
Toshiyuki	
 Amagasa	

Center	
 for	
 Computa5onal	
 Sciences	

University	
 of	
 Tsukuba	

2013/12/3� iiWAS 2013� 1�

Research	
 introduc5on:	
 XML	
 par55oning	
 for	

parallel	
 holis5c	
 twig	
 join	
 and	
 efficient	

ObjectRank	
 es5ma5on	
 based	
 on	
 subgraphs	

2

XML Data Partitioning Strategies
to Improve Parallelism
in Parallel Holistic Twig Joins

Imam Machdi, Toshiyuki Amagasa, and Hiroyuki Kitagawa

Graduate School of Systems and Information Engineering
Center for Computational Sciences

University of Tsukuba, Japan
machdi@kde.cs.tsukuba, {amagasa, kitagawa}@cs.tsukuba.ac.jp

Querying Large XML	

o XML datasets keep growing
o XML query processing is computationally

expensive
n  Given a tree pattern, find out all embedding

in a huge XML document tree.
o  Holistic twig joins

o Commoditization of cluster computers

èUsing cluster computers to
accelerate XML query processing	

3

4

Query Processing on Cluster System
Coordinator

PC-1 PC- 2 PC- 3

(q1, d1)

(q2, d1)

(q3, d2)

(q4, d2)

(q3, d3)
(q5, d3)

q1, q2, q3 q3, q4 q5

load
level

(q1, d1) (q2, d1) (q3, d2) (q4, d2) (q3, d3)
(q5, d3)

Loads of (qi, dj) processing

o  Inter-query parallelism performs well
due to balanced workloads.

5

1st Problem

o  Adding more PCs leads to workload imbalance.

Coordinator

PC-1 PC- 2 PC- 3

(q1, d1)

(q2, d1)

(q3, d2)

(q4, d2)

(q3, d3)
(q5, d3)

q1, q2, q3 q3, q4 q5

load
level

PC- 4 PC- 5

(q4, d2) (q1, d1)

q4 q3 q1 q2, q3

6

2nd Problem
Coordinator

PC-1 PC- 2 PC- 3

(q1, d1)

(q2, d1)

(q3, d2)

(q4, d2)

(q3, d3)
(q5, d3)

q1, q2, q3 q3, q4 q5

load
level

o  Adding more PCs leads to workload imbalance.

q2

o  Executing few queries leads to low system
utilization.

→ Both cause performance degradation.

7

Objective
o  To provide XML data partitioning

strategies for static and dynamic data
distribution to achieve balanced
workloads among cluster PCs.

o  To improve performance of parallel
query processing for both inter-query
parallelism and intra-query parallelism.

8

Twig Stack Algorithm
club

clubname member

name

lname fname

member

name

lname

soccer

kita nishi kita

(1, 1:55, 1)

(1, 2:4, 2)

(1, 3, 3) (1, 6:13, 3)

(1, 8, 5)

(1, 7:9, 4)

(1, 11, 5)

(1, 5:14, 2)
member

name

lname fname

minami nishi

member

name

fname

kita

member

name

lname fname

higashi

(1, 10:12, 4)

(1, 15:24, 2)

(1, 16:23, 3)

(1, 18, 5)

(1, 17:19, 4)

(1, 25:34, 2)

(1, 26:33, 3)

(1, 28, 5)

(1, 27:29, 4)

(1, 31, 5)

(1, 30:32, 4)

(1, 35:44, 2)

(1, 36:43, 3)

(1, 41, 5)

(1, 40:42, 4)

(1, 45:54, 2)

(1, 46:53, 3)

(1, 48, 5)

(1, 47:49, 4) (1, 50:52, 4)

Query pattern

kita

lname fname

name

nishi

fn1 fn3 fn4 fn5 ln1 ln2 ln3 ln5

n1 n2 n3 n4 n5

kt1 kt2 kt4 ns1 ns3

1st Phase: Partial Solutions
(n1) – (ln1) – (kt1)
(n1) – (fn1) – (ns1)
(n2) – (ln2) – (kt2)
(n3) – (fn3) – (ns3)

2nd Phase: Merge Partial
 Solutions

(n1) – (ln1) – (kt1) – (fn1)
– (ns1)

√
√

3-tuple
(DocId, Left : Right, Level)

n1 n2 n3 n4 n5

ln1 ln2 ln3 ln5
kt1 kt2 kt4
fn1 fn3 fn4 fn5
ns1 ns3

Secondary
Storage	

9

Static Data Distribution

4
4

4

4
4

3
3 7

p7

4
4

4
4

4

3
3

7

4

q1

q2

q3

q4

doc1 doc2 doc3

p1
p2
p3
p4
p5
p6

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

PC1 PC2 PC3

4 4
4

WL 24 WL 6 WL 7 WL 16 WL 14 WL 15

4
4

WL 8 WL 12 WL 11

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

4

Avg. WL = 12.33, Initial Variance = 102.33
Current Variance = 22.33 (-78%) Current Variance = 2.33 (-98%) Current Variance = 14.33 (-86%)

10

Parallel Query Processing

q1, q2, q3, q4 are executed for inter-query parallelism.
q1 is executed for intra-query parallelism.

4
4

3
3 7

PC1 PC2 PC3

4 4
4

4 4

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

WL 12 WL 14 WL 11

q1, q2 q1, q3 q1, q4

Coordinator
q1, q4

q2, q3

answers

answers

11

Dynamic Data Distribution

4
4

3
3 7

PC1 PC2 PC3

4 4
4

4 4

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

WL 12 WL 14 WL 11

Coordinator

12

WL 3 WL 3 WL 3

Dynamic Data Distribution

7

PC1 PC2 PC3

Suppose only q4 is being executed in the system.

p7

4
4

4
4

4

3
3

7

4

doc1 doc2 doc3

q1

q2

q3

q4

p1
p2
p3
p4
p5
p6

WL 0 WL 0 WL 7

q4

g

h

e

h1

g1 g2 g3

e1 e2 e3

Streams
h1

g1

e1

g2

e2

h1

g3

e3

h1 h1

g1

e1

g2

e2

h1

g3

e3

h1

partitions

q4 q4

q4 is executed for intra-query parallelism.

