Towards an Extreme Scale Multithreaded MPI

Abdelhalim Amer (Halim)

Postdoctoral Researcher
Argonne National Laboratory, IL, USA

Japan-Korea HPC Winter School
University of Tsukuba, Feb 17, 2016

/.—% U.S. DEPARTMENT OF
{v) ENERGY

Programming Models and Runtime Systems Group yyseir
Affiliation
— Mathematics and Computer Science
Division, ANL
Group Lead
— Pavan Balaji (computer scientist)
Current Staff Members
— Sangmin Seo (Assistant Scientists)
— Abdelhalim Amer (Halim) (postdoc)
— Yanfei Guo (postdoc)

— Rob Latham (developer)
— Lena Oden (postdoc)

— Ken Raffenetti (developer)
— Min Si (postdoc)

R R G ’,..4‘—'

onne

NATIONAL LABORATORY

Arg

The PMRS Group Research Areas

Threading
Models
(OS-level, user-
level: Argobots)

Communication
Runtimes
(MPICH)

My focus:
Communication optimization
in threading environments

Data-Movement
In
Heterogeneous
and Deep
Memory
Hierarchies

The MPICH Project

MPICH and it derivatives in the Top 10
Tianhe-2 (China): TH-MPI
Titan (US): Cray MPI
Sequoia (US): IBM PE MPI
K Computer (Japan): Fujitsu MPI
Mira (US): IBM PE MPI
Trinity (US): Cray MPI
Piz Daint (Germany): Cray MPI
Hazel Hen (Germany): Cray MPI
Shaheen Il (Saudi Arabia): Cray MPI

= MPICH and its derivatives are the
world’s most widely used MPI
implementations

= Funded by DOE for 23 years (turned 23
this month)

= Has been a key influencer in the
adoption of MPI

= Award winning project
— DOE R&D100 award in 2005

© % N O 0 B W INR

% % 10.Stampede (US): Intel MPI and MVAPICH
% RD
MPI
MPICH

Threading Models
= Argobots

— Lightweight low-level threading and tasking framework
— Targets massive on-node parallelism

— Fine-grained control over the execution, scheduling, synchronization, and data-
movements

— Exposes a rich set of features to higher programming systems and DSLs for
efficient implementations

= BOLT (https://press3.mcs.anl.gov/bolt)
— Based on the LLVM OpenMP runtime and the Clang

10* 5

-
o
w

Create/Join Time per ULT (cycles)

—
o

102 & E
- Sangmin Seo
Qthreads —+— Argobots (ULT) . Assistant Computer
MassiveThreads (H) —<— Argobots (Tasklet) 1 Scientist

IMassilveThrgads (IW) :

2 4 8 16 24 32 36 40 48 56 64 72
S Number of Execution Streams 5

—

e

e

Argobots
EQ
Cilk “Worker

ES,

Fused ULT

4

N i e e

e

e

Charm++
Communication
libraries

o

4

The Argobots Ecosystem

PaRSEC

P —————
e ——————————

S

OmpSs

ES,
—
8]
@
@
8]

MPI
MPI+Argobots
V
v

v
'
OpenMP

"

Y
1
1
1

/s

Argobots

GridFTP, Kokkos, RAJA, ROSE, TASCEL, XMP, etc.

(
1
1
\

7
A

External
Connections

(BOLT)

- ————————————

\
Heterogeneous and Deep Memory Hierarchies

= Prefetching for deep memory

hierarchies Lena Oden
Postdoc

= Currently focusing on MIC accelerator
environments

= Compiler support ~\
— LLVM + user hints through pragma) _;ﬂ :
directives \ !
= Runtime support S <
. \/)
— Prefetching between In-Package Memory e H IPM

(IPM) and NVRAM
— Software-managed cache

Yanfei Guo
Postdoc

The PMRS Group Research Areas

Threading
Models
(OS-level, user-
level: Argobots)

Communication
Runtimes
(MPICH)

My focus:
Communication optimization
in threading environments

Data-Movement
in
Heterogeneous/
Hierarchical
Memories

Outline

Introduction to hybrid MPIl+threads programming
— Hybrid MPI programming

— Multithreaded-Driven MPI communication

MPI + OS-Threading Optimization Space

— Optimizing the coarse-grained global locking model

— Moving towards a fine-grained model

MPI + User-Level Threading Optimization Space
— Optimization Opportunities over OS-threading
— Advanced coarse-grained locking in MPI

