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motivation and objective

Given an n× n matrix A, compute a triangular factorization:
A→ LU, where L is lower triangular and U is upper triangular.

Triangular factorization of a matrix is useful ...
Solving linear systems with many right-hand sides.
Solving ill-conditioned linear systems.
• e.g., using shift-invert Lanczos to compute eigenvalues.

Computing elements of the inverse of a matrix.

Focus on large sparse symmetric positive definite matrices.
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challenges in parallel sparse matrix factorizations

Factorization of a sparse matrix produces fill.
⇒ Higher memory requirement.
⇒ Higher core count & higher communication cost.

Irregular sparsity structure.
⇒ irregular communication pattern.

Parallelizing sparse matrix factorization can be hard.
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state-of-the-art parallel sparse symmetric factorization codes

Open-source parallel sparse symmetric factorization codes
exist ...
MUMPS (Université de Toulouse).
PaStiX (INRIA Bordeaux).

They may have scalability issues even at modest core counts.

Our goal is to develop a more scalable sparse symmetric
factorization code with reduced communication.

4/22



state-of-the-art parallel sparse symmetric factorization codes

Open-source parallel sparse symmetric factorization codes
exist ...
MUMPS (Université de Toulouse).
PaStiX (INRIA Bordeaux).

They may have scalability issues even at modest core counts.

Our goal is to develop a more scalable sparse symmetric
factorization code with reduced communication.

4/22



cholesky factorization

Basic algorithm for computing A = LLT (ignoring sparsity):

Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do

`j,j =
√
Aj,j

for row k = j+ 1 to n do
`k,j = Ak,j/`j,j

end

 Factor column j

for column i = j+ 1 to n do
for row k = i to n do

Ak,i = Ak,i − `i,j · `k,j
end

end



Update remaining columns

In a parallel setting, where
and when updates occur de-
pend on the algorithm for-
mulation

end
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parallel matrix factorizations

Two classes of parallel algorithms: Fan-In and Fan-Out.

Fan-In factorization:
Receive and apply updates.
Factorize column.
Compute and distribute all updates from that column.

Fan-Out factorization:
Receive prior factor columns; Compute and apply updates.
Factorize column.
Distribute factor column.
Perform updates on locally-owned columns.

Both classes of algorithms are mathematically equivalent.
The order of operations may be different.

Updates destined for the same processor should be
aggregrated.
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data-centric & task-centric views of the factorization

Fan-In and Fan-Out: Often described in terms of where
the data (i.e., columns) are located.
Fan-In: update for a target column is computed on the
processor owning the source column.
Fan-Out: update for a target column is computed on the
processor owning the target column.

An alternative: based on computational tasks.
The update tasks can be executed on any processors; they don’t
have to be performed on the processor owning the source
column (in Fan-In) or the target column (in Fan-Out).
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fan-both algorithms: task-based factorizations

Proposed by Ashcraft (’95).
Focus on where computation is performed instead of where
data is placed.

Require a computational map to indicate where the
computations (i.e., tasks) are performed.

map(target, source) denotes the processor that updates
column target using column source:

A∗,target = A∗,target − `target,source · `∗,source

When target = source, map(source, source) is the processor
that factors column source.
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fan-in, fan-out, fan-both

Fan-Both is a broad class of task-based parallel matrix
factorization algorithms.
Depending on choice of map, the update operations from/to a
given column can potentially be distributed over multiple
processors.
⇒ Increased parallelism.

May result in increased communication message count and
increased communication volume.
Ashcraft showed that, for matrices coming from an m×m grid
and using

√
P×

√
P computational map, each factorization step

involves at most
√
P processors, where P is the total number of

processors available.

Fan-In and Fan-Out would involve at most P processors at
each step.
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fan-both, fan-in, fan-out

Fan-Both includes Fan-In and Fan-Out.
Fan-In: map(target, source) = map(source, source).
Fan-Out: map(target, source) = map(target, target).

Fan-In and Fan-Out have only one type of messages, but
Fan-Both has two types of messages.

The Fan-In and Fan-Out task graphs can be described
more compactly by a tree structure, but Fan-Both has a
more elaborate task graph.
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fan-both task graph
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implementation of fan-both: design choices

Choice of data distribution.
1D cyclic vs 2D cyclic.

Choice of computational maps.
Several options, including those for Fan-In and Fan-Out.

Communication strategy.
Push for data driven – send data as soon as they are available.
Pull for demand driven – request data when they are needed.
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implementation of fan-both: design choices

Communication protocol.
2-sided communication: send-and-receive (traditional MPI).
1-sided communication: a processor puts the data directly in
another processor’s memory or a processor gets the data
directly from another (supported by MPI-3 and GASNet).

Synchronous vs asynchronous communication.
Asynchronous communication can lead to deadlocks.

Scheduling of computational tasks.
Static or dynamic.
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symPACK: a fan-both code

symPACK is an implementation of a Fan-Both algorithm,
which runs on the NERSC machines.
The code is written in UPC++.

The code has been tested on several matrices from the
University of Florida Sparse Matrix Collection.

We compared our code with the symmetric versions of
MUMPS and PaStiX.
We also compared our code with SuperLU, which is a solver
for sparse nonsymmetric matrices.
for scaling behavior rather than actual performance ...
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impact of communication strategy and scheduling
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Run times on boneS10 for three variants of symPACK
symPACK- Push
symPACK- Pull
symPACK- Pull dynamic scheduling

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434
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strong scaling vs. state-of-the-art
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strong scaling vs. state-of-the-art
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speedup vs. state-of-the-art vs. summary

Speedup vs. sym. Speedup vs. best
Problem min max avg. min max avg.
G3_circuit 0.24 5.70 1.07 0.24 5.70 1.07
Flan_1565 1.06 9.40 2.11 1.06 7.07 1.94
af_shell7 0.89 10.61 3.61 0.89 7.77 3.21
audikw_1 1.11 14.46 3.14 1.11 2.84 1.77
boneS10 — — — 0.86 4.73 1.75
bone010 1.06 16.83 3.34 1.06 2.03 1.47
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concluding remarks

We have described the Fan-Both algorithms.
Reduced communication cost in theory [Ashcraft ’95].
Increased parallelism when performing updates.

Avoiding deadlocks is challenging (similar to observation by
Larkar et al.).

New symmetric solver symPACK.
Implement Fan-Both.
Task-based Cholesky requires fine/dynamic scheduling.
One sided approach using UPC++.
Asynchronous task execution model.
Dynamic scheduling.
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ongoing and future work

2D wrap mapping performance.
Load balancing issue.

Tree-based group communications.
Hybrid parallelism (OpenMP).

Data distribution (2D, block based?).
Scheduling strategies.
New task mapping policies.

Investigating parallelization of the preprocessing phase
(reordering and symbolic factorization).
Pivoting for general sparse symmetric matrices.
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