SPARSE CHOLESKY FACTORIZATION USING A FAN-BOTH APPROACH

Esmond G. Ng

Computational Research Division Lawrence Berkeley National Labatory

Joint work with Mathias Jacquelin*, Kathy Yelick and Yili Zheng

May 13, 2016

■ The Applied Mathematics Department has 4 groups.

- The Applied Mathematics Department has 4 groups.
 - Applied Numerical Algorithms (Phil Colella) Develop advanced numerical algorithms & software for PDEs, with the application of the software to scientific and engineering problems.

- The Applied Mathematics Department has 4 groups.
 - Applied Numerical Algorithms (Phil Colella) Develop advanced numerical algorithms & software for PDEs, with the application of the software to scientific and engineering problems.
 - Center for Computational Sciences & Engineering (Ann Almgren) – Develop and apply advanced computational methodologies to solve large-scale scientific and engineering problems.

- The Applied Mathematics Department has 4 groups.
 - Applied Numerical Algorithms (Phil Colella) Develop advanced numerical algorithms & software for PDEs, with the application of the software to scientific and engineering problems.
 - Center for Computational Sciences & Engineering (Ann Almgren) – Develop and apply advanced computational methodologies to solve large-scale scientific and engineering problems.
 - Mathematics Group (Jamie Sethian) Develop new mathematical models, devise new algorithms, and explore new applications.

- The Applied Mathematics Department has 4 groups.
 - Applied Numerical Algorithms (Phil Colella) Develop advanced numerical algorithms & software for PDEs, with the application of the software to scientific and engineering problems.
 - Center for Computational Sciences & Engineering (Ann Almgren) – Develop and apply advanced computational methodologies to solve large-scale scientific and engineering problems.
 - Mathematics Group (Jamie Sethian) Develop new mathematical models, devise new algorithms, and explore new applications.
 - Scalable Solvers (Sherry Li) Develop efficient algebraic solvers and fast, scalable, library implementations.

- The Applied Mathematics Department has 4 groups.
 - Applied Numerical Algorithms (Phil Colella) Develop advanced numerical algorithms & software for PDEs, with the application of the software to scientific and engineering problems.
 - Center for Computational Sciences & Engineering (Ann Almgren) – Develop and apply advanced computational methodologies to solve large-scale scientific and engineering problems.
 - Mathematics Group (Jamie Sethian) Develop new mathematical models, devise new algorithms, and explore new applications.
 - Scalable Solvers (Sherry Li) Develop efficient algebraic solvers and fast, scalable, library implementations.
- CAMERA: Center for Advanced Mathematics for Energy Research Applications (Jamie Sethian).

Given an $n \times n$ matrix A, compute a triangular factorization: A \rightarrow LU, where L is lower triangular and U is upper triangular. Given an $n \times n$ matrix A, compute a triangular factorization: A \rightarrow LU, where L is lower triangular and U is upper triangular.

Triangular factorization of a matrix is useful ...

- Solving linear systems with many right-hand sides.
- Solving ill-conditioned linear systems.
 - e.g., using shift-invert Lanczos to compute eigenvalues.
- Computing elements of the inverse of a matrix.

■ Given an n × n matrix A, compute a triangular factorization: A → LU, where L is lower triangular and U is upper triangular.

Triangular factorization of a matrix is useful ...

- Solving linear systems with many right-hand sides.
- Solving ill-conditioned linear systems.
 - e.g., using shift-invert Lanczos to compute eigenvalues.
- Computing elements of the inverse of a matrix.

Focus on large sparse symmetric positive definite matrices.

- Factorization of a sparse matrix produces fill.
 - \Rightarrow Higher memory requirement.
 - \Rightarrow Higher core count & higher communication cost.
- Irregular sparsity structure.
 - \Rightarrow irregular communication pattern.
- Parallelizing sparse matrix factorization can be hard.

- Open-source parallel sparse symmetric factorization codes exist ...
 - MUMPS (Université de Toulouse).
 - PaStiX (INRIA Bordeaux).
- They may have scalability issues even at modest core counts.

