Detecting Topic Evolution in Bibliographic Database Exploiting Citations

Graduate School of Systems and Information Engineering, University of Tsukuba

> Hirotoshi Ito Toshiyuki Amagasa Hiroyuki Kitagawa

- * Background
- * Non-negative matrix factorization (NMF)
- * Proposed method
- * Experiments
- * Conclusion and future work

Bibliographic DBs

- * Google scholar, MS Academic Search, DBLP, CiteSeerX, ADS, Medline/PubMed, CiNii, …
- * Huge academic information accumulated.

* Extract inherent academic knowledge to

support researchers.

Topic evolution

* Changes of major research topics over time.

- * Researchers can get:
 - · major research topics,
 - \cdot how they evolved,
 - \cdot etc.

Related work (1/2)

* Topic detection

- · Probabilistic generative model
 - · p-LSI [Hofmann. 1999]
 - · LDA [Blei et al. 2003]
- Matrix Factorization
 - Non-negative Matrix Factorization [Lee et al. 1999]
- Graph analysis
 - term-graph [Jo et al. 2007]
- Non-negative matrix factorization (NMF) is attracting much attentions.
 - · Lower computational cost than probabilistic model
 - High ability of topic detection as well as probabilistic models
 - · Relatively simple algorithm

Related work (2/2)

* Detecting topic evolutions

- Using probabilistic model considering textual data and citations [He et al. 2009]
- Using NMF introduced the topic transition matrix that explicitly connects past and present topics [Vaca et al. 2014]
- Scheme of detecting a tendency of topic transitions in whole of the bibliographic database [Masada et al. 2012]
- * Detecting community evolution
 - Scheme of detecting research community introduced new similarity measure of cluster similarity [Tajeuna et al. 2015]

Approach

- * Partition DB by fixed-size time windows, and form doc-term matrices using title and abst.
- * Detect topics in each matrix.
- * Link similar topics in consecutive time windows.
- * Exploit **<u>CITATIONS</u>** for better results.

Applying NMF to doc-term matrix

- * NMF is to approximate a non-negative matrix by two matrices with lower rank by optimizing loss function.
 - doc x term —> doc x topic * topic x term

Matrix W: term distribution in each doc

* W : Ratio of each topic of each document contains

- * Each doc is approximated with a topic vector of fewer dimensions.
- * **Topic-based cluttering** of docs can be performed.

* Dataset partitioning

- Overlap time intervals
 - \cdot To connect topics smoothly
 - \cdot To use as clue of connecting topics
- * $D^{(t)}$: set of documents in time interval t

 $X^{(t)}$ and $C^{(t)}$

* Loss function:

$$L = \underset{W_X^{(t)}, W_C^{(t)}, H^{(t)}}{\arg \max} \left\| \left\| X^{(t)} - W_X^{(t)} H^{(t)} \right\|_F^2 + \delta \left\| C^{(t)} - W_C^{(t)} H^{(t)} \right\|_F^2 \right\|_F^2$$

· δ : Influence of cited papers for topics

* Approach 2

Source: W. Xu et al. "Document Clustering Based On Non-negative Matrix Factorization" In SIGIR'03

14

Link topics if they share many docs in common.

Experiments

* Dataset :

- · CiteSeerX: 701,686 papers from 1996 to 2014.
- · arXiv: 945,889 papers from 1995 to 2014.

* Environment

٠

Python 2.7 + numpy / spicy

Topic evolution: CiteSeerX

- * A square represents topics detected in each year
- * Terms in square describes each topic
- * Size of terms indicates strength of term in topic
 - · These are not labels by human tagging

Topic evolution: CiteSeerX

Topic evolution: arXiv (2/4)

Topic evolution: arXiv (3/4)

Conclusion and Future Work

* Conclusion

- We propose a scheme detecting topic evolution based on NMF exploiting citations
- · Our scheme successfully detect topic evolution
- In a view point of diversity, our scheme greatly improve from a prior work

* Future work

- Discuss about validity of topic and topic evolution
- More efficient algorithms so that we can deal with large datasets