Coordinator
q4

answers

answers

13

XML Data Sets
No. XML Data DTD # Queries # Docs Size (bytes)
1 Bibliography 1 4 16 158,096
2 Sport Clubs 1 3 12 162,986
3 Cars 1 6 48 1,357,856
4 Departments 1 5 19 2,722,723
5 Purchases 1 2 10 4,873,260
6 Quotes 1 2 10 4,412,418
7 Dramas 1 3 18 7,428,278
8 Sigmod 2002 3 10 43 2,934,193
9 Movies 5 21 5 28,463,633

10 Auction 1 4 8 119,900,420
11 Assembly 1 4 5 171,309,031

Total 17 64 194 343,722,894
Average 1,771,767
Variance 6.2E+13

14

Static Data Distribution

o  Workload estimation use a cost
model.

o  All 64 queries are executed
simultaneously.

o  LI is measured with actual
execution time on each PC.

o  Speed up is measured with the
entire system execution time.

Cluster
PC

Initial
Workload

GMX
Workload

GSX
Workload

1 2,267.12 1,937.23 2,013.52
2 10,409.22 2,829.01 2,443.71
3 845.77 2,184.84 2,259.72
4 881.35 2,040.94 2,109.41
5 680.73 2,278.75 2,278.75
6 801.10 2,170.93 2,260.32
7 880.55 2,355.09 2,355.09
8 973.17 1,942.22 2,018.51

Total 17,739.01 17,739.01 17,739.01
Threshold 2,217.38 2,217.38 2,217.38
Variance 1.12E+07 8.36E+04 2.43E+04

Estimated Workload Distribution Load Imbalance Index

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8

#PCs

LI
 In

de
x GMX

STATGSX

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8

#PCs

LI
 In

de
x GMX

STATGSX

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

#PCs

Sp
ee

d
U

p GMX
STAT
LIN
GSX

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

#PCs

Sp
ee

d
U

p GMX
STAT
LIN
GSX

Speed Up Performance

15

Dynamic Data Distribution

o  5 queries of 64 are selected
randomly for simultaneous
execution.

o  System performance is
improved.

o  Efficiency of system utilization
is better maintained.

Query XPath Expression Stream
Size

Q1 //article[/title/‘Semantic’[/’Web’]]
[//author/’Wei’[/’Han’]]//format/’PDF’

15,922

Q2 //company/Profile/EmployeeNumber
[//state/WI]

40,000

Q3 //compositepart//atomicpart 1,110,510
Q4 //person[/name/’Kang’][/address[/city/’Pa

nama’]/Province]/Creditcard/6284
75,182

Q5 //m/t[/‘Cleopatra’]/a/’Arthur’ 293,628

Selected queries

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8
#PCs

Sp
ee

d
U

p

DYN
GMX
LIN

Speed Up Performance

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

1 2 3 4 5 6 7 8

#PCs

Ef
fic
ie
nc
y

GMX
DYN

Efficiency

16

Conclusion and Future Work
o We proposed partitioning strategies for

both static and dynamic XML data
distribution.

o We provide different granularities:
n  Document cluster
n  Query cluster
n  Query
n  Sub-query
n  Stream of XML nodes

Yuta	
 Sakakura†,	
 Yuto	
 Yamaguchi†,	
 	

Toshiyuki	
 Amagasa‡,	
 Hiroyuki	
 Kitagawa‡	

	
 †	
 Graduate	
 School	
 of	
 Systems	
 and	
 Informa5on	
 Engineering,	
 University	
 of	
 Tsukuba	

	
 ‡	
 Faculty	
 of	
 Engineering,	
 Informa5on	
 and	
 Systems,	
 University	
 of	
 Tsukuba	

A	
 Local	
 Method	
 for	
 	

ObjectRank	
 Es5ma5on	

2013/12/3� iiWAS 2013� 17�

n Graphs are everywhere.�
p Social networks, biology, bibliography, etc.�

n  Estimating nodesʼ’ scores (importance) is one of the
most popular and useful operations on graphs.�
p PageRank, HITS, etc.�

n Demand for quick estimation of a specific nodeʼ’s
score.�
p Relative comparison among few nodes�
p Temporal variation of a nodeʼ’s scores�
p Huge graph may be managed in a distributed
databases�

2013/12/3� iiWAS 2013� 18�

Graphs and Node Score Estimation�

n  The initial subgraph consists only of the target node.�

n Expand the target node.�

n  Judge whether or not the newly added nodes have
the node scores larger than �
or equal to the threshold.�

n  Expand the satisfied nodes�
recursively until there are �
no satisfied nodes.�

Chenʼ’s Method:�
Subgraph-‐‑‒based Method�

T

B
CA

FE
D

Boundary node�

Target node�
2013/12/3� iiWAS 2013� 19�

n Method for evaluating the importance of nodes in a
heterogeneous graph�

n  Link structure analysis method extended from PageRank�

p Deal with heterogeneous nodes and edges, distinguished
by respective labels or weights.�

ObjectRank�

Conference� Year� Paper� Author�
0.3�

0.3� 0.3�

0.1�

0.7�

0.2�
0�

0.2�
cites�

cited�

Authority Transfer Schema Graph �
(Schema Graph)�

iiWAS�

iiWAS 2013�

Paper
1�

Paper
3�

Paper
2�

Paper
4�

Author1�

0.7�

0.7�

0.35�

0.35�

0.1� 0.1�
0.2�0.2�

0.3�
0.3�

0.1�
0.15�

0.15� 0.1�

Authority Transfer Data Graph�
(Data Graph)�

2013/12/3� iiWAS 2013� 20�

n Develop a new method to quickly estimate the
ObjectRank score in edge-‐‑‒weighted graphs.�
p We need to take into account different kinds of nodes
as well as edge weights.�

n Basic approach�
p Based on Chenʼ’s subgraph-‐‑‒based method.�
p Modify the algorithm by taking into account edge
weights.�

2013/12/3� iiWAS 2013� 21�

Objective and Approach�

n Both methods construct a local graph by expanding
boundary nodes recursively.�

n When expanding, different operation is conducted.�

Basic Idea�

Chenʼ’s Method� Proposed Method�

A
Boundary node�

B D
C

A
Boundary node�

B D
C

expand� expand�

0.4�
0.3�

0.001�

Add all edges� Prune some edges�
fetch�

2013/12/3� iiWAS 2013� 22�

n  Prune edges with small weights in Data Graph�

p Set the threshold of edge weights (edge threshold)�

Proposed Method�

Author1�
Paper1�

Author2� Paper2�

Local graph�

cites� cites�

Conference� Year� Paper� Author�
0.3�

0.3�

0.2�

0.2�

0.7�

cited�

cites�

0�

0.3�

0.1�

expand�
0.05�

0.2� 0.35�
Edge threshold: 0.1�

Schema Graph�

Data Graph�
fetch�

2013/12/3� iiWAS 2013� 23�

n DBLP dataset offered by Arnetminer�

p The following information of each paper�

n Title�

n Authors�

n Publisher�

n Published year�

n Citation�

Dataset�

of Paper nodes� 1,553,079�
of Author nodes� 915,096�
of Conference nodes� 6,246�
of Year nodes� 28,669�
of the edges�
 (Conference – Year)� 57,338�

of the edges (Year – Paper)� 3,106,158�
of the cites/cited edges� 2,052,921�
of the edges (Paper – Author)� 8,219,584�

