Neuromorphic and Quantum Computing Specialized Architectures for Science

Jonathan Carter Computing Sciences Area Deputy CCS – LBNL Collaborative Workshop 2016 May 12, 2016

Collaborators: I. Siddiqi, W. de Jong, J. McLean, M. Schwarz, J. Colless, D. Stamper-Kurn, K.E. Bouchard, D. Burke, P. Calafiura, R. Carney, D. Clark, D. D'Onofrio, M. Garcia-Sciveres, A. Hexemer, T. Kurth, X. Li, J.A. Livezey, P. Nugent, D. Parkinson, N. Sauter, D. Ushizima, V. Wallangen, C. Yang

Office of

Scie

BERKELEY LAB

Explore novel computing technologies and apply them to science challenges.

Explore and evaluate the use of neuromorphic computing technology on applications in image analysis and event detection

- "Brain-inspired" non-Von Neumann architecture
- Implement scalable, efficient, and flexible spiking neural networks

Neuromorphic Computing Platforms

- 4 -

Office of

Science

spin neuron

IBM SyNAPSE Project (D. Modha)

- 5.4 B transistor chip TrueNorth, 4096 neurosynaptic cores, 1M spiking neurons, 256 M configurable synapses
- 63 mW power per chip, significantly less energy per event (176,000) when compared to a simulator
- Scalability to large system
- Corelet programming model

Neuromorphic Computing Collaboration

- LBNL
- UC Berkeley
 - Redwood Center for Theoretical Neuroscience
 - Berkeley Institute for Data Science (BIDS)
- LLNL
- IBM Almaden
- BrainSEED LBNL, UC Berkeley, UCSF

Office of

Science

Neuromorphic Image Classification

 Recognize patterns in images using convolutional neural networks for low-power, high throughput, real-time data feedback in material science, biology and cosmology

- 7 -

GISAXS (Materials) Cryo-EM (Biosciences)

Telescope (Cosmology) Micro-CT (Energy Technologies)

Computing Sciences Area

Supernova Detection - Candidate Detection

- Goal: detecting SN candidates in sky surveys as early as possible (otherwise observation becomes too faint or scientifically useless)
- basic idea: subtract images from two points in time and look for brighter spots

- After difference merging, ~93% images background
- CCD defects, cosmic rays, bad alignments, poorly subtracted galaxies, etc.

Neuromorphic Kalman Filters

 Implement Kalman filters on neuromorphic architecture for low-power, high-throughput, realtime data processing

Brain-machine interfaces

Charged particle tracking

Quantum Computing

"Shrinking the bit"

write:	0>	AND	1>
read:	0>	OR	1>

classical equilibrium states

write: 0 <u>OR</u> 1 read: 0 <u>OR</u> 1

Quantum Simulators

- Quantum Mechanics on classical computers is hard
 - Simulate one kind of quantum mechanical system with another

Simulating Physics with Computers, R.P. Feynman, *Int. J. Theor. Phys.*, 21:467 (1982) Universal Quantum Simulators. S. Lloyd, *Science*, 273:1073 (1996)

Office of

Science

Quantum Computing Collaboration

- Advanced Quantum-Enabled Simulation
 - CRD & MSD
 - UC Berkeley Physics & Chemistry

Deploy 10-qubit system as a *quantum simulator*

Computing (~100-100,000)

- Gate Based: Shor, Grover,...
- Adiabatic Quantum Computing
- Quantum Annealing

Simulations (~1-100)

- Fundamental CS, Math, Info.Thy.,...
- Chemical & Materials Science
- Theoretical Physics: Cosmology,...

Communication (~1, flying)

- Quantum Key Distribution
- Quantum Commitment

Metrology (~1-10)

- Precision measurements, squeezing
- Sensors (Magnetic, Charge, Light)

Office of Science

Modeling Frustrated Systems with Ultracold Atoms

- Magnetic properties of minerals with Kagome lattice often unusual or poorly understood, e.g. Herbertsmithite, ZnCu₃(OH)₆Cl₂
- Ultracold atoms trapped in a similar lattice can interact analogously to atoms in a solid

Simulating Quantum Chemistry

- Full configuration interaction (FCI) (time-independent): ~10 electrons
- Quantum dynamics (time-dependent): ~3 atoms

Office of

Science

• Approximate methods are computable but insufficient for many applications

Simulating Quantum Chemistry

Office of

Science

- Encode quantum chemical systems in polynomial number of qubits.
- Solve quantum model using polynomial number of operations.

Simulators that will realize progress over classical computers

- "Quantum Supremacy" that you care about
- Deploy a 10-100 superconducting qubit testbed for circuitbased computing
- Deploy ultracold atoms in distinct confinement topologies as quantum simulators

Office of

Science

Devoret and Schoelkopf Groups, Yale. Stamper-Kurn Group, Berkeley

Design quantum algorithms for strongly correlated systems

- Electronic properties of metallo-enzymes incompletely described by mean-field models
 - Mixed classical/quantum algorithm, error tolerant, and circuit-based
- Magnetic properties of minerals with Kagome lattice poorly understood, e.g. possible spin liquid
 - Ultracold atoms trapped in a similar lattice can interact analogously to atoms in a solid

Office of Science

Chan Group, Princeton Stamper-Kurn Group, Berkeley