- Open-source parallel sparse symmetric factorization codes exist ...
 - MUMPS (Université de Toulouse).
 - PaStiX (INRIA Bordeaux).
- They may have scalability issues even at modest core counts.
- Our goal is to develop a more scalable sparse symmetric factorization code with reduced communication.

Algorithm 1: Basic Cholesky algorithm for column j = 1 to n do
$$\begin{split} \ell_{j,j} &= \sqrt{A_{j,j}} \\ \text{for row } k = j+1 \text{ to n do} \\ & \big| \quad \ell_{k,j} = A_{k,j}/\ell_{j,j} \end{split}$$
end for column i = j + 1 to n do for row k = i to n do $A_{k,i} = A_{k,i} - \ell_{i,j} \cdot \ell_{k,j}$ end end end

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
      \left. \begin{array}{l} \ell_{j,j} = \sqrt{A_{j,j}} \\ \text{for row } k = j+1 \text{ to n do} \\ \mid \ell_{k,j} = A_{k,j}/\ell_{j,j} \\ \text{end} \end{array} \right\} \text{ Factor column } j
        for column i = j + 1 to n do
            for row k = i to n do
            \label{eq:Ak,i} \begin{array}{|} A_{k,i} = A_{k,i} - \ell_{i,j} \cdot \ell_{k,j} \\ \text{end} \end{array}
       end
end
```

Algorithm 1: Basic Cholesky algorithm for column j = 1 to n do $\left. \begin{array}{l} \ell_{j,j} = \sqrt{A_{j,j}} \\ \text{for row } k = j+1 \text{ to n do} \\ \mid \ell_{k,j} = A_{k,j}/\ell_{j,j} \\ \text{end} \end{array} \right\} \text{ Factor column } j$ Update remaining columns for column i = j + 1 to n do $\begin{array}{l} \mbox{for row } k=i \mbox{ to } n \mbox{ do } \\ | \ A_{k,i}=A_{k,i}-\ell_{i,j}\cdot\ell_{k,j} \\ \mbox{end} \end{array}$ end end

Algorithm 1: Basic Cholesky algorithm for column j = 1 to n do $\left. \begin{array}{l} \ell_{j,j} = \sqrt{A_{j,j}} \\ \text{for row } k = j+1 \text{ to n } \text{do} \\ \mid \ell_{k,j} = A_{k,j}/\ell_{j,j} \\ \text{end} \end{array} \right\} \text{ Factor column } j$ $\begin{array}{l} \mbox{for column } i=j+1 \mbox{ to } n \mbox{ do } \\ \mbox{for row } k=i \mbox{ to } n \mbox{ do } \\ \mbox{ | } A_{k,i}=A_{k,i}-\ell_{i,j}\cdot\ell_{k,j} \\ \mbox{end} \end{array} \right. \label{eq:column} \begin{array}{l} \mbox{Update remaining columns} \\ \mbox{In a parallel setting, where} \\ \mbox{and when updates occur depend on the algorithm formulation} \end{array}$ end end

PARALLEL MATRIX FACTORIZATIONS

- **Fan-In** factorization:
 - Receive and apply updates.
 - Factorize column.
 - Compute and distribute all updates from that column.

PARALLEL MATRIX FACTORIZATIONS

- **Fan-In** factorization:
 - Receive and apply updates.
 - Factorize column.
 - Compute and distribute all updates from that column.
- **Fan-Out** factorization:
 - Receive prior factor columns; Compute and apply updates.
 - Factorize column.
 - Distribute factor column.
 - Perform updates on locally-owned columns.

- **Fan-In** factorization:
 - Receive and apply updates.
 - Factorize column.
 - Compute and distribute all **updates** from that column.
- **Fan-Out** factorization:
 - Receive prior factor columns; Compute and apply updates.
 - Factorize column.
 - Distribute factor column.
 - Perform updates on locally-owned columns.
- Both classes of algorithms are mathematically equivalent.
 - The order of operations may be different.
- Updates destined for the same processor should be aggregrated.

- Fan-In and Fan-Out: Often described in terms of where the data (i.e., columns) are located.
 - Fan-In: update for a target column is computed on the processor owning the source column.
 - Fan-Out: update for a target column is computed on the processor owning the target column.

- Fan-In and Fan-Out: Often described in terms of where the data (i.e., columns) are located.
 - Fan-In: update for a target column is computed on the processor owning the source column.
 - Fan-Out: update for a target column is computed on the processor owning the target column.