Conference� Year� Paper� Author�
0.3�

0.3� 0.3�

0.1�

0.7�

0.2�
0�

0.2�
cites�

cited�

2013/12/3� iiWAS 2013� 24�

n  Proposed : Our proposed method�
n Chen : Chenʼ’s method�
n NoSchema�

p The proposed method without considering Schema Graph�
n Naïve �

p Construct a local graph including all nodes whose
shortest path to the target node is within 𝑘�

Comparative Methods�

Prune edges� Consider Schema Graph�
Proposed� ◯� ◯�
Chen� ✕� ✕�
NoSchema� ◯� ✕�

2013/12/3� iiWAS 2013� 25�

n  Set the edge threshold which achieves the best
performance for Proposed and NoSchema. �

n Results varying the node threshold or 𝑘�

Results�
Accuracy VS Local Graph Size�

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

0.9�

1�

0� 1000� 2000� 3000� 4000� 5000� 6000� 7000� 8000�

R
an
k
co
rr
el
at
io
n
co
effi
ci
en
t�

Average local graph size�

Naïve�
Proposed (0.1)�
Chen�
NoSchema (0.001)�

Decrease the local graph size�

2013/12/3� iiWAS 2013� 26�

n  Conclusion�

p Local method for ObjectRank estimation�

p Experiments show that the proposed method decreases the
local graph size while maintaining the estimation accuracy.�

n  Future Work�

p Evaluate the proposed method using different dataset or
Schema Graph.�

p Automatic way to decide the appropriate thresholds�

 �

Conclusion and Future Work�

2013/12/3� iiWAS 2013� 27�

— Introduction to Current Research Work—

Salman Ahmed SHAIKH
(PhD Student)

advised by

Hiroyuki Kitagawa

Department of Computer Science

University of Tsukuba, Japan

February 19, 2014

Continuous Outlier Detection on
Uncertain Data Streams

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

o A data point which is significantly different from
the remaining data.

What is an Outlier?
Introduction and Background

An observation which deviates so much from the
other observations as to arouse suspicion that it
was generated by a different mechanism [Hawkins 1980].

Outliers Outlier

Definition (Outlier)

o Outlier detection is a key problem in data
mining and it has several applications, such
as:

 Network intrusion detection [Chandola et al. 2007]

 Credit card fraud detection [Bolton et al. 1999]

 Malfunctioning sensors identification [Zhang et al. 2007]

 Industrial damage detection [Hollier et al. 2002]

 Medical anomaly diagnosis [Agarwal et al. 2005]

 Textual anomaly detection [Srivastava 2006]

 etc.

Applications of Outlier Detection
Introduction and Background

o In data mining, several outlier detection
approaches have been proposed, such as:

 Distance based [Knorr et al. 1998], [Maria et al. 2011]

 Clustering based [Jiang et al. 2000], [Budalakoti et al. 2006]

 Density based [Breunig et al. 2000], [Lian et al. 2012]

 Classification based [Hawkins 2002] [Tandon et al. 2007]

o Why distance-based approach?

 The simplest and the most basic one.

 Can be used as preprocessing before applying
more sophisticated outlier detection techniques.

Outlier Detection Approaches
Introduction and Background

Distance-based Outlier Detection on
Deterministic Data by Knorr et al.†

Introduction and Background

An object o is a DB(p,D) outlier, if at least
fraction p of the objects are outside distance D
of o.

Definition (DB-Outlier: Distance-based Outlier on Deterministic Data)

Input: {𝑜1, 𝑜2, … , 𝑜10}, D, p

Output: 𝑜6

Example (DB-Outlier)

† E.M. Knorr and R.T. Ng.: Algorithms for mining distance-based outliers in large datasets. In VLDB, 1998.

D

𝑜1

𝑜2

𝑜6

𝑜5

𝑜4
𝑜3

𝑜7

𝑜9 𝑜8

𝑜10
Dataset: {𝑜1, 𝑜2, … , 𝑜10}
p: (specified by user)
D: (specified by user)

Fig.: Example of DB(p,D) outlier

x

y

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

Data Collection
Technologies

o Recently, advancement in data collection
technologies have resulted in a vast amount of
uncertain static and stream data.
 e.g., sensor readings, GPS data, moving objects data etc.

o Uncertainty causes:
 Limitations of

equipment
 Inclusion of noises
 Delay/loss of data

in transfer
 Privacy concerns
 etc.

Data Uncertainty
Problem Definition

To get reliable results from such

data, uncertainty needs to be

considered in calculations.

Distance-based Outlier on Uncertain Static Data
(UDB-Outlier)†

Problem definitions

An uncertain object o is a distance-based outlier
if the expected number of objects lying outside
the distance D of o are at least fraction p.

Definition (UDB-Outlier: Uncertain Distance-based Outlier)

𝑜1

𝑜2

𝑜6 𝑜5

𝑜4
𝑜3

𝑜7

𝑜9

𝑜8

𝑜10

Fig.: Example of UDB-outlier

x

y

D D
D

D
D

Input: {𝑜1, 𝑜2, … , 𝑜10}, p, D, 𝜎

Output: 𝑜6

Example (UDB-Outlier)

Dataset: {𝑜1, 𝑜2, … , 𝑜10}
p: (specified by user)
D: (specified by user)
𝜎: (depends on data uncertainty)

uncertainty region of an object (modeled
by the Gaussian distribution in this work)

† S.A. Shaikh and H. Kitagawa,: ”Efficient Distance-based Outlier Detection on Uncertain Datasets of Gaussian Distribution”, WWWJ, 2013.

However, this work cannot
handle data streams.

Proposed Solution

Continuous Outlier Detection

on Uncertain Data Streams.

o Moving objects change their states
(i.e., locations) over time.

o These states arrive as time series
data streams.

Continuous Outlier Detection (CUDB Outlier Detection)

Problem Definition

An uncertain object o is an outlier in a state set 𝑆𝑗, if its
state differs greatly from other objects’ states at time 𝑡𝑗.

