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Background 
• Many FFT implementations work well within Intel 

Xeon Phi cards, such as Intel MKL’s FFT routine. 
• However, PCI Express transfer is often a 

performance bottleneck in FFT because FFT 
requires a large number of memory accesses per 
arithmetic operation. 

• One goal for parallel FFTs on Intel Xeon Phi clusters 
is to minimize the PCI Express transfer time and the 
MPI communication time. 

• Several FFT libraries with automatic tuning have 
been proposed. 
– FFTW, SPIRAL, and UHFFT 
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Objectives 
• An Implementation of parallel 1-D FFT on Intel 

Xeon Phi cluster has been presented 
[Park et al. 2013]. 

• Auto-tuning parallel 3-D FFT for computation-
communication overlap has also been presented 
[Song and Hollingsworth 2014]. 

• However, to the best of our knowledge, parallel 1-D 
FFT with automatic tuning on Intel Xeon Phi 
clusters has not yet been reported. 

• We propose an implementation of a parallel 1-D 
FFT with automatic tuning on Intel Xeon Phi 
clusters. 
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Approach 
• Our implemented parallel 1-D FFT is based on the 

six-step FFT algorithm. 
• The six-step FFT algorithm improves performance 

by utilizing the cache memory effectively. 
• Parallel FFTs on Intel Xeon Phi clusters require 

intensive all-to-all communication, which affects 
the performance of parallel FFTs. 

• How to overlap the computation and the all-to-all 
communication is one of the issues in automatic 
tuning for parallel FFTs. 
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Six-Step FFT Algorithm 
[Bailey90, VanLoan92] 

• Step 1: Transpose 
• Step 2: Compute 𝑛𝑛1 individual 𝑛𝑛2-point  

            multicolumn FFTs 

• Step 3: Apply twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 )  

            multiplication 
• Step 4: Transpose 
• Step 5: Compute  𝑛𝑛2 individual 𝑛𝑛1-point  

            multicolumn FFTs 
• Step 6: Transpose 
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Parallel 1-D FFT Algorithm Based on 
Six-Step FFT 
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Optimization of Parallel 1-D FFT on 
Intel Xeon Phi 

       COMPLEX*16 X(N1,N2),Y(N2,N1),WORK2(N1+NP,N2) 
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ) 
      DO II=1,N1,NB 
          DO JJ=1,N2,NB 
              DO I=II,MIN0(II+NB-1,N1) 
                  DO J=JJ,MIN0(JJ+NB-1,N2) 
                      WORK2(J,I)=X(I,J) 
                  END DO 
              END DO 
          END DO 
      END DO 
!$OMP PARALLEL DO 
      DO I=1,N1 
          CALL IN_CACHE_FFT(WORK2(1,I),N2) 
      END DO 
      … 

To expand the outermost loop, 
the double-nested loop can be 
collapsed into a single-nested loop. 
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Overlapping Computation and 
Communication [Idomura et al. 2014] 
 
!$OMP PARALLEL 
!$OMP MASTER 
 
 
!$OMP END MASTER 
!$OMP DO SCHEDULE(DYNAMIC) 
       DO I=1,N 
 
 
       END DO 
!$OMP DO 
       DO I=1,N 
 
 
 
       END DO 
!$OMP END PARALLEL 

MPI communication 

Computation 

Computation using the 
result of communication 

← Communication on master 
     thread 

← Implicit barrier 
    synchronization  

← Computation on other than 
     master thread 

← No barrier synchronization  
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Effect of Overlapping Computation 
and Communication 

Without 
overlap 

Overlap 
(NDIV=2) 

Overlap 
(NDIV=4) 

Computation Communication 

Comp. Comm. 
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Comp. Comm. 
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Automatic Tuning of Parallel 1-D FFT 
on Intel Xeon Phi Clusters 

• An automatic tuning process consists of three 
steps: 
– Selection of the number of divisions for 

overlapping communication and computation 
– Selection of the radices (𝑁𝑁1 and 𝑁𝑁2) 
– Selection of the block size NB 
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Selection of the Number of Divisions for 
Overlapping Communication and 

Computation 
• When we increase the number of divisions for 

overlapping communication and computation, the 
overlap ratio also increases. 

