SPARSE CHOLESKY FACTORIZATION USING A FAN-BOTH
APPROACH

Esmond G. Ng

Computational Research Division
Lawrence Berkeley National Labatory

Joint work with Mathias Jacquelin*, Kathy Yelick and Yili Zheng

May 13, 2016

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.

1/22

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.
e Applied Numerical Algorithms (Phil Colella) - Develop advanced
numerical algorithms & software for PDEs, with the application

of the software to scientific and engineering problems.

1/22

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.

e Applied Numerical Algorithms (Phil Colella) - Develop advanced
numerical algorithms & software for PDEs, with the application
of the software to scientific and engineering problems.

e Center for Computational Sciences & Engineering (Ann
Almgren) - Develop and apply advanced computational
methodologies to solve large-scale scientific and engineering
problems.

1/22

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.

e Applied Numerical Algorithms (Phil Colella) - Develop advanced
numerical algorithms & software for PDEs, with the application
of the software to scientific and engineering problems.

e Center for Computational Sciences & Engineering (Ann
Almgren) - Develop and apply advanced computational
methodologies to solve large-scale scientific and engineering
problems.

e Mathematics Group (Jamie Sethian) - Develop new
mathematical models, devise new algorithms, and explore new
applications.

1/22

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.

Applied Numerical Algorithms (Phil Colella) - Develop advanced
numerical algorithms & software for PDEs, with the application
of the software to scientific and engineering problems.

Center for Computational Sciences & Engineering (Ann
Almgren) - Develop and apply advanced computational
methodologies to solve large-scale scientific and engineering
problems.

Mathematics Group (Jamie Sethian) - Develop new
mathematical models, devise new algorithms, and explore new
applications.

Scalable Solvers (Sherry Li) - Develop efficient algebraic solvers
and fast, scalable, library implementations.

1/22

APPLIED MATH (@ BERKELEY LAB

m The Applied Mathematics Department has 4 groups.

e Applied Numerical Algorithms (Phil Colella) - Develop advanced
numerical algorithms & software for PDEs, with the application
of the software to scientific and engineering problems.

e Center for Computational Sciences & Engineering (Ann
Almgren) - Develop and apply advanced computational
methodologies to solve large-scale scientific and engineering
problems.

e Mathematics Group (Jamie Sethian) - Develop new
mathematical models, devise new algorithms, and explore new
applications.

@ Scalable Solvers (Sherry Li) - Develop efficient algebraic solvers
and fast, scalable, library implementations.

m CAMERA: Center for Advanced Mathematics for Energy
Research Applications (Jamie Sethian).

1/22

MOTIVATION AND OBJECTIVE

m Given an n x n matrix A, compute a triangular factorization:
A — LU, where L is lower triangular and U is upper triangular.

2/22

MOTIVATION AND OBJECTIVE

m Given an n x n matrix A, compute a triangular factorization:
A — LU, where L is lower triangular and U is upper triangular.

m Triangular factorization of a matrix is useful ...

@ Solving linear systems with many right-hand sides.
@ Solving ill-conditioned linear systems.

* e.g, using shift-invert Lanczos to compute eigenvalues.

e Computing elements of the inverse of a matrix.

2/22

MOTIVATION AND OBJECTIVE

m Given an n x n matrix A, compute a triangular factorization:
A — LU, where L is lower triangular and U is upper triangular.

m Triangular factorization of a matrix is useful ...

@ Solving linear systems with many right-hand sides.
@ Solving ill-conditioned linear systems.

* e.g, using shift-invert Lanczos to compute eigenvalues.
e Computing elements of the inverse of a matrix.

m Focus on large sparse symmetric positive definite matrices.

2/22

CHALLENGES IN PARALLEL SPARSE MATRIX FACTORIZATIONS

m Factorization of a sparse matrix produces fill.

= Higher memory requirement.
= Higher core count & higher communication cost.

m Irregular sparsity structure.
= irregular communication pattern.

m Parallelizing sparse matrix factorization can be hard.

3/22

STATE-OF-THE-ART PARALLEL SPARSE SYMMETRIC FACTORIZATION CODES

m Open-source parallel sparse symmetric factorization codes
exist ...

@ MUMPS (Université de Toulouse).
e PaStiX (INRIA Bordeaux).

m They may have scalability issues even at modest core counts.

4/22

STATE-OF-THE-ART PARALLEL SPARSE SYMMETRIC FACTORIZATION CODES

m Open-source parallel sparse symmetric factorization codes
exist ...

