap) 14.7 2.31

GPU (Overlap) 13.7 2.47

Center for Computational Sciences, Univ. of Tsukuba

Porting GTC-P to XMP

 GTC-P: Princeton version of GTC (Gyrokinetic Toroidal Code) for particle
oriented fluid dynamics with turbulence

 Since it is a sort of PIC (Particle In Cell) code, we need to treat both variables
on mesh-distributed fixed physical domain and particles moving around in these
grids at every time step

 Global view (distributed array) is suitable for mesh-distributed domain space to
be directly mapped on node grid for minimized communication

 Particle data is difficult to map on nodes statically as well as to localize and bind
to local domain data

 Strategy:

 3D space domain variables – in global view model

 Particle data moving around space – in local view model with coarray

 This strategy can be applied commonly for most of PIC code including MD

26 2014/02/19

CCS Ext. Review 2014

Center for Computational Sciences, Univ. of Tsukuba

Image of mixed communication view

2014/02/19

CCS Ext. Review 2014

27

double f[X][Y];
double p[3][3][N/2], pn[3][3][N/2];
double myp[N]; /* myp is for my particles now */
#pragma xmp align [i][j] with tpl(i,j):: f
#pragma xmp shadow f[1:1][1:1]
#pragma xmp coarray pn:[*,*]

for(t=0; t<TIME; t++){
 /* f (space domain) computation */
#pragma xmp reflect(f)
 /* f, myp, pn computation */
 /* calculate the coordinate of particles in myp
 then pack to p[0][0][*] ~ p[2][2][*] */
 for(i=; i<3; i++)
 for(j=0; j<3; j++)
 if(i!=1 && j!=1){
 pn[2-i][2-j][0:N/2]:[mex+i-1,mey+j-1]
 =p[i][j][0:N/2];
 ｝
#pragma xmp sync_memory
}

Center for Computational Sciences, Univ. of Tsukuba

Preliminary performance on mixed model

2014/02/19

CCS Ext. Review 2014

28

