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Bibliographic DBs
Google scholar, MS Academic Search, DBLP, 
CiteSeerX, ADS, Medline/PubMed, CiNii, … 

Huge academic information accumulated. 

Extract inherent academic knowledge to 
support researchers.
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Topic evolution
Changes of major research topics over time. 

Researchers can get: 

• major research topics, 

• how they evolved, 

• etc.
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Related work (1/2)
Topic detection 
• Probabilistic generative model 

• p-LSI [Hofmann. 1999] 
• LDA [Blei et al. 2003] 

• Matrix Factorization 
• Non-negative Matrix Factorization [Lee et al. 1999] 

• Graph analysis 
• term-graph [Jo et al. 2007] 

Non-negative matrix factorization (NMF) is attracting 
much attentions. 
• Lower computational cost than probabilistic model 
• High ability of topic detection as well as probabilistic models 
• Relatively simple algorithm
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Related work (2/2)
Detecting topic evolutions 
• Using probabilistic model considering textual data and 
citations [He et al. 2009] 

• Using NMF introduced the topic transition matrix that 
explicitly connects past and present topics [Vaca et al. 2014] 

• Scheme of detecting a tendency of topic transitions in whole 
of the bibliographic database [Masada et al. 2012] 

Detecting community evolution 
• Scheme of detecting research community introduced new 
similarity measure of cluster similarity [Tajeuna et al. 2015]
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Approach
Partition DB by fixed-size time windows, and 
form doc-term matrices using title and abst. 

Detect topics in each matrix. 

Link similar topics in consecutive time 
windows. 

Exploit CITATIONS for better results.
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Applying NMF to doc-term matrix
NMF is to approximate a non-negative matrix by two 
matrices with lower rank by optimizing loss function. 
• doc x term ̶> doc x topic * topic x term 
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Matrix W: term distribution in each doc

W : Ratio of each topic of each document contains 

Each doc is approximated with a topic vector of fewer dimensions. 

Topic-based cluttering of docs can be performed. 
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Ex. Three topic vector bases

topic ‘1’-‘2’ topic ‘2’-‘3’ topic ‘1’-‘3’
Source: W. Xu et al. “Document Clustering Based On  
Non-negative Matrix Factorization” In SIGIR’03
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Proposal outline
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Dataset partitioning 
Overlap time intervals 
• To connect topics smoothly 
• To use as clue of connecting topics 

          : set of documents in time 
interval t 
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Transform       into matrix  
• Using title and abstract 
• Transform these textual data into vector ( bag-of-words ) 
• Align document vectors 

Transform documents that are cited by documents 
in time interval t into matrix 
When detect topics, cited papers have important informations 
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Detect topics by applying NMF to matrix that is connected          
　　 and 

Loss function: 
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Linking similar topics 

Approach 1 
• Link topics if their word dist is similar. 

Approach 2 
• Link topics if they share many docs in common.
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Experiments
Dataset :  
• CiteSeerX: 701,686 papers from 1996 to 2014. 
• arXiv: 945,889 papers from 1995 to 2014. 

Environment 
• Python 2.7 + numpy / spicy
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Topic evolution: CiteSeerX 

A square represents topics detected in each year 

Terms in square describes each topic 

Size of terms indicates strength of term in topic 
• These are not labels by human tagging
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Topic evolution: CiteSeerX 
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Topic evolution: arXiv (1/4)
18

Gauge 
theory

Quark 
QCD

Neutrino

Quark 
merge with 
Gauge theory

merge into 
Neutrino



EJC 2016

Topic evolution: arXiv (2/4)
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Topic evolution: arXiv (3/4)
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Topic evolution: arXiv (4/4)
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Conclusion and Future Work
Conclusion 
• We propose a scheme detecting topic evolution based on 
NMF exploiting citations 

• Our scheme successfully detect topic evolution 
• In a view point of diversity, our scheme greatly improve from 
a prior work 

 Future work 
• Discuss about validity of topic and topic evolution 
• More efficient algorithms so that we can deal with large 
datasets
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