Definition (CUDB-Outlier: Continuous UDB Outlier)

x

y

: state of an object at time 𝑡𝑗;1

: state of an object at time 𝑡𝑗
Time State set 𝒐𝟏 𝒐𝟐 … 𝒐𝑵

𝑡1 𝑆1 𝒜1
1 𝒜2

1 … 𝒜𝑁
1

𝑡2 𝑆2 𝒜1
2 𝒜2

2 … 𝒜𝑁
2

…

…

…

…

…

…

𝑡𝑀 𝑆𝑀 𝒜1
𝑀 𝒜2

𝑀 … 𝒜𝑁
𝑀

Table: Arrival of time series data streams.

𝒜𝑖
𝑗
 is an attribute vector,

denoting the state of an
object 𝑜𝑖 at time 𝑡𝑗.

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

o 𝒢𝐷𝐵 = 𝑜1, … , 𝑜𝑁 : Set of uncertain objects.
 Assumptions:

̶ Attributes (𝒜𝑖) of 𝑜𝑖 are uncertain and this uncertainty is given by the
Gaussian distribution.

̶ 𝒜𝑖 are uncorrelated and its std. deviations are uniform in all dimensions.
(A statistical procedure Principal Component Analysis† can be used to
transform a correlated Gaussian distribution into an uncorrelated one)

o Pr⁡(𝑜𝑖 , 𝑜𝑗 , 𝐷) or Pr 𝛼, 𝐷 : Probability that 𝑜𝑗 ∈ 𝒢𝐷𝐵 lies
within the D distance of 𝑜𝑖 ∈ 𝒢𝐷𝐵.

 Computed from the distribution of |𝒜𝑖 −𝒜𝑗|.

o #𝐷-neighbors(𝑜𝑖): Expected number of objects that lie
within the D distance of 𝑜𝑖.

o 𝜃 = 𝑁 1 − 𝑝 : Threshold.
 N: number of dataset objects.

 p: fraction of objects that lie farther than D distance of an 𝑜𝑖.

Preliminaries (1/2)
Distance-based outlier on uncertain data

𝑜𝑖

𝑜𝑗

𝑃𝑟(𝑜𝑖 , 𝑜𝑗, 𝐷)

𝐷

𝐷

𝐷 𝐷

𝐷

𝐷

𝐷

† Lindsay I Smith. A tutorial on Principal Components Analysis. Student Tutorials, University of Otago, NZ, 2002.

o Lemma: Approximate 𝑃𝑟 𝑜𝑖 , 𝑜𝑗 , 𝐷 Values

 If attributes 𝒜𝑖 , 𝒜𝑗 of 𝑜𝑖 , 𝑜𝑗 follow the Gaussian distribution,

then |𝒜𝑖 −𝒜𝑗|⁡also follows the Gaussian distribution

𝑁(𝜇𝑖 − 𝜇𝑗 , Σi + Σj)†.

Let 𝛼 denotes the ordinary Euclidean distance between the

means of objects 𝑜𝑖 , 𝑜𝑗.

 If 𝛼 ≤ 𝐷 − 𝑡𝜎, then 𝑃𝑟 𝑜𝑖 , 𝑜𝑗 , 𝐷 ≈ 1.

 If 𝛼 ≥ 𝐷 + 𝑡𝜎, then 𝑃𝑟 𝑜𝑖 , 𝑜𝑗 , 𝐷 ≈ 0.

where 𝑡 is large enough to enclose a large

portion (𝑠𝑎𝑦 > 99%) of the Gaussian

distribution.

Preliminaries (2/2)
Distance-based outlier on uncertain data

𝑜𝑖

𝑜𝑗

𝑜𝑗

𝛼

𝛼

†Weisstein, Eric W. "Normal Difference Distribution." From MathWorld--A Wolfram Web Resource.

o Nested loop is used to find the #𝐷-neighbors of
each 𝑜𝑖 ∈ 𝒢𝐷𝐵.

o On average, 𝑂(𝑁2) costly probability
computations are required (e.g., 2D computation).

Pr 𝑜𝑖 , 𝑜𝑗, 𝐷 = (𝒜𝑖 −𝒜𝑗)

𝑅

d𝒜 =
1

4𝜋𝜎2
 exp

−1

4𝜎2
𝑟2 − 2𝛼𝑟𝑐𝑜𝑠𝜃 + 𝛼2 𝑟𝑑𝜃𝑑𝑟

2𝜋

0

𝐷

0

.

o Naïve approach is too costly.

Naïve Approach
Distance-based outlier on uncertain data

Objective: To reduce the number of costly probability
 computations.

Proposed solution: Cell-based Outlier Detection

o Aimed at reducing the number of costly probability
computations.

o Cell-Grid Structure (2-dimensional)

 Let 𝒢𝐷𝐵 contains 2-dimensional data objects.

 Each object’s mean in 𝒢𝐷𝐵 is mapped to a 2D space, which is
partitioned into cells of length 𝑙.

 𝐶𝑥,𝑦 is a cell in the grid 𝒢.

̶ 𝐿1, … , 𝐿𝑛 denotes the neighboring
layers of cell 𝐶𝑥,𝑦.

̶ 𝐿1 cells of 𝐶𝑥,𝑦 are given by

̶ 𝐿2, … , 𝐿𝑛 are defined in a similar way.

 Region 𝑅𝐷:𝑡𝜎 𝐶𝑥,𝑦 : For each 𝑜𝑖 ∈ 𝐶𝑥,𝑦 and 𝑜𝑗 ∉ 𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦),
𝑃𝑟 𝑜𝑖 , 𝑜𝑗 , 𝐷 ≈ 0.

Cell-based Outlier Detection
Distance-based outlier on uncertain data

𝐶𝑥,𝑦

𝐿1

𝐿2

𝐿𝑛

𝐷 + 𝑡𝜎

𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦)

𝐿1 𝐶𝑥,𝑦 = *𝐶𝑢,𝑣|𝑢 = 𝑥 ± 1, 𝑣 = 𝑦 ± 1, 𝐶𝑢,𝑣 ≠ 𝐶𝑥,𝑦+

o Cell Pruning: Cell bounds on
#𝐷-neighbors are computed for
each grid cell to prune them.
 Bounds Computation

̶ Distance between cell and its layers,
their object counts, and pre-computed
Pr 𝛼, 𝐷 are used to compute cell bounds.

̶ Layer by layer contribution of #𝐷-neighbors, for bounds
computation of a cell 𝐶𝑥,𝑦, is made only by layers within region

𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦).

̶ All the objects outside region 𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦), contribute for

bounds computation as a single layer.

 Pruning
̶ If 𝐿𝐵 𝐶𝑥,𝑦 > 𝜃, all the objects in 𝐶𝑥,𝑦 are inliers.

