

External Review on Center for Computational Sciences University of Tsukuba 2013.2.18-20

Time-Dependent Density Functional Theory in Condensed Matter Physics

K. YABANA

Center for Computational Sciences, University of Tsukuba

Collaborators:

G.F. Bertsch	Univ. Washington
T. Otobe	JAEA
JI. Iwata	Univ. Tokyo
S. Shinohara	Univ. Tsukuba/MPI
T. Sugiyama	Univ. Tsukuba
S.A. Sato	Univ. Tsukuba

Nuclei Atoms, Molecules, Solids Nucleon many-body system Electron many-body systems 10^{-10} m 10^{-15} m Size 1MeV 1eV Energy 10^{-17} s 10^{-23} s Time $10^9 eV$ Mass $5 \times 10^5 eV$ Interaction Coulomb force Nuclear force (Strong interaction) **Statistics** Fermion Fermion

Time-Dependent Density Functional Theory

Successful for quantitative description of many-fermion dynamics

Nuclei (nucleon dynamics)

Atoms, Molecules, Solids (electron dynamics)

Linear response regime

- Giant resonances ((Q)RPA)

- Electronic excitaitons in molecules
- Optical response of molecules and solids

Nonlinear regime, Initial value problem

- Heavy ion collision

- Laser science (Intense and ultra-short laser pulse)

We are developing real-time TDDFT computational method.

We pioneered the method, combining nuclear method developed in TDHF calculation with first-principles density functional Hamiltonian in condensed matter physics.

K. Yabana, G.F. Bertsch, Phys. Rev. B54, 4484 (1996).

$$\left\{-\frac{\hbar^2}{2m}\vec{\nabla}^2 + \sum_a V_{ion}(\vec{r}-\vec{R}_a) + e^2 \int d\vec{r} \cdot \frac{n(\vec{r},t)}{|\vec{r}-\vec{r}'|} + \mu_{xc}(n(\vec{r},t)) + V_{ext}(\vec{r},t)\right\} \psi_i(\vec{r},t) = i\hbar \frac{\partial}{\partial t} \psi_i(\vec{r},t)$$

Hamiltonian for electrons in First-principles DFT

 $n(\vec{r},t) = \sum_{i} \left| \psi_i(\vec{r},t) \right|^2$

- High-order finite difference approximation for differential operators
- Taylor expansion method for time evolution

Electron dynamics in metallic clusters by TDDFT

K. Yabana, G.F. Bertsch, Phys. Rev. B54, 4484 (1996).

Density change induced by impulsive force

Dipole moment as function of time

Real-time calculation for optical absorption spectrum of Li_{147}^+

K. Yabana, G.F. Bertsch, Phys. Rev. B54, 4484 (1996).

Photoabsorption of molecules by TDDFT (LB94 functional) "Continuum RPA calculation for deformed system"

K. Yabana, Y. Kawashita, T. Nakatsukasa, J.-I. Iwata, Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces Chapter 4, Taylor & Francis, 2010.

Electron dynamics in bulk Si under strong laser pulse

Time-dependent extension of Bloch's band theory

$$i\hbar \frac{\partial}{\partial t} u_{n\vec{k}}(\vec{r},t) = \left[\frac{1}{2m} \left(\vec{p} + \vec{k} + \frac{e}{c} \vec{A}(t) \right)^2 + \int d\vec{r} \cdot \frac{e^2}{|\vec{r} - \vec{r}|} n(\vec{r}',t) + \mu_{xc} [n(\vec{r},t)] \right] u_{n\vec{k}}(\vec{r},t)$$
$$n(\vec{r},t) = \sum_{nk} \left| u_{n\vec{k}}(\vec{r},t) \right|^2$$
$$u_{nk}(\vec{r} + \vec{a},t) = u_{nk}(\vec{r},t)$$

Electron dynamics in crystalline solid (atomic positions are fixed)

Computational aspects

- 3D uniform gird for space, high-order finite difference for differentiation
- Taylor expansion for time evolution

Dielectric function of Si from real-time TDDFT-ALDA

Instantaneous kick at t=0, then calculate current J(t)

$$\sigma(\omega) = \frac{1}{k} \int dt \, e^{i\omega t} J(t), \quad \varepsilon(\omega) = 1 + \frac{4\pi i \, \sigma(\omega)}{\omega}$$

Not very good in quality, however.

Frontiers of Laser Science

- Nonlinear electron dynamics induced by strong laser pulse
- Ultrafast electron dynamics femto to attosecon -

Frontiers of Optical Sciences: Intense laser pulse on solid Laser intensity

NATUREJOBS Marine biology

Nonthermal Laser Machinery

Melting, ablation, filamentation on bulk surface a 100 fs b Conduction band G Transparent material Objective Figure B1 Femtosecond laser micromaching process. a, Schematic of the laser incident on a transparent material. b, Diagram of the excitation of electrons to the conduction band. c, Microscope images showing the large variation in the feature characteristics depending on the experimental conditions. Left: single 10-nJ pulse and right: 25,000 5-nJ pulses at a frequency of 25 MHz (both with the same focal spot).

R.R. Gattass, E. Mazur, Nature Photonics 2, 220 (2008).