Summary

Introduction to Hybrid MPI Programming

%, V.S DEPARTMENT OF
.2/ ENERGY

Why Going Hybrid MPI + Shared -Memory (X)
Programming il

N
«
o

N
N
[

RRax Growth Continues Flops/cycle increased

even faster

Ind
=3
=]

I
N
o

Total Cores increased
even faster
Cores/socket increased

{7 =4 .
Lo | "' m‘t ““ s, o/ N Memory/core went flat

Clock rates went flat

"
o
o

I
N
a

Compound Annual Growth Rate: CAGR

o
g
P~
X
<

01/01/96
01/01/00
01/01/04
01/01/08
01/01/12

et Rmax (Gflop/s) === Total Cores
«=pe== Ave Cycles/sec per core (Mhz) == Vlem/Core (GB)
=== Ave. Cores/Socket «=@==TC: Total Concurrency (Rmax)

Growth of node resources in the Top500 systems. Peter Kogge: “Reading the Tea-
Leaves: How Architecture Has Evolved at the High End”. IPDPS 2014 Keynote

—

Main Forms of Hybrid MPI Programming
= E.g. Quantum Monte Carlo simulations QMCPACK

= Two different models e o
— MPI + shared-memory (X = MPI)
— MPI + threads (e.g. X = OpenMP)

= Both models use direct load/store operations

MPI + Shared-Memory (MPI 3.0~) MPI + Theads
Everything private by default « Share everything by default
Expose shared data explicitly * Privatize data when necessary
MPI Task O MPI Task 1 MP! Task 1

Large B-spline table in a Share-Memory Window

Large B-spline table

o

Walker data

N
Multithreaded MPI Communication: Current Situation

4.E+07
= Becoming more difficult for a single-core to 4::07

saturate the network g 35007
e 3.E+07
. . Q
= Network fabrics are going parallel 2 2.E+07
.. . . ¥ 2.E+07
— E.g.BG/Qhas1 FIF &
g. BG/Q has 16 injection/reception FIFOs 2 eror 1 Core
o . 2
= Core frequencies are reducing 5.E406
. . . 0.E+00
— Local message processing time increases 0 10 20 30 40

Number of Cores per Node

= Driving MPI communication through threads
Node-to-node message rate (1B) on

backfires Haswell + Mellanox FDR Fabric
=—1 Process =2 Processes =4—4 Processes =&—1 Thread 82 Threads =&—4 Threads
=>=8 Processes =%=18 Processes =<9 Threads =¥=18 Threads
— 3.E+07 — 3.E+07
S~ S~
") (%]
g)
¥ 4.E+06 o 4E+06
g g
2 5.E+05 £ 5.E+05

[

% 5
1] e
& 6.E+04 o 6.E+04
() 1)
o0 ©
a 2
@ 8.6+03 £ 8.E+03
=

1.E+03 1.E+03

1 16 256 4096 65536 1048576 1 16 256 4096 65536 1048576
Message Size (Bytes) Message Size (Bytes)

Node-to-node message rate on Haswell + Mellanox FDR Fabric: processes vs. threads

Applications to Exploit Multithreaded MPI Communication

IIIIIIIILIII M ITaSK1
= Several applications are moving to MPI
Distributed B- communicate || Distributed large
+Threads models spline table W:L'fi":e%"aif' B-spline table -
= Most of them rely on funneled e
communication! =)
= Certain type of applications fit better 7o
multithreaded communication model Thread 0 | | Thread 1
— E.g. Task-parallel applications Distributed B-spline table if it cannot fit in memory fin

. . . Quantum Monte Carlo Simulations [1
= Several applications can scale well with]

— Data movements are not too fine-grained ——1 Thread —8-) Thredds —&—4 Threads
.] =>&=9 Threads =#=18 Thr¢ads
— Frequency of calling concurrently MPI is not

too high
= A scalable multithreaded support is
necessary for other applications

3.E+07

4.E+06

© o wu
m m m
s & &
w H [

Message Rate (Messages/s)

1.E+03
1 16 256 4096 65536 1048576

1Alt\llessage Size (Bytes)
[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.