̶ If 𝑈𝐵 𝐶𝑥,𝑦 ≤ 𝜃, all the objects in 𝐶𝑥,𝑦 are outliers.

Cell-based Pruning
Distance-based outlier on uncertain data

𝐶𝑥,𝑦

𝐿1

𝐿2

𝐿𝑛

Lower Bound
Max distance between

𝐶𝑥,𝑦 and 𝐿2

Upper Bound
Min distance between

𝐶𝑥,𝑦 and 𝐿2

𝐷
+
𝑡𝜎

𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦)

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

o Simple Approach:

 Perform UDB outlier detection for every state set 𝑆𝑗.

Continuous Outlier Detection (CUDB Outlier Detection)

Continuous outlier detection on uncertain data streams

x

y : 𝑆𝑗;1

: 𝑆𝑗

State sets 𝑆𝑗;1 & 𝑆𝑗

Time State set 𝒐𝟏 𝒐𝟐 … 𝒐𝑵

𝑡1 𝑆1 𝒜1
1 𝒜2

1 … 𝒜𝑁
1

𝑡2 𝑆2 𝒜1
2 𝒜2

2 … 𝒜𝑁
2

 …

 …

 …

 …

 …

 …

𝑡𝑀;1 𝑆𝑀;1 𝒜1
𝑀;1 𝒜2

𝑀;1 … 𝒜𝑁
𝑀;1

𝑡𝑀 𝑆𝑀 𝒜1
𝑀 𝒜2

𝑀 … 𝒜𝑁
𝑀

Table: Arrival of time series data streams.†

State of all the objects may not change
much between two time stamps.

†Yellow color 𝒜𝑖
𝑗
 shows the state change objects.

Proposed solution:
Incremental outlier detection based on the change

between state sets 𝑺𝒋;𝟏 and 𝑺𝒋

o Process only state-change objects at current time 𝑡𝑗.

 State-Change Objects (SC-Objects):
̶ Objects whose states have changed from time 𝑡𝑗;1 to 𝑡𝑗.

̶ Let 𝐶𝑥,𝑦
𝑗
⁡denotes a cell 𝐶𝑥,𝑦 at time 𝑡𝑗; within the cell-grid†

𝑜𝑝 can change state in the following ways.

Incremental Outlier Detection: Key Idea (1/2)
Continuous outlier detection on uncertain data streams

𝐶𝑥,𝑦
𝑗;1

𝐶𝑥,𝑦
𝑗

𝑜𝑝

𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦
𝑗
) 𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦

𝑗;1
)

𝐷
+
𝑡𝜎

𝐶𝑥,𝑦
𝑗

𝑅𝐷:𝑡𝜎(𝐶𝑥,𝑦
𝑗
)

𝑜𝑝

Case 1: Move to a different cell Case 2: Move within a cell

o Arrival of objects’ new states:

 Re-outlier detection is required only for the cells
affected by the SC-Objects (Target cells).

o Target cells are of the following 3 types.
Type A: Cells containing the SC-Objects which have
moved to or from another cell at time 𝑡𝑗 (Case 1).

Type B: Cells in regions 𝑅𝐷:𝑡𝜎 of Type A cells.

Type C: Un-pruned cells of the grid 𝒢.

Incremental Outlier Detection: Key Idea (2/2)
Continuous outlier detection on uncertain data streams

Main cost of the Continuous outlier
detection algorithm lies in the

processing of Type C cells, due to the
expensive #D-neighbors computation.

o Un-pruned objects processing require costly
#𝐷-neighbors computation.

o This cost can be reduced by utilizing the
#𝐷-neighbors computed in the previous state.

 A Hash table is used to store Pr⁡(𝑜𝑝, 𝑜𝑞 , 𝐷) values computed

at time 𝑡𝑗;1.

 At time 𝑡𝑗, these values can be retrieved in 𝑂(1) time.

 Pr⁡(𝑜𝑝, 𝑜𝑞 , 𝐷) values are computed in two cases at time 𝑡𝑗.

1. States of 𝑜𝑝, 𝑜𝑞 or both have changed.

2. Pr⁡(𝑜𝑝, 𝑜𝑞 , 𝐷) is not available in the Hash table.

Incremental Processing of Un-pruned Objects
Continuous outlier detection on uncertain data streams

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

o Datasets

o SC-Objects
 TG: Generated by adding normal random numbers with zero

mean and std. deviation = 𝜎𝑆𝐶= 5 to the fraction of the dataset
values.

 MOW: Consecutive forecasts are used as data streams.

o Compared Methods
 CUDB(CG): CUDB outlier detection using conventional Gaussian

uncertainty.

 UDB(CG): UDB outlier detection using conventional Gaussian
uncertainty, executed for every timestamp.

Experimental Setup
Continuous outlier detection on uncertain data streams Experimental evaluation

Dataset Type Description Dim. Size

TG Synthetic Tri-modal Gaussian 2 5,000

MOW† Real 3 hourly weather forecast data 2 5,802

† Metoffice weather forecast data: http://www.metoffice.gov.uk/

http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/

Efficiency Evaluation (1/2)
Continuous outlier detection on uncertain data streams Experimental evaluation

TG (synthetic dataset) 𝐷 = 100 , 𝜎 = 5, 𝑡 = 3, 𝑟 = 𝑡𝜎 and 𝑝 = 0.998.

Varying SC-Objects (𝜎𝑆𝐶 = 5) Varying SC Magnitude (SC-Objects = 30%)

o Varying SC-Objects and SC-Magnitude
 Target cells increase with the increase in SC-Objects’

percentage and SC-Magnitude.

0.E+00
2.E+02
4.E+02
6.E+02
8.E+02
1.E+03
1.E+03
1.E+03
2.E+03
2.E+03

10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e(
s)

SC Objects Percentage

CUDB(CG)

UDB(CG)

1.E+01

5.E+02

1.E+03

2.E+03

2.E+03

3 6 9 12 15

Ex
e

cu
ti

o
n

 T
im

e(
s)

SC Magnitude (_sc)

CUDB(CG)

UDB(CG)

o Vary object’s uncertainty (𝜎)
 Increase in 𝜎⁡results in smaller probability Pr⁡(𝑜𝑖 , 𝑜𝑗, 𝐷) values

resulting in loose cell-bounds in CUDB(CG).

Efficiency Evaluation (2/2)
Continuous outlier detection on uncertain data streams Experimental evaluation

TG (synthetic dataset) MOW (real dataset)

𝐷 = 100, 𝑡 = 3, 𝑟 = 𝑡𝜎, 𝜎𝑝 = 4, 𝜎𝑆𝐶 = 5 and 𝑝 = 0.99.