- An alternative: based on **computational tasks**.
 - The update tasks can be executed on any processors; they don't have to be performed on the processor owning the source column (in Fan-In) or the target column (in Fan-Out).

- Proposed by Ashcraft ('95).
 - Focus on where computation is performed instead of where data is placed.

- Proposed by Ashcraft ('95).
 - Focus on where computation is performed instead of where data is placed.
- Require a computational map to indicate where the computations (i.e., tasks) are performed.

- Proposed by Ashcraft ('95).
 - Focus on where computation is performed instead of where data is placed.
- Require a computational map to indicate where the computations (i.e., tasks) are performed.
 - map(target, source) denotes the processor that updates column target using column source:

$$\mathsf{A}_{*,\text{target}} = \mathsf{A}_{*,\text{target}} - \ell_{\text{target},\text{source}} \cdot \ell_{*,\text{source}}$$

• When target = source, map(source, source) is the processor that factors column source.

- Fan-Both is a broad class of task-based parallel matrix factorization algorithms.
 - Depending on choice of **map**, the **update** operations from/to a given column can potentially be distributed over multiple processors.

 \Rightarrow Increased parallelism.

- Fan-Both is a broad class of task-based parallel matrix factorization algorithms.
 - Depending on choice of **map**, the **update** operations from/to a given column can potentially be distributed over multiple processors.

 \Rightarrow Increased parallelism.

- May result in increased communication message count and increased communication volume.
- Ashcraft showed that, for matrices coming from an m × m grid and using $\sqrt{P} \times \sqrt{P}$ computational map, each factorization step involves at most \sqrt{P} processors, where P is the total number of processors available.

- Fan-Both is a broad class of task-based parallel matrix factorization algorithms.
 - Depending on choice of **map**, the **update** operations from/to a given column can potentially be distributed over multiple processors.

 \Rightarrow Increased parallelism.

- May result in increased communication message count and increased communication volume.
- Ashcraft showed that, for matrices coming from an m × m grid and using √P × √P computational map, each factorization step involves at most √P processors, where P is the total number of processors available.
- Fan-In and Fan-Out would involve at most P processors at each step.

- Fan-Both includes Fan-In and Fan-Out.
 - Fan-In: map(target, source) = map(source, source).
 - Fan-Out: map(target, source) = map(target, target).

- Fan-Both includes Fan-In and Fan-Out.
 - Fan-In: map(target, source) = map(source, source).
 - Fan-Out: map(target, source) = map(target, target).
- Fan-In and Fan-Out have only one type of messages, but Fan-Both has two types of messages.

- Fan-Both includes Fan-In and Fan-Out.
 - Fan-In: map(target, source) = map(source, source).
 - Fan-Out: map(target, source) = map(target, target).
- Fan-In and Fan-Out have only one type of messages, but Fan-Both has two types of messages.
- The Fan-In and Fan-Out task graphs can be described more compactly by a tree structure, but Fan-Both has a more elaborate task graph.

fan-both TASK GRAPH

- Choice of data distribution.
 - 1D cyclic vs 2D cyclic.

- Choice of data distribution.
 - 1D cyclic vs 2D cyclic.
- Choice of computational maps.
 - Several options, including those for Fan-In and Fan-Out.

- Choice of data distribution.
 - 1D cyclic vs 2D cyclic.
- Choice of computational maps.
 - Several options, including those for Fan-In and Fan-Out.
- Communication strategy.
 - Push for data driven send data as soon as they are available.
 - Pull for demand driven request data when they are needed.