OS-Thread-Level Optimization Space

/\‘\ U.S. DEPARTMENT OF
.2/ ENERGY

Challenges and Aspects Being Considered

Granularity

— The current coarse-grained lock/work/unlock
model is not scalable

— Fully lock-free is not practical
* Rank-wise progress constrains
* Ordering constrains

* Overuse of atomics and memory barriers can backfire
Arbitration

— Traditional Pthread mutex locking is biased by the
hardware (NUCA) and the OS (slow wakeups)

— Causes waste because of the lack of correlation
between resource acquisition and work

Hand-off latency

— Slow hand-off latencies waste the advantages of
fine-granularity and smart arbitration

— Trade-off must be carefully addressed

MPI_Call(...)
CS_ENTER;

Local state

Shared state /ﬂhile (!
reg_complete)

/
Progress(); oll();
aressQ R ECt
CS_YIELD;
Global Read- CS_ENTER;
only

N

CS_EXIT;

Threads

Critical
Section
Length
\{ ‘ll Arbitration

£

e
Hand-off
Latency

\
Production Thread-Safe MPI Implementations on Linux

= (OS-thread-level synchronization pthread mptex lock
= Most implementations rely on coarse-grained
critical sections @[A '%> 2
n
— Only MPICH on BG/Q is known to implement fine- g WBKEL g S
grained locking D | cas SK '3 tll
: : = n
= Most implementations rely on Pthread @ FUTEX wat P o
synchronization API (mutex, spinlock, ...) = ew—: s |9
. . . . CAS €[FUTEA_
= Mutex in Native Posix Thread Library (NPTL) |

— Ships with glibc
— Fast user-space locking attempt; usually with a
Compare And Swap (CAS)
1.00E+05

— Futex wait/wake in contended cases CHHHIHHHH H K RO

i ~10x

1.00E+04

Lock Acquired

=4&—signal =——wakeup

Main Memory

1.00E+03

Latency (cycles)

1.00E+02
0 10 20 30 40
Number of Threads
Lock acquisition hardware bias (e.g. CAS) 0S-bias from slow futex wakeups

17

Analysis of MPICH on a Linux Cluster

= Thread-safety in MPICH
— Full THREAD_MULTIPLE support

— OS-thread-level synchronization

for (1=0;

— Uses by default Pthread mutex

. Fairness analySIS P(same _domain _acquisition)
— Bias factor (BF): P(random _uniform)
— BF <=1 - fair arbitration

= Progress analysis

— Wasted progress polls = unsuccessful progress polls
while other threads are waiting at entry

20

18 =4 \/utex-Core-Level

> == Mutex-NUMA-Nodel-Level .

" =#=Ticket-Core-Level GT\;
. —=Ticket-NUMA-Node-Level S
o 12 »
- 7,
& 4]
w 10 o0
@]
= a
o 8 =

6 2

(C

4 =

2

0 RETAATTTE

0 5 10 15 20 25 30 35 40

Number of Threads per Rank

b

%pragma omp parallel

/ MPI_CALL_ENTER /

. . » . gi i<nreq; i++)
— Single coarse-grained critical section MPI_Irecv(&reqgs[i]);

100
90
80
70
60
50
40
30
20
10

0

MPI_Waitall(nreq,reqgs) ;—

CS_ENTER

CS_ENTER

==—|\/utex
== Ticket

0

M M A T e
5 10 15 20 25 30 35

CS_EXIT

/ MPI_CALL_EXIT /

40

Number of Threads per Rank

Fairness and progress analysis with a message rate benchmark on Haswell + Mellanox FDR fabri1c§3

Smart Progress and Fast Hand-off
Adapt arbitration to maximize work

/ MPI_CALL_ENTER /

Pthread Mutex

= FIFO locks overcome the

shortcomings of mutexes
= Polling for progress can be wasteful

(waiting does not generate work!) FIFO Lock _
= Prioritizing issuing operations Py

* Feed the communication pipeline i 5' i ' é . | . i i Cs_EXIT

* Reduce chances of wasteful internal 'smssr—ss'ss> -

e
process (e.g. more requests on the fly [vecaext /

.) Fairness (FIFO) reduces wasted Prioritizing issuing ops over
> h|gher chances of makmg resource acquisitions waiting for internal progress
progress)

Hand-off latency must be kept low P
= Same arbitration cab be achieve with different locks %262144
(2]
(e.g. ticket, MCS, CLH, etc. are FIFO) =
" Trade-off between desired arbitration and hand-off § — Mutex
latency o :;iffke;
e E.g. for FIFO, CLH is more scalable than ticket ? _Crﬁﬂ” /
. . . m
= Going through the kernel (e.g. using futex) is = 5516
expensive and should not be done frequently 1 32 1024 32768
. .] . Message Size. Bgteﬁ)
= _A more scalable scalable hierarchical lock is being P12Pt message rate with 36 Haswell

Cores and Mellanox FDR

S integrated

\
Fairness and Cohort Locking

= Unfairness itself IS NOT EVIL e e T bery L e
= Unbounded unfairness IS EVIL o
= Unfairness can improve locality of

reference 524288 7

= Exploit locality of reference through
cohorting

— g

262144

— Threads sharing some level of the
memory hierarchy

Message Rate (Messages/s)

— Local passing within a threshold 131072

1 4 16 64 256 1024 4096 16384
Message Size (Bytes)

Socket-level!