0

500

1000

1500

2000

2500

3000

3 6 9 12 15

Ex
e

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

CUDB(CG)

UDB(CG)
0

500

1000

1500

2000

2500

3 6 9 12 15

Ex
e

cu
ti

o
n

 T
im

e(
s)

Object's Uncertainty

CUDB(CG)

UDB(CG)

o Introduction and Background

o Problem Definition

o Outlier Detection on Uncertain Static Data (UDB)

o Continuous Outlier Detection on Uncertain Data
Streams (CUDB)

o Experimental Evaluation

o Conclusion and Future Work

Outline

o Conclusion

 Proposed incremental outlier detection approach
for uncertain data streams.

 Cell-based approach is utilized to prune cells
containing only inliers or outliers.

 Experiments prove that the proposed approach is
efficient and scalable.

o Future Work

 Extend current work for higher dimensional data
and other uncertainty models.

Conclusion and Future Work
Conclusion and future work

Salman Ahmed SHAIKH

Department of Computer Science

University of Tsukuba, Japan

Thank you very much!

Background
Proposal

Framework
Experiments

Conclusion and Future works

A Framework of Faceted Search for XML data

Takahiro Komamizu

University of Tsukuba

02/19/2014

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

XML: Extensible Markup Language
Searching over XML data
Exploratory Search
Research Direction

XML: Extensible Markup Language

Semi-structured data, regarded as tree structured data.

A de facto standard for exchanging data formats used in
various fields.

Business data

ebXML1, XBRL2

Bibliographic information

DBLP, SIGMOD records

Scientific data

Swiss-Prot, KEGG3

and so on.

1Electronic Business using XML
2Extensible Business Reporting Language
3Kyoto Encyclopedia of Genes and Genomes

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

XML: Extensible Markup Language
Searching over XML data
Exploratory Search
Research Direction

Searching over XML data

Searching methods:

Path-based search: XPath, XSLT, and XQuery.
Keyword-based search: LCA-based search.

Users:

Experts of data.

deep knowledge about data
(structures and contents)

precise queries

Non-experts of data.

shallow knowledge about
data

vague queries

Users may need systematic supports, esp. for non-experts,
such as exploratory search, but exploratory search is not
supported by conventional search methods.

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

XML: Extensible Markup Language
Searching over XML data
Exploratory Search
Research Direction

Exploratory Search

Trial-and-error manner

interleavingly repeat search by queries and judge results
search system gives hints to modify previous queries

Faceted search is one of exploratory search methods

search by selecting/deselecting facets (or categories,
attributes, dimensions) of data
system shows corresponding facets for every query results
real applications: Amazon, eBay, DBLP, IEEE Xplore, etc.

Good chemistry with ad-hoc search

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

XML: Extensible Markup Language
Searching over XML data
Exploratory Search
Research Direction

Research Direction

Apply faceted search for XML data

Problems

objects are not defined in advance, because XML has complex
structure comparing with records.
facets (or attributes of objects) are not defined, either.

Proposal: a faceted search framework for XML data

extract objects and attributes using structural information.
propose three kinds of selection operations.
develop a framework which enables faceted search for given
XML data.

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Classes and Attributes
Objects and Facets
Operations

Classes and Attributes

From the structural information4, frequently occurred XML
elements below a parent element (*-ed in the figure) are
regarded as classes.
Attributes of an object are XML elements which are below
the object element and directly contain text elements.

(a) XML data example. (b) Structural info.

4If structural information (e.g., DTD and XML Schema) are not given,
existing structural information extracting techniques (like DataGuide) can be
used. Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Classes and Attributes
Objects and Facets
Operations

Objects and Facets

An object is a tree rooted by an element regarded as a class.

Facets are union set of all attributes belonging to objects.

Values of facets are values of text elements.

(a) XML data example. (b) Structural info.

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Classes and Attributes
Objects and Facets
Operations

Operations

Selection operation

find objects by selecting facet-value pairs

Class-based selection operation

find objects by selecting classes

Keyword-based selection operation

LCA-based keyword search s.t. results are objects which
contain all input terms

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Framework Architecture
Construction Phase and Retrieval Phase

Framework Architecture

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Framework Architecture
Construction Phase and Retrieval Phase

Construction Phase and Retrieval Phase

(a) Construction phase (b) Retrieval phase

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Overview of Experiments
Task Examples
Experimental Results

Overview of Experiments

Purpose: check whether faceted search helps users to search
over XML data

Dataset: XML data of DBLP bibliography (200MB)

Methodology: measuring average elapsed time for each task

Examinees: 10 examinees

Tasks: five tasks

Three exploratory task: having six characteristics (uncertainty,
ambiguity, discovery, unfamiliar domain, low-level specificity,
and imaginative situation)
Two ad-hoc query task: specific tasks

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Overview of Experiments
Task Examples
Experimental Results

Task Examples

Exploratory task

Imagine a situation that one of
your colleagues asks you about
Michael J. Franklin. You just
know his name, but do not any
other information else, like details
of his research topics and papers.
You need to find three research
topics of Michael J. Franklin.

Ad-hoc query task

Imagine that you are taking a
course named “Systematic Lan-
guages” in that you learn several
kinds of programming languages.
From the next class, you will learn
OCaml, and you are asked to
read a paper entitled “Using, Un-
derstanding, and Unraveling the
OCaml Language. From Practice
to Theory and Vice Versa.” Find
this paper.

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Overview of Experiments
Task Examples
Experimental Results

Experimental Results

Takahiro Komamizu A Framework of Faceted Search for XML data

Background
Proposal

Framework
Experiments

Conclusion and Future works

Conclusion and Future works

Conclusion

Framework of faceted search over XML data
Experiments show applying faceted search for XML data helps
users

Future works
Extension for graph data

homogeneous graph like citation network
heterogeneous graph like paper-author network

Treatment for longer texts

if topics are given, topics as facets
otherwise, topics may come from topic models (e.g., LDA)

Ranking of results w.r.t. users’ actions

order of selections of facets may be related to expectation for
ranking

Takahiro Komamizu A Framework of Faceted Search for XML data

A Study on User Location Inference
in Social Media

Yuto Yamaguchi
Ph.D student

14/02/20 Yuto Yamaguchi 1

Social Media Reflects the Real World

14/02/20 Yuto Yamaguchi 2

Introduction

ü Real-time

ü  Individuals

ü  Location information

Monitoring Real World

14/02/20 Yuto Yamaguchi 3

Introduction

Event Detection [Sakaki+, 10] [Walther+, 13] …

•  Earthquakes, typhoons, fires, ...