• On the other hand, the message size is decreased 
due to split the all-to-all communication. 

• Thus, a tradeoff exists between the overlap ratio and 
the all-to-all communication performance. 

• The default overlapping parameter of the original 
FFTE 6.2beta is NDIV=4. 

• In our implementation, the overlapping parameter 
NDIV is varied with 1, 2, 4, 8 and 16. 
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Selection of the Radices 
• If the condition of 𝑁𝑁 = 𝑁𝑁1 × 𝑁𝑁2 is satisfied, then 

we can select the arbitrary 𝑁𝑁1 and 𝑁𝑁2, where 
𝑁𝑁1,𝑁𝑁2 ≥ 𝑃𝑃. 

• We need to select the best combination and 
order of 𝑁𝑁1 and 𝑁𝑁2 for computing  parallel 1-D 
FFT. 

• If 𝑁𝑁 and 𝑃𝑃 are a power of two, 𝑁𝑁1 is varied with 
𝑃𝑃, 2𝑃𝑃, … , 𝑁𝑁, then 𝑁𝑁2 = 𝑁𝑁/ 𝑁𝑁1. 

• In this case, the size of search space is 
log2( 𝑁𝑁/𝑃𝑃). 
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Selection of the Block Size 
• The default blocking parameter of the original 

FFTE 6.2beta is NB=8. 
• Although the optimal block size may depend 

on the problem size, the block size NB can 
also be varied. 

• In our implementation, the block size NB is 
varied with 4, 8, 16, 32 and 64. 
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Performance Results 
• To evaluate the parallel 1-D FFT with automatic 

tuning, we compared its performance against that of 
the FFTE 6.2beta (http://www.ffte.jp/)  and that of the 
FFTE 6.2beta with AT. 

• Target parallel machine: COMA system@U. Tsukuba 
– 393 nodes, 7860 cores, 786 Xeon Phis, Peak 1.001 PFlops 
– Intel Xeon E5-2670 v2 (Ivy Bridge-EP 2.5GHz, 10-core) x 2 + Intel 

Xeon Phi 7110P (1.1GHz, 61-core) x 2 
– All the nodes in the system are connected through a full-bisectional 

fat-tree network with FDR InfiniBand. 
– Intel MPI 5.1.1 was used as a communication library. 
– Intel Fortran Compiler 15.0.3 with ”-O3 -mmic -openmp”. 
– 244 threads per Xeon Phi were used in native execution model. 

15 2016/5/12 CCS - LBNL Collaborative Workshop 2016 

http://www.ffte.jp/


Results of Automatic Tuning of 1-D FFTs 
on COMA (32 nodes, 64 MPI processes) 

# MPI N1 N2 NB NDIV GFlops N1 N2 NB NDIV GFlops 

4 16K 16K 8 4 15.3 4K 64K 32 8 15.8 

8 16K 32K 8 4 28.6 32K 16K 32 16 29.6 

16 32K 32K 8 4 50.6 32K 32K 32 16 57.0 

32 32K 64K 8 4 93.0 64K 32K 64 8 107.6 

64 64K 64K 8 4 124.7 64K 64K 64 4 171.3 

FFTE 6.2beta FFTE 6.2beta with AT 
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Performance of All-to-All communication

(COMA system, 32 nodes, 64 MPI processes)
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Performance of Parallel 1-D FFTs
(COMA system, 32 nodes, 64 MPI processes)
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Conclusion 
• We proposed an implementation of parallel 1-D FFT 

with automatic tuning on Intel Xeon Phi clusters. 
• An automatic tuning facility for selecting the optimal 

parameters of the number of divisions for 
overlapping communication and computation, the 
radices and the block size is implemented. 

• The performance results demonstrate that the 
proposed implementation of parallel 1-D FFT with 
automatic tuning is efficient for improving the 
performance on Intel Xeon Phi clusters. 
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