Micromachining - waveguideend view

Optical microscope image of waveguides written inside bulk glass by a 25-MHz train of 5-nJ sub-100-fs pulses, C.B. Schaffer et.al, OPTICS LETTERS 26, 93 (2001)

Nanosurgery

Ablation of a single mitochondrion in a living cell. N. Shen et.al, Mech. Chem. Biosystems, 2, 17 (2005).

Question: How to describe strong laser pulse propagation in solids?

Weak field

Described solely by dielectric function (linear response)

Extremely strong field

Microscopically, nonlinear electron dynamics inside solid. Macroscopically, electromagnetism need modification. How? Question: How to describe strong laser pulse propagation in solids?

Our answer

It is necessary to combine electromagnetism and quantum mechanics by large scale computing

Real-time TDDFT for microscopic electron dynamics + Macroscopic Maxwell equation

Perturbation theory separates

macroscopic electromagnetism (EM) and quantum mechanics (QM) through "Constitutive Relation".

$$D_{\alpha}(\vec{r},t) = E_{\alpha}(\vec{r},t) + 4\pi P_{\alpha}(\vec{r},t) = \int^{t} dt' \varepsilon_{\alpha\beta}(t-t') E_{\beta}(\vec{r},t')$$

Electromagnetism: Maxwell equation for macroscopic fields, *E*, *D*, *B*, *H*

Linear constitutive relation

$$D = D[E] = \varepsilon(\omega)E$$

Quantum Mechanics:

Perturbation theory to calculate linear susceptibilities, $\varepsilon(\omega)$

As the field strength becomes large, "nonlinear optics" becomes important.

 $D_{\alpha}(\vec{r},t) = \int^{t} dt' \varepsilon_{\alpha\beta}(t-t') E_{\beta}(\vec{r},t') + 4\pi \int^{t} dt' \int^{t} dt' \chi_{\alpha\beta\gamma}^{(2)}(t-t',t-t'') E_{\beta}(\vec{r},t') E_{\gamma}(\vec{r},t'') + \cdots$

At extreme intense limit, EM and QM no more separate.

Multiscale simulation

At each macroscopic grid point,

We consider a unit cell and prepare microscopic grid.

K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, Phys. Rev. B85, 045134 (2012).

Macroscopic grid points (µm) to describe macroscopic vector potential

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}A(Z,t) - \frac{\partial^2}{\partial Z^2}A(Z,t) = \frac{4\pi}{c}J(Z,t)$$

J(Z,t)

Exchange of information by macroscopic current and macroscopic vector potential. A(Z,t)

$$J(Z,t) = \int_{\Omega} d\vec{r} \, \vec{j}_{e,Z}$$
$$\vec{j}_{e,Z} = \frac{\hbar}{2mi} \sum_{i} \left(\psi_{i,Z}^* \vec{\nabla} \, \psi_{i,Z} - \psi_{i,Z} \vec{\nabla} \, \psi_{i,Z}^* \right) - \frac{e}{4\pi c} n_{e,Z} \vec{A}$$

At each macroscopic points, Kohn-Sham orbitals $\Psi_{i,Z}$ are prepared, and described in microscopic grids.

$$i\hbar\frac{\partial}{\partial t}\psi_{i,Z} = \frac{1}{2m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}\right)^{2}\psi_{i,Z} - e\phi_{Z}\psi_{i,Z} + \frac{\delta E_{xc}}{\delta n}\psi_{i,Z}$$
$$\vec{\nabla}^{2}\phi_{Z} = -4\pi\left\{en_{ion} - en_{e,Z}\right\}$$

Propagation of weak pulse Ordinary electromagnetism is OK.

Coupled Maxwell + TDDFT simulation

More intense laser pulse

Dynamics of electrons and macroscopic EM fields are no more separable.

 $I = 5 \times 10^{12} W/cm^2$

Computationally challenging multiscale simulation

At present, 1-dim propagation (macroscopic grid)

Si, diamond: 1,000 cores, 10 hours 20,000 cores, 20 min (K-computer, Kobe) SiO₂ (α -quartz) 30,000 cores, 2 hours

3-dim

- Self focusing

- Circular polarization

A million of macro-grid points

×1,000

need to wait next generation supercomputers

Computationally scalable simulation

1,000 cores, 10 hours 30,000 cores, 20 min (K-computer, Kobe)

Performance at K-Computer in Kobe (in early access) 22.0% 98.1% 100.0% 19.9% Effective performance 100.0% 19.0% 23040 cores 11520 cores 100.0% Parallel efficiency 7680 cores 46080 cores 20.0% 11520 cores 19.9% 95.0% 19.6% 7680 cores 95.2% 23040 cores 18.0% 46080 cores 18.3% 90.0% 91.4% 92160 cores 16.0% 92160 cores 85.0% 14.0% calculation with 7680 - 92160 cores calculation with 7680 - 92160 cores 80.0% 12.0% 50000 5000 5000 50000 # of cores # of cores

We are granted 4M node-hours at K-computer for 2014 year.

Conclusion

TDDFT is a useful universal theory for many-Fermion dynamics.

	Nuclear Physics	Atoms, Molecules, Solids
Lineaar response	Giant resonances	Photoabsorption, Dielectric function
Initial value problem	Heavy ion collisions	Strong laser sciences

Interaction of strong laser pulse and solids require connection of two basic physics: Macroscopic electromagnetism and quantum mechanics

We have developed a new multiscale simulation, Maxwell + TDDFT scheme, which runs only at the largest supercomputers available today.