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CommunicaGon	
RunGmes	
(MPICH)	

Threading	
Models	

(OS-level,	user-
level:	Argobots)	

Data-Movement	
in	

Heterogeneous	
and	Deep	
Memory	

Hierarchies	
My	focus:	

CommunicaGon	opGmizaGon	
in	threading	environments	



The MPICH Project 
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MPICH	and	it	deriva&ves	in	the	Top	10	
1.   Tianhe-2	(China):	TH-MPI	
2.   Titan	(US):	Cray	MPI	
3.   Sequoia	(US):	IBM	PE	MPI	
4.  K	Computer	(Japan):	Fujitsu	MPI	
5.   Mira	(US):	IBM	PE	MPI	
6.   Trinity	(US):	Cray	MPI	
7.   Piz	Daint	(Germany):	Cray	MPI	
8.   Hazel	Hen	(Germany):	Cray	MPI	
9.   Shaheen	II	(Saudi	Arabia):	Cray	MPI	
10.  Stampede	(US):	Intel	MPI	and	MVAPICH	

MPICH	

Intel	
MPI	

IBM	
MPI	

Cray	
MPI	

MicrosoV	
MPI	 MVAPICH	

Tianhe	
MPI	

ParaSta&on	
MPI	

FG-MPI	

§  MPICH	and	its	derivaGves	are	the	
world’s	most	widely	used	MPI	
implementaGons	

§  Funded	by	DOE	for	23	years	(turned	23	
this	month)	

§  Has	been	a	key	influencer	in	the	
adopGon	of	MPI	

§  Award	winning	project	
–  DOE	R&D100	award	in	2005	



Threading Models 
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Sangmin Seo 
Assistant Computer 

Scientist	

§  Argobots	
–  Lightweight	low-level	threading	and	tasking	framework	
–  Targets	massive	on-node	parallelism	
–  Fine-grained	control