Communication protocol.

- 2-sided communication: send-and-receive (traditional MPI).
- 1-sided communication: a processor puts the data directly in another processor's memory or a processor gets the data directly from another (supported by MPI-3 and GASNet).

Communication protocol.

- 2-sided communication: send-and-receive (traditional MPI).
- 1-sided communication: a processor puts the data directly in another processor's memory or a processor gets the data directly from another (supported by MPI-3 and GASNet).
- Synchronous vs asynchronous communication.
 - Asynchronous communication can lead to deadlocks.

Communication protocol.

- 2-sided communication: send-and-receive (traditional MPI).
- 1-sided communication: a processor puts the data directly in another processor's memory or a processor gets the data directly from another (supported by MPI-3 and GASNet).
- Synchronous vs asynchronous communication.
 - Asynchronous communication can lead to deadlocks.
- Scheduling of computational tasks.
 - Static or dynamic.

- **symPACK** is an implementation of a **Fan-Both** algorithm, which runs on the NERSC machines.
- The code is written in UPC++.
- The code has been tested on several matrices from the University of Florida Sparse Matrix Collection.

- **symPACK** is an implementation of a **Fan-Both** algorithm, which runs on the NERSC machines.
- The code is written in UPC++.
- The code has been tested on several matrices from the University of Florida Sparse Matrix Collection.
- We compared our code with the symmetric versions of MUMPS and PaStiX.

- symPACK is an implementation of a Fan-Both algorithm, which runs on the NERSC machines.
- The code is written in UPC++.
- The code has been tested on several matrices from the University of Florida Sparse Matrix Collection.
- We compared our code with the symmetric versions of MUMPS and PaStiX.
- We also compared our code with SuperLU, which is a solver for sparse nonsymmetric matrices.
 - for scaling behavior rather than actual performance ...

IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434

n=943,695 nnz(A)=39,297,771 nnz(L)=1,221,674,796

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576

n=504,855 nnz(A)=17,579,155 nnz(L)=103,726,140

n=1,585,478 nnz(A)=7,660,826 nnz(L)=106,326,457

	Speedup vs. sym.			Speedup vs. best		
Problem	min	max	avg.	min	max	avg.
G3_circuit	0.24	5.70	1.07	0.24	5.70	1.07
Flan_1565	1.06	9.40	2.11	1.06	7.07	1.94
af_shell7	0.89	10.61	3.61	0.89	7.77	3.21
audikw_1	1.11	14.46	3.14	1.11	2.84	1.77
boneS10	_	—	_	0.86	4.73	1.75
bone010	1.06	16.83	3.34	1.06	2.03	1.47

- We have described the **Fan-Both** algorithms.
 - Reduced communication cost in theory [Ashcraft '95].
 - Increased parallelism when performing updates.

- We have described the **Fan-Both** algorithms.
 - Reduced communication cost in theory [Ashcraft '95].
 - Increased parallelism when performing updates.
 - Avoiding deadlocks is challenging (similar to observation by Larkar et al.).

- We have described the **Fan-Both** algorithms.
 - Reduced communication cost in theory [Ashcraft '95].
 - Increased parallelism when performing updates.
 - Avoiding deadlocks is challenging (similar to observation by Larkar et al.).
- New symmetric solver symPACK.
 - Implement Fan-Both.
 - Task-based Cholesky requires fine/dynamic scheduling.
 - One sided approach using UPC++.
 - Asynchronous task execution model.
 - Dynamic scheduling.

- 2D wrap mapping performance.
- Load balancing issue.
- Tree-based group communications.
- Hybrid parallelism (OpenMP).
- Data distribution (2D, block based?).
- Scheduling strategies.
- New task mapping policies.
- Investigating parallelization of the preprocessing phase (reordering and symbolic factorization).
- Pivoting for general sparse symmetric matrices.