Analyzing Epidemics [Paul+, 11] [Aramaki+, 11] …

•  Where and What

Disaster Analysis [Vieweq+, 10] [Mandel+, 12] …

•  Situation Awareness

Importance of location information

14/02/20 Yuto Yamaguchi 4

Introduction

Residential information is essential
for monitoring the real world

ü Where contents were posted

ü Where events happened

ü Where epidemic is

Our Problem

14/02/20 Yuto Yamaguchi 5

Introduction

Location profiles are unavailable for …

ü  74% of Twitter users [Cheng+, 10]
ü  94% of Facebook users [Backstrom+, 10]

Why
ü  No merit
ü  Privacy

èWorth inferring home locations

User Location Inference

14/02/20 Yuto Yamaguchi 6

Graph-based approaches

 Analyzing social graphs
 [Backstrom+, WWW’10]
 [Rout+, HT’13]
 [Jurgens+, ICWSM’13]

Content-based approaches

 Analyzing user-generated contents
 [Cheng+, CIKM’10]
 [Hecht+, CHI’11]
 [Kinsella+, SMUC’11]

	

User Location Inference

14/02/20 Yuto Yamaguchi 7

Graph-based approaches

 Analyzing social graphs
 [Backstrom+, WWW’10]
 [Rout+, HT’13]
 [Jurgens+, ICWSM’13]

This	
 talk	

Graph-based approaches (1/2)

14/02/20 Yuto Yamaguchi 8

User Location Inference

Tsukuba	

Tokyo	

Pi/sburgh	

Tsukuba？	

Basic Idea
ü  Friends live close each other
（closeness assumption）

Method
ü  Inferring the home location
of the target user based on
the home locations of friends

Roots
 [Backstrom+, WWW’10]

Tsukuba	

Tsukuba	

Tsukuba	

Graph-based approaches (2/2)

14/02/20 Yuto Yamaguchi 9

User Location Inference

Really	
 close?	

60%	
 are	
 100km	
 distant	

Twi/er	
 Data	

Concentration Assumption

14/02/20 Yuto Yamaguchi 10

Our Idea

Friends

Spatially close

(Existing)
Closeness assumption

ü  IF friends
THEN close	

(Proposed)
Concentration assumption

ü  IF follow graph landmarks
THEN close	

Tsukuba

Tsukuba

Tsukuba

Tokyo

Graph
Landmark

Spatially close

Tsukuba？

Required features of graph landmarks

14/02/20 Yuto Yamaguchi 11

Graph Landmarks

① Small dispersion	

② Large degree	

Followers are close
to each other

A lot of followers

＞	

＞	

Examples in Twitter

14/02/20 Yuto Yamaguchi 12

Graph Landmarks

Characteristics

ü  Tend to be non-humans

ü  Tend to post about its area

ü  Tend to be in metropolises

Overview

14/02/20 Yuto Yamaguchi 13

Proposed Method

Probabilistic model


lu = argmax

l∈L
Pu(l) 1.  Model distribution Pu

2.  Pick the mode point
as the answer

è Landmark mixture model	

L ⊂ R2
：Geographical	
 space	

Landmark Mixture Model (LMM)

14/02/20 Yuto Yamaguchi 14

Proposed Method

Target
User

Pu l() = π v1Dv1 l()+π v2Dv2 l()+π v3Dv3 l()

Dv1 l()

Dv2 l()

Dv3 l()

π v1

π v2

π v3

Dominance	

Distribu5on	
 Weights	

Pu l() v1	

v2	

v3	

Mixture of distributions of v1, v2, and v3

Dominance Distributions

14/02/20 Yuto Yamaguchi 15

Proposed Method

Many followers

Few followers Du l() = N l µu,Σu()
Graph landmarks have small
covariances
•  Sharp
•  Strong clues

“Followers of this user are likely
to live around here”

è Take into account “Small dispersion”

Spatial distributions of followers’ home locations

è Gaussian

Mixture Weights

14/02/20 Yuto Yamaguchi 16

Proposed Method

Proportional to the
logarithm of in-degrees

π v ∝ logcv

Large Small

è Take into account “Large degree”

Mode point

14/02/20 Yuto Yamaguchi 17

Proposed Method

Pu l()


lu

Pick the mode point
as the answer

Dataset

14/02/20 Yuto Yamaguchi 18

Experiments

Twi;er	
 dataset	
 [Li+,	
 KDD’12]	

	

ü  3M	
 users	
 in	
 the	
 U.S.	

ü  465K	
 labeled	
 users	
 （15%	
 of	
 all	
 users）	

ü  46K	
 users	
 for	
 test	
 set	
 (10%	
 of	
 labeled	
 users)	
 	

ü  285M	
 follow	
 edges	

	

	

Evalua5on	

	

1.  Infer	
 home	
 locaSons	
 of	
 test	
 users	
 by	
 compared	
 methods	

2.  Calculate	
 the	
 error	
 distance	
 between	
 inferred	
 locaSons	
 and	
 true	
 locaSons	

Performance comparison

14/02/20 Yuto Yamaguchi 19

Experiments

Compared methods

ü  LMM: Our method
ü  UDI: [Li+, KDD’12]
ü  Backstrom: [Backstrom+, WWW’10]
ü  Jurgens: [Jurgens, ICWSM’13]
ü  Naïve: Medoids

Results

ü  Best by LMM

.	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Error	
 distance	
 (m)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

CD
F	

Contributions

14/02/20 Yuto Yamaguchi 20

①  Introduced concentration assumption

Exploiting graph landmarks

②  Proposed Landmark mixture model

 More accurate than existing methods

u  Publication
Landmark-Based User Location Inference in Social Media
Yuto Yamaguchi, Toshiyuki Amagasa, and Hiroyuki Kitagawa
The 1st ACM Conference on Online Social Networks (COSN 2013),
pp.223-234, Boston, USA, October 7-8, 2013.

