Berkeley Lab Computing Strategic Directions

CCS - LBNL Collaborative Workshop

12 May 2016

David L Brown, Director Computational Research Division Lawrence Berkeley National Laboratory

Much of Berkeley Lab Computing relocated to Wang Hall in late 2015

• Four floors, 13,000 m²

- 300 offices,
- 1,850m² HPC floor,
- 12.5->40 MW
- Promotes collaboration:
 - LBNL, NERSC, CRD, Esnet, UCB
- Exceptional energy efficiency
 - Natural air and water cooling
 - Heat recovery
 - PUE < 1.1

Computing Sciences at Berkeley Lab in 2016

NERSC

Computational Research

Computational Science

Computer Science

ESnet Inder Monga (A)

Data Science & Technology

Berkeley Lab Initiatives for Computing in the Next Decade

Enable transformative science through partnerships

Maximize science impact and prepare for post-Exascale Transform experimental and observational science Enable more complex science with mathematics

Effect broad impact through facilities

Co-Invent and deploy Exascale systems and applications that accelerate science by 2025

Maximize the scientific impact of the Exascale program

Deploy Exascale Systems at NERSC

NERSC: broadest, most open, widely used computing center in US DOE 5000+ users, 1900+ publications, 700 codes, 5 associated Nobels Cori is Exascale Roadmap system; balanced energy and productivity

Beyond 2025: Exploring Quantum and Neuromorphic Computing

Quantum Simulation for Materials, Chemistry and Physics

Multiple quantum device technologies at Berkeley

Experimentally implement chemical simulations on 3-qubit platform

Develop model for small user facility to explore device technology

Quantum Chemistry
Quantum Ising,
Bose-Hubbard,
Spin-Boson
Boson
Fermi Hubbard
Synthetic gauge
fields, Relativistic
theories

THE HAMILTONIAN LANDSCAPE FOR QUANTUM SIMULATION

Neuromorphic computing provides low power options for data analysis

Low-power, real-time **data analysis** in materials, biology and cosmology

> Studying image analysis and event detection with Kalman filters

Understand performance and power advantages, and limits on generality

Use Math and CS Leadership at Berkeley Lab to Maximize Exascale Science

Many of our Science Applications use Berkeley Lab Adaptive Mesh Refinement (AMR) mathematics and software

Transform experimental and observational science through advanced math, computation and networking

New math: Transform experimental data into understanding

-Extract information from murky data -Interpret, and optimize experiments -Accelerate scientific discovery

Partners

NERSC Provides HPC and Data Resources for DOE Office of Science Research

Office of L Science s

Largest funder of physical science research in U.S.

Biology, Environment

Computing

Materials, Chemistry, Geophysics

Particle Physics, Astrophysics

Nuclear Physics

Fusion Energy, Plasma Physics

NERSC's newest machine Cori supports both the HPC Workload and Data-Intensive Science

- Cray system with 9,300 Intel Knights Landing compute nodes deliver in mid 2016
 - Self-hosted, (not an accelerator) manycore processor > 64 cores per node
 - On-package high-bandwidth memory at >400GB/sec
- Robust Application Readiness Plan
 - Outreach and training for user community
 - Application deep dives with Intel and Cray
 - 8 post-docs integrated with key application teams

• Data Intensive Science Support

- 10 Haswell processor cabinets (Phase 1) to support data intensive applications
- NVRAM Burst Buffer with 1.5PB of disk and 1.5TB/sec
- 28 PB of disk, >700 GB/sec I/O bandwidth in Lustre bandwith

NERSC is making significant investments on Cori to support data intensive science

Haswell- 128GB memory nodes Support for real time and high-throughput queues Containers: Virtualization capabilities (Docker) SPARK software stack for data NVRAM Flash Burst Buffer as I/O accelerator High bandwidth external connectivity to experimental facilities from compute nodes through Software Defined Networking More (23) login nodes for managing advanced workflows

NERSC is exploring Burst Buffer Use Cases beyond checkpoint-restart

- Accelerate I/O
 - Checkpoint/restart or other high bandwidth reads/writes
 - Apps with high IOP/s e.g. non-sequential table lookup
 - Out-of-core applications
 - Fast reads for image analysis
- Advanced Workflows
 - Coupling applications, using the Burst Buffer as interim storage
 - Streaming data from experimental facilities
- Analysis and Visualization
 - In-situ/ in-transit
 - Interactive visualization

Palomar Transient Factory Pipeline: Use Burst Buffer as cache for fast reads

VPIC – in situ visualization of a trillion particles

Upgrading Cori's External Connectivity

- Streaming data to the supercomputer allows for analytics on data in motion
- Cori network upgrade provides SDN (software defined networking) interface to ESnet. 8 x 40Gb/s bandwidth.
- Integration of data transfer and compute enables workflow automation

Cori Network Upgrade Use Case:

- X-ray data sets stream from detector directly to Cori compute nodes, removing need to stage data for analysis.
- Software Defined Networking allows planning bandwidth around experiment run-time schedules
- 150TB bursts now, LCLS-II has 100x data rates

Envisioning the future of large scale experimental science

Slot-die printing of Organic photovoltaics

Vision: Scientists in 2025 will access experimental and computational capabilities through a "Superfacility" that seamlessly integrates experiments, networks and HPC

Integrated Super-Facility Dashboard prototype

Science in embedded sensors: Internet of Things

Transportation Modeling

Power Grid Modeling

Scenario Prediction, Planning

Decision Science

Handle increasingly complex science questions through better models and smarter algorithms

Mathematize new science problems

Complexity: Multi-physics models, need for multiscale methods, multi-modal and noisy data

Deliver Mathematics through new Partnership Models and Advanced Libraries

Expand CAMERA "facility" model of math collaboration **throughout** experimental science

Make advanced mathematics e accessible by the wide science through **software tools and lib**

In many areas, there are opportunities to combine simulation and observation for new discoveries

Environment

Our strategy leverages all of Berkeley Lab's strengths in Computing

NERSC: More Science Impact than any HPC Facility

Integrated Science Partnerships

Computer and Data Science: Strength in Basic Research

Software: Production Development and Support Expertise

Berkeley Lab Computing Strategic Directions

CCS - LBNL Collaborative Workshop

12 May 2016

David L Brown, Director Computational Research Division Lawrence Berkeley National Laboratory