MCS locks Hierarchical MCS Lock. Chabbi, Milind,

Michael Fagan, and John Mellor-

Core-level '@ Crummey. "High performance locks for
MCS locks multi-level NUMA systems." Proceedings
SMT-level ! of the 20th ACM SIGPLAN Symposium on
MCS locks Principles and Practice of Parallel
Programming. ACM, 2015.
Lock holder

a

Granularity Optimization Being Considered

Combination of several methods to achieve fine granularity "¢

= Locks and atomics are not always necessary Local state

« Memory barriers can be enough MEM_BARRIER():

« E.g. only read barrier for MPI_Comm_rank Global Read-only
= Brief-global locking: only protect shared objects S ENTER:
= Lock-free wherever possible S E—

« Atomic reference count updates CS_EXIT;

Lock-free queue operations CTORTCPOATE

(obj.ref_count)

Moving towards a lightweight queue/dequeue model | ocal state
= Reduce locking requirements and move to a J
mostly lock-free queue/dequeue model é é
» Reduce unnecessary progress polling for WPL CallC... [\gp]:_]:ca]_'[(_)

nonblocking operations
» Enqueue operations all atomic

Atomic_
= Dequeue operations engueue .\> éﬁoméﬁé
« Atomic for unordered queues (RMA) CS_TRY_ENTER;
» Fine-grained locking for ordered queues Wait_Progress(); CS_TRY_ENTER;
= The result is a mostly lock-free model for Tocked or {*Return*/
nonblocking operations [f\tomlc
equeue
CS_EXIT;

User-Level Threads Optimization Space

/\‘\ U.S. DEPARTMENT OF
.2/ ENERGY

N
MPI+User-Level Threads Optimization Opportunities

Applications Applications

User-Level Thread Library

Pthreadl Pthread? Ptér'ead
é é Context-switch
>
MPI_Isend(); ULT® Lockless yield when ULTZ
Computation(); MPI_Irecv (); MPI_Isend() ;e— leaving G5 Computation();
I\élPI_Wait(. --) Computation(); Computation(); ULt —>MPI_TIrecv O;
MPI_Wait(...) MPI_Wait(...) MPI_Ir‘ecY 0O; MPI_Wait(...)
{ v { ~ Computation(); {
, /)% , % | te;oypl_gmt(...) %
Stalls , % Yie‘d’\:{’oé\?«f’ng 7 }

Advanced Argobots Locking Support

Argobots Mutex API Argobots Mutex Data-Strctures

/Status = LOCKED/UNLOCKED

ABT mutex lock ()~

conditional
push

A

Push unconditionally if prior

wu"e(table _lock) ULT already blocked

ABT mutex unlock () ES O zmﬂ’lﬁr:::xty

conditional | |
push

ABT mutex lock low()
Local status

-
ES N fla) Mutexes
If ULTs on my ES m J D

Pop without atomics

Release(table lock
ABT mutex unlock se() —— (—)

Mapping Argobots Advanced Locking to MPI

MPI Side Argobots API Average of 4x improvement for
fine-grained communication!

/ MPI_CALL_ENTER / ¢

ABT mutex lock()

=——Pthread Mutex =l—Argobots Mutex
=4—Single-Threaded

2097152

ABT mutex unlock_se() 524288

- W-M‘\

32768

oP
COMPLETE
?

Message Rate (Msg/s)

ABT mutex lock_low () 8192

YIELD

YES

2048 T T
1 8 64 512 40963276262144
Message Size (Bytes)

= ABT mutex unlock ()

Pt2Pt message rate with 36 Haswell
Cores and Mellanox FDR

/ MPI_CALL_EXIT /

Summary

‘_/{,"4'3‘ U.S. DEPARTMENT OF
{2} ENERGY

To Take Out

= Why would you care about MPI+threads communication?

— Applications, libraries, and languages are moving towards driving both
computation and communication because of

e Hardware constraints
* Programmability

= The current situation

— Multithreaded MPI communication is still not Exascale
level

— We improved upon existing runtimes but still more to go
" |nsight into the future

— Hopefully the fine-grained model will be enough for both
OS-level and user-level threading

— Otherwise, a combination of advanced thread-
synchronization and threading runtimes will be necessary

27