An Efficient Sorting Algorithm on GPUs

Yusuke Kozawa

Toshiyuki Amagasa

Hiroyuki Kitagawa

Background

○ GPU (Graphics Processing Unit)

– Have multiple cores

• Each core has tens to hundreds of scalar processors

– High performance and high memory bandwidth

– GPU computing

○ Sorting

– Fundamental operation

– Its GPU acceleration has been widely studied

2

Sorting on GPUs

○ Radix sort [Merrill+, PPL ‘11]

– Non-comparison sort

– Pros: Low time complexity 𝑂 𝑘𝑛

– Cons: Complexity depends on key length 𝑘

○ Merge sort [Baxter, ‘14]

– Representative of comparison-sort algorithms

– Pros: Complexity is independent on key length

– Cons: high time complexity 𝑂 𝑛log𝑛

3

The Performance of Merge Sort

○ Performance degrades when data is large

– Bounded by memory bandwidth

4

Our Contributions

○ Propose a sorting algorithm on GPUs

– Reduce memory accesses by partitioning data

based on samplesort [Leischner+, IPDPS ‘10]

– Sort the partitioned data by using the merge

algorithm of Baxter’s merge sort

○ Evaluate the algorithm by experiments

– Up to 1.39 times faster than Baxter’s merge sort

– Similar performance to radix sort for 32-bit keys

• Up to 2.3 times faster than radix sort for 64-bit keys

5

Outline

 Background and Contributions

2. Proposed Algorithm

3. Experiments

4. Conclusion and Future Work

6

An Overview of Our Algorithm

○ Basic idea

– Lower the number of merges by partitioning the

data into 𝒌 buckets

– Cooperatively merge the data within buckets with

a single kernel

7

Input

Partition

Sort on each core

Merge

Data Partitioning

○ Algorithm [Leischner+, IPDPS ‘10]

1. Obtain 𝑘 − 1 splitters from the input

2. Compute the scatter positions of the input data

a. Count the sizes of buckets

b. Calculate the offsets of buckets

3. Data relocation

○ Problem

– When accessing buckets, memory access patterns

do not meet the condition of coalesced accesses

8

Coalesced Accesses

○ Memory accesses can be coalesced into one

– If a group of 32 threads accesses an aligned 128-

byte region

9

128 256 Address

𝒕𝟏 𝒕𝟐 𝒕𝟑 ⋯

128 256 Address

𝒕𝟏 𝒕𝟐 𝒕𝟑 ⋯
X O

Optimize Memory Accesses

○ Bucket alignment

– Align the starting position of each bucket

– This makes the memory accesses to buckets

meet the condition of coalesced accesses

10

128 256

𝒕𝟏 𝒕𝟐 𝒕𝟑 ⋯

128 256

Not aligned

Starting position of a bucket

𝒕𝟏 𝒕𝟐 𝒕𝟑 ⋯

Starting position of a bucket

Aligned

Padding

Sort the Buckets

○ Existing schemes for sorting buckets

– Sort a bucket on a core [Leischner+, IPDPS ‘10]

– Sort a bucket with a kernel [Dehne+, PPL ‘12]

– Problems: Load imbalance, not enough parallelism

○ Cooperative merge

– Merge the data within all buckets with a kernel

– Continue the merge until all the buckets are sorted

11

Restore the Positions of Buckets

○ In the last merge

– Need to restore the positions of buckets

– To coalesced memory accesses, separately handle

the left and right of a 128-byte boundary

12

128 256

𝒕𝟏 𝒕𝟐 𝒕𝟑 ⋯

Not coalesced

Starting position of a bucket

Coalesced

𝒕𝟒

128 256

𝒕𝟏 𝒕𝟐 𝒕𝟏 ⋯

Starting position of a bucket

𝒕𝟐

Experiments

○ Compared implementations

– Merge sort [Baxter, ‘14]

– Radix sort [Merrill, ‘13]

○ Data

– Arrays of 32-bit keys and 64-bit keys, respectively

– Generated by a uniform distribution

○ Machine configuration

– OS: Ubuntu 12.04.3 LTS 64 bit

– CUDA 5.5

– GPU: Tesla C2050

 13

Results: Comparisons

○ Ours is up to 1.39 times faster than merge sort

○ Compared with radix sort

– Depends on the data size for 32-bit keys

– Generally faster when 64-bit keys are used

14 32 bit 64 bit

Results: Effects of Optimization

○ Speedup of up to 1.25

– Effective especially for large data sizes

15

32 bit 64 bit

Conclusion and Future Work

○ Conclusion

– Propose a sorting algorithm on GPUs

• Reduce memory accesses by data partitioning

• Cooperatively merge buckets with load balance

– Evaluate the algorithm by experiments

• Faster than merge sort when the data is large enough

• Similar or higher performance than radix sort

○ Future work

– Evaluation by using Kepler GPUs

– Partition data more than once

16

Introduction
of

JsSpinner

Wang Yan
2014-02-19

Stream processing engine

• Stream
• Continuously generated data

• Example: Tweets, stock trades, network packets

• Stream processing engine
• Query stream data in real time

• Continuous query can be registered

• Whenever data comes, the query is processed.

System architecture

Twitter
Semi-structured
Information Source

RSS E-mail

Server:

w
Twiiter
wrapper

w
RSS
wrapper

wE-mail
wrapper

Client:

RegisterJSpinlet API

API

Wrapper is responsible for getting
input data

JsSpinner

JSpinlet

JsSpinner processes the query.

JSpinlet is client library

Register
query

Distributed stream processing

Twitter
Semi-structured
Information Source

RSS …

Distributed
Server:

JsSpinner

JsSpinner

w
Twiiter
wrapper

API

Socket
wrapper

JsSpinner

w
RSS
wrapper

API

Client:

RegisterJSpinlet API

JSpinlet

API

Register
query

Query processing scheme

•Designated event-based processing

• Users can specify some input streams as master streams.

• The query is supposed to be processed and generates query
results only when data comes from master streams.

Data model and operator

• JSON
• semi-structured

• lightweight
• flexible

•Operator
• Selection

• Projection

• Join

• Groupby_aggregation

• Istream

• Dstream

• Rstream

• Expand

Demo----schema

{"id": "stream1",
"type":"object",
"properties":

{
"id":{

"type": "string"
},

"student":
{
"type":"object",
"properties":{

"age":{
"type":"number"
}

}
}

}
}

{"id": "stream2",
"type":"object",
"properties": {

"id":{
"type": "string"
},

"score":{
"type":"integer"

}
}

}

Demo--Query

stream1 = readFromWrapper ("stream1", false) ;

stream2 = readFromWrapper ("stream2", true) ;

tmp1 = stream1 -> window[rows 2] -> transform {$.id,$.student.age};

tmp2 = stream2 -> window[rows 3] -> filter $.score >= 22;

j = join s in tmp1,
d in tmp2

where s.id == d.id
into {s.id, d.score};

j -> istream;

Extension of Jaql

Thank you very much
2014.02.19

	komamizu.pdf
	Background
	XML: Extensible Markup Language
	Searching over XML data
	Exploratory Search
	Research Direction

	Proposal
	Classes and Attributes
	Objects and Facets
	Operations

	Framework
	Framework Architecture
	Construction Phase and Retrieval Phase

	Experiments
	Overview of Experiments
	Task Examples
	Experimental Results

	Conclusion and Future works