@ MUMPS (Université de Toulouse).
e PaStiX (INRIA Bordeaux).

m They may have scalability issues even at modest core counts.

m Our goal is to develop a more scalable sparse symmetric
factorization code with reduced communication.

4/22

CHOLESKY FACTORIZATION

m Basic algorithm for computing A = LL" (ignoring sparsity):

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

b= VA
forrowk =j+1tondo
| b= A/t

end

for columni=j+1tondo
for row k =iton do
A= Agi = bij - b
end

end

end

5/22

CHOLESKY FACTORIZATION

m Basic algorithm for computing A = LL" (ignoring sparsity):

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

b= VA
forrowk =j+1tondo
| b= A/t

end

Factor column j

for columni=j+1tondo
for row k =iton do
A= Agi = bij - b
end

end

end

5/22

CHOLESKY FACTORIZATION

m Basic algorithm for computing A = LL" (ignoring sparsity):

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

b= VA
forrowk =j+1tondo)
Factor column j
| b= A/t
end
for column i = j +1to n do Update remaining columns

for row k =iton do
A= Agi = bij - b
end

end

end

5/22

CHOLESKY FACTORIZATION

m Basic algorithm for computing A = LL" (ignoring sparsity):

Algorithm 1: Basic Cholesky algorithm

for column j=1to ndo

b= VA
forrowk =j+1tondo)
Factor column j
| b= A/t
end
for column i = j +1to n do Update remaining columns

for row k =iton do

i = Ai — i - & In a parallel setting, where

end and when updates occur de-
pend on the algorithm for-

il mulation

end

5/22

PARALLEL MATRIX FACTORIZATIONS

m Two classes of parallel algorithms: Fan-In and Fan-Out.

6/22

PARALLEL MATRIX FACTORIZATIONS

m Two classes of parallel algorithms: Fan-In and Fan-Out.

m Fan-In factorization:
@ Receive and apply updates.
e Factorize column.
e Compute and distribute all updates from that column.

6/22

PARALLEL MATRIX FACTORIZATIONS

m Two classes of parallel algorithms: Fan-In and Fan-Out.

m Fan-In factorization:
@ Receive and apply updates.
e Factorize column.
e Compute and distribute all updates from that column.

m Fan-Out factorization:
@ Receive prior factor columns; Compute and apply updates.
e Factorize column.
e Distribute factor column.
e Perform updates on locally-owned columns.

6/22

PARALLEL MATRIX FACTORIZATIONS

m Two classes of parallel algorithms: Fan-In and Fan-Out.

m Fan-In factorization:
@ Receive and apply updates.
e Factorize column.
e Compute and distribute all updates from that column.

m Fan-Out factorization:
@ Receive prior factor columns; Compute and apply updates.
e Factorize column.
e Distribute factor column.
e Perform updates on locally-owned columns.

m Both classes of algorithms are mathematically equivalent.
e The order of operations may be different.

m Updates destined for the same processor should be
aggregrated. 6/22

DATA-CENTRIC & TASK-CENTRIC VIEWS OF THE FACTORIZATION

m Fan-In and Fan-0ut: Often described in terms of where
the data (i.e., columns) are located.
e Fan-1In: update for a target column is computed on the
processor owning the source column.
e Fan-Out: update for a target column is computed on the
processor owning the target column.

7/22

DATA-CENTRIC & TASK-CENTRIC VIEWS OF THE FACTORIZATION

m Fan-In and Fan-0ut: Often described in terms of where
the data (i.e., columns) are located.
e Fan-1In: update for a target column is computed on the
processor owning the source column.
e Fan-Out: update for a target column is computed on the
processor owning the target column.

m An alternative: based on computational tasks.

e The update tasks can be executed on any processors; they don't
have to be performed on the processor owning the source
column (in Fan-1In) or the target column (in Fan-Out).

7/22

fan-both ALGORITHMS: TASK-BASED FACTORIZATIONS

m Proposed by Ashcraft ('95).

@ Focus on where computation is performed instead of where
data is placed.

8/22

fan-both ALGORITHMS: TASK-BASED FACTORIZATIONS

m Proposed by Ashcraft ('95).

@ Focus on where computation is performed instead of where
data is placed.

®m Require a computational map to indicate where the
computations (i.e,, tasks) are performed.

8/22

fan-both ALGORITHMS: TASK-BASED FACTORIZATIONS

m Proposed by Ashcraft ('95).

@ Focus on where computation is performed instead of where
data is placed.

®m Require a computational map to indicate where the
computations (i.e,, tasks) are performed.

e map(target, source) denotes the processor that updates
column target using column source:

A*,target = A*,target - Ktarget,source : g*,source

e When target = source, map(source, source) is the processor
that factors column source.

