
2016/5/12 CCS - LBNL Collaborative Workshop 2016 1

Automatic Tuning for Parallel FFTs
on Intel Xeon Phi Clusters

Daisuke Takahashi
University of Tsukuba, Japan

2016/5/12 2

Outline
• Background
• Objectives
• Six-Step FFT Algorithm
• Overlapping Communication and

Computation
• Automatic Tuning for Parallel 1-D FFT on

Intel Xeon Phi Clusters
• Performance Results
• Conclusion

CCS - LBNL Collaborative Workshop 2016

2016/5/12 3

Background
• Many FFT implementations work well within Intel

Xeon Phi cards, such as Intel MKL’s FFT routine.
• However, PCI Express transfer is often a

performance bottleneck in FFT because FFT
requires a large number of memory accesses per
arithmetic operation.

• One goal for parallel FFTs on Intel Xeon Phi clusters
is to minimize the PCI Express transfer time and the
MPI communication time.

• Several FFT libraries with automatic tuning have
been proposed.
– FFTW, SPIRAL, and UHFFT

CCS - LBNL Collaborative Workshop 2016

2016/5/12 4

Objectives
• An Implementation of parallel 1-D FFT on Intel

Xeon Phi cluster has been presented
[Park et al. 2013].

• Auto-tuning parallel 3-D FFT for computation-
communication overlap has also been presented
[Song and Hollingsworth 2014].

• However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on Intel Xeon Phi
clusters has not yet been reported.

• We propose an implementation of a parallel 1-D
FFT with automatic tuning on Intel Xeon Phi
clusters.

CCS - LBNL Collaborative Workshop 2016

Approach
• Our implemented parallel 1-D FFT is based on the

six-step FFT algorithm.
• The six-step FFT algorithm improves performance

by utilizing the cache memory effectively.
• Parallel FFTs on Intel Xeon Phi clusters require

intensive all-to-all communication, which affects
the performance of parallel FFTs.

• How to overlap the computation and the all-to-all
communication is one of the issues in automatic
tuning for parallel FFTs.

5 2016/5/12 CCS - LBNL Collaborative Workshop 2016

2016/5/12 6

Six-Step FFT Algorithm
[Bailey90, VanLoan92]

• Step 1: Transpose
• Step 2: Compute 𝑛𝑛1 individual 𝑛𝑛2-point

 multicolumn FFTs

• Step 3: Apply twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2)

 multiplication
• Step 4: Transpose
• Step 5: Compute 𝑛𝑛2 individual 𝑛𝑛1-point

 multicolumn FFTs
• Step 6: Transpose

CCS - LBNL Collaborative Workshop 2016

2016/5/12 7

Parallel 1-D FFT Algorithm Based on
Six-Step FFT

Global
Transpose

Global
Transpose

Global
Transpose

𝑁𝑁1

𝑁𝑁2

𝑁𝑁2

𝑁𝑁1

𝑁𝑁1

𝑁𝑁2
𝑁𝑁1

𝑁𝑁2

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

CCS - LBNL Collaborative Workshop 2016

Optimization of Parallel 1-D FFT on
Intel Xeon Phi

 COMPLEX*16 X(N1,N2),Y(N2,N1),WORK2(N1+NP,N2)
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
 DO II=1,N1,NB
 DO JJ=1,N2,NB
 DO I=II,MIN0(II+NB-1,N1)
 DO J=JJ,MIN0(JJ+NB-1,N2)
 WORK2(J,I)=X(I,J)
 END DO
 END DO
 END DO
 END DO
!$OMP PARALLEL DO
 DO I=1,N1
 CALL IN_CACHE_FFT(WORK2(1,I),N2)
 END DO
 …

To expand the outermost loop,
the double-nested loop can be
collapsed into a single-nested loop.

2016/5/12 8 CCS - LBNL Collaborative Workshop 2016

Overlapping Computation and
Communication [Idomura et al. 2014]

!$OMP PARALLEL
!$OMP MASTER

!$OMP END MASTER
!$OMP DO SCHEDULE(DYNAMIC)
 DO I=1,N

 END DO
!$OMP DO
 DO I=1,N

 END DO
!$OMP END PARALLEL

MPI communication

Computation

Computation using the
result of communication

← Communication on master
 thread

← Implicit barrier
 synchronization

← Computation on other than
 master thread

← No barrier synchronization

9 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Effect of Overlapping Computation
and Communication

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

Computation Communication

Comp. Comm.

10 2016/5/12

Comp. Comm.

CCS - LBNL Collaborative Workshop 2016

Automatic Tuning of Parallel 1-D FFT
on Intel Xeon Phi Clusters

• An automatic tuning process consists of three
steps:
– Selection of the number of divisions for

overlapping communication and computation
– Selection of the radices (𝑁𝑁1 and 𝑁𝑁2)
– Selection of the block size NB

11 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Selection of the Number of Divisions for
Overlapping Communication and

Computation
• When we increase the number of divisions for

overlapping communication and computation, the
overlap ratio also increases.

• On the other hand, the message size is decreased
due to split the all-to-all communication.