8/22

fan-1in, fan-out, fan-both

m Fan-Both is a broad class of task-based parallel matrix
factorization algorithms.
e Depending on choice of map, the update operations from/to a
given column can potentially be distributed over multiple

Processors.
= Increased parallelism.

9/22

fan-1in, fan-out, fan-both

m Fan-Both is a broad class of task-based parallel matrix
factorization algorithms.

e Depending on choice of map, the update operations from/to a
given column can potentially be distributed over multiple
Processors.
= Increased parallelism.

@ May result in increased communication message count and
increased communication volume.

@ Ashcraft showed that, for matrices coming from an m x m grid
and using v/P x v/P computational map, each factorization step
involves at most v/P processors, where P is the total number of
processors available.

9/22

fan-1in, fan-out, fan-both

m Fan-Both is a broad class of task-based parallel matrix
factorization algorithms.

e Depending on choice of map, the update operations from/to a
given column can potentially be distributed over multiple
processors.
= Increased parallelism.

@ May result in increased communication message count and
increased communication volume.

@ Ashcraft showed that, for matrices coming from an m x m grid
and using v/P x v/P computational map, each factorization step
involves at most v/P processors, where P is the total number of
processors available.

e Fan-In and Fan-0ut would involve at most P processors at
each step.

9/22

fan-both, fan-in, fan-out

m Fan-Both includes Fan-In and Fan-0ut.

e Fan-In: map(target,source) = map(source,source).
e Fan-Out: map(target, source) = map(target, target).

10/22

fan-both, fan-in, fan-out

m Fan-Both includes Fan-In and Fan-0ut.

e Fan-In: map(target,source) = map(source,source).
e Fan-Out: map(target, source) = map(target, target).

m Fan-Inand Fan-0ut have only one type of messages, but
Fan-Both has two types of messages.

10/22

fan-both, fan-in, fan-out

m Fan-Both includes Fan-In and Fan-0ut.

e Fan-In: map(target,source) = map(source,source).
e Fan-Out: map(target, source) = map(target, target).

m Fan-Inand Fan-0ut have only one type of messages, but
Fan-Both has two types of messages.

m The Fan-In and Fan-0ut task graphs can be described
more compactly by a tree structure, but Fan-Both has a
more elaborate task graph.

10/22

fan-both TASK GRAPH

1/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

12/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Choice of data distribution.
e 1D cyclic vs 2D cyclic.

12/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Choice of data distribution.
e 1D cyclic vs 2D cyclic.
m Choice of computational maps.
@ Several options, including those for Fan-In and Fan-Out.

12/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Choice of data distribution.

e 1D cyclic vs 2D cyclic.
m Choice of computational maps.

@ Several options, including those for Fan-In and Fan-Out.
m Communication strategy.

e Push for data driven - send data as soon as they are available.
e Pull for demand driven - request data when they are needed.

12/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

13/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Communication protocol.
e 2-sided communication: send-and-receive (traditional MPI).
@ 1-sided communication: a processor puts the data directly in
another processor's memory or a processor gets the data
directly from another (supported by MPI-3 and GASNet).

13/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Communication protocol.

e 2-sided communication: send-and-receive (traditional MPI).
@ 1-sided communication: a processor puts the data directly in
another processor's memory or a processor gets the data

directly from another (supported by MPI-3 and GASNet).

m Synchronous vs asynchronous communication.
@ Asynchronous communication can lead to deadlocks.

13/22

IMPLEMENTATION OF fan-both: DESIGN CHOICES

m Communication protocol.

e 2-sided communication: send-and-receive (traditional MPI).
@ 1-sided communication: a processor puts the data directly in
another processor's memory or a processor gets the data

directly from another (supported by MPI-3 and GASNet).

m Synchronous vs asynchronous communication.

@ Asynchronous communication can lead to deadlocks.
m Scheduling of computational tasks.

e Static or dynamic.

13/22

symPACK: A fan-both coDE

m symPACK is an implementation of a Fan-Both algorithm,
which runs on the NERSC machines.

B The code is written in UPC++.

B The code has been tested on several matrices from the
University of Florida Sparse Matrix Collection.

14/22

symPACK: A fan-both coDE

m symPACK is an implementation of a Fan-Both algorithm,
which runs on the NERSC machines.

B The code is written in UPC++.

B The code has been tested on several matrices from the
University of Florida Sparse Matrix Collection.

m We compared our code with the symmetric versions of
MUMPS and PaStiX.

14/22

symPACK: A fan-both coDE

m symPACK is an implementation of a Fan-Both algorithm,
which runs on the NERSC machines.

B The code is written in UPC++.

B The code has been tested on several matrices from the
University of Florida Sparse Matrix Collection.

m We compared our code with the symmetric versions of
MUMPS and PaStiX.

m We also compared our code with SuperLU, which is a solver
for sparse nonsymmetric matrices.

e for scaling behavior rather than actual performance ...

14/22

IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

Run times on boneS10 for three variants of symPACK

@@ symPACK- Push
Y=Y symPACK- Pull
A=A symPACK- Pull dynamic scheduling

10W L

Time (s)

100

v o P CL S

Processor count

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434 -

STRONG SCALING VS. STATE-OF-THE-ART

Run times on audikw_1

T T T
@=@® SuperlLU_DIST 4.3
V=V Pastix522
A=A MUMPS 5.0
<=4 symPACK
— 10%F
wn
=
()
E
’_
10'F
n n e n n P n n
N W O A A > o VO o A0 oW W &
Nt o 9 OV P 5)\«%\& ,‘&*

Processor count

n=943,695 nnz(A)=39,297771 nnz(L)=1,221,674,796 16/22

STRONG SCALING VS. STATE-OF-THE-ART

Run times on Flan_1565

@=@® SuperlLU_DIST 4.3
V=V Pastix522
A=A MUMPS 5.0
<=4 symPACK
102k
—
wn
=
()
=
'_
10'f
N W O A A > o VO o A0 oW W &
Nty o 9 @,f;,,;b 5)\«%\@ p&\x

Processor count

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576 /2

STRONG SCALING VS. STATE-OF-THE-ART

Run times on af_shell7

10'F @@ SuperLU_DIST 43|]

V=V Pastix 522
A=A MUMPS 50
<=4 symPACK

—

[%2)

<

[}

£ 10°

=

N A \>x WX ©

Processor count

n=504,855 nnz(A)=17579155 nnz(L)=103,726]140 .

STRONG SCALING VS. STATE-OF-THE-ART

Run times on G3_circuit

@=@® SuperlLU_DIST 4.3
V=V Pastix522
A=A MUMPS 5.0

<=4 symPACK

——e

Time (s)

N A \>x WX ©

Processor count

n=1,585,478 nnz(A)=7,660,826 nnz(L)=106,326,457 o)

SPEEDUP VS. STATE-OF-THE-ART VS. SUMMARY

Speedup vs. sym. | Speedup vs. best
Problem min max | avg. | min | max | avg.
G3_circuit | 0.24 | 570 | 1.07 | 0.24 | 5.70 | 1.07
Flan_1565 | 1.06 | 9.40 | 2.11 | 1.06 | 7.07 | 1.94
af_shell7 | 0.89 | 10.61 | 3.61 | 0.89 | 7.77 | 3.21
audikw_1 | 1.11 | 14.46 | 3.14 | 1.11 | 2.84 | 1.77
boneS10 — — — 1086 | 473 | 1.75
bone010 | 1.06 | 16.83 | 3.34 | 1.06 | 2.03 | 1.47

20/22

CONCLUDING REMARKS

m We have described the Fan-Both algorithms.

e Reduced communication cost in theory [Ashcraft '95].
@ Increased parallelism when performing updates.

21/22

CONCLUDING REMARKS

m We have described the Fan-Both algorithms.
e Reduced communication cost in theory [Ashcraft '95].
@ Increased parallelism when performing updates.
e Avoiding deadlocks is challenging (similar to observation by
Larkar et al.).

21/22

CONCLUDING REMARKS

m We have described the Fan-Both algorithms.

e Reduced communication cost in theory [Ashcraft '95].

@ Increased parallelism when performing updates.

e Avoiding deadlocks is challenging (similar to observation by
Larkar et al.).

m New symmetric solver symPACK.

Implement Fan-Both.

Task-based Cholesky requires fine/dynamic scheduling.
One sided approach using UPC++,

Asynchronous task execution model.

Dynamic scheduling.

21/22

ONGOING AND FUTURE WORK

m 2D wrap mapping performance.

m Load balancing issue.

Tree-based group communications.

Hybrid parallelism (OpenMP).

Data distribution (2D, block based?).

Scheduling strategies.

New task mapping policies.

Investigating parallelization of the preprocessing phase
(reordering and symbolic factorization).

m Pivoting for general sparse symmetric matrices.

22/22

	Motivation and objective
	Parallel matrix factorizations
	Numerical experiments