• Thus, a tradeoff exists between the overlap ratio and
the all-to-all communication performance.

• The default overlapping parameter of the original
FFTE 6.2beta is NDIV=4.

• In our implementation, the overlapping parameter
NDIV is varied with 1, 2, 4, 8 and 16.
 12 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Selection of the Radices
• If the condition of 𝑁𝑁 = 𝑁𝑁1 × 𝑁𝑁2 is satisfied, then

we can select the arbitrary 𝑁𝑁1 and 𝑁𝑁2, where
𝑁𝑁1,𝑁𝑁2 ≥ 𝑃𝑃.

• We need to select the best combination and
order of 𝑁𝑁1 and 𝑁𝑁2 for computing parallel 1-D
FFT.

• If 𝑁𝑁 and 𝑃𝑃 are a power of two, 𝑁𝑁1 is varied with
𝑃𝑃, 2𝑃𝑃, … , 𝑁𝑁, then 𝑁𝑁2 = 𝑁𝑁/ 𝑁𝑁1.

• In this case, the size of search space is
log2(𝑁𝑁/𝑃𝑃).

13 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Selection of the Block Size
• The default blocking parameter of the original

FFTE 6.2beta is NB=8.
• Although the optimal block size may depend

on the problem size, the block size NB can
also be varied.

• In our implementation, the block size NB is
varied with 4, 8, 16, 32 and 64.

14 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Performance Results
• To evaluate the parallel 1-D FFT with automatic

tuning, we compared its performance against that of
the FFTE 6.2beta (http://www.ffte.jp/) and that of the
FFTE 6.2beta with AT.

• Target parallel machine: COMA system@U. Tsukuba
– 393 nodes, 7860 cores, 786 Xeon Phis, Peak 1.001 PFlops
– Intel Xeon E5-2670 v2 (Ivy Bridge-EP 2.5GHz, 10-core) x 2 + Intel

Xeon Phi 7110P (1.1GHz, 61-core) x 2
– All the nodes in the system are connected through a full-bisectional

fat-tree network with FDR InfiniBand.
– Intel MPI 5.1.1 was used as a communication library.
– Intel Fortran Compiler 15.0.3 with ”-O3 -mmic -openmp”.
– 244 threads per Xeon Phi were used in native execution model.

15 2016/5/12 CCS - LBNL Collaborative Workshop 2016

http://www.ffte.jp/

Results of Automatic Tuning of 1-D FFTs
on COMA (32 nodes, 64 MPI processes)

MPI N1 N2 NB NDIV GFlops N1 N2 NB NDIV GFlops

4 16K 16K 8 4 15.3 4K 64K 32 8 15.8

8 16K 32K 8 4 28.6 32K 16K 32 16 29.6

16 32K 32K 8 4 50.6 32K 32K 32 16 57.0

32 32K 64K 8 4 93.0 64K 32K 64 8 107.6

64 64K 64K 8 4 124.7 64K 64K 64 4 171.3

FFTE 6.2beta FFTE 6.2beta with AT

16 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Performance of All-to-All communication

(COMA system, 32 nodes, 64 MPI processes)

0

200

400

600

800

1000

1200

16 64 25
6 1K 4K 16

K
64

K
25

6K 1M 4M 16
M

Message size (bytes)

B
a
n
d
w

id
th

 (
M

B
/
s
e
c
)

MPI_Alltoall
(MIC-MIC)

17 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Performance of Parallel 1-D FFTs
(COMA system, 32 nodes, 64 MPI processes)

0

50

100

150

200

20 22 24 26 28 30 32

Length of transform (log_2 N)

G
F
lo

p
s

FFTE 6.2beta
(NDIV=4)

FFTE 6.2beta
with AT

FFTE 6.2beta
(w/o overlap)

18 2016/5/12 CCS - LBNL Collaborative Workshop 2016

Conclusion
• We proposed an implementation of parallel 1-D FFT

with automatic tuning on Intel Xeon Phi clusters.
• An automatic tuning facility for selecting the optimal

parameters of the number of divisions for
overlapping communication and computation, the
radices and the block size is implemented.

• The performance results demonstrate that the
proposed implementation of parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on Intel Xeon Phi clusters.

19 2016/5/12 CCS - LBNL Collaborative Workshop 2016

	Automatic Tuning for Parallel FFTs on Intel Xeon Phi Clusters
	Outline
	Background
	Objectives
	Approach
	Six-Step FFT Algorithm�[Bailey90, VanLoan92]
	Parallel 1-D FFT Algorithm Based on Six-Step FFT
	Optimization of Parallel 1-D FFT on Intel Xeon Phi
	Overlapping Computation and Communication [Idomura et al. 2014]
	Effect of Overlapping Computation and Communication
	Automatic Tuning of Parallel 1-D FFT on Intel Xeon Phi Clusters
	Selection of the Number of Divisions for Overlapping Communication and Computation
	Selection of the Radices
	Selection of the Block Size
	Performance Results
	Results of Automatic Tuning of 1-D FFTs on COMA (32 nodes, 64 MPI processes)
	スライド番号 17
	スライド番号 18
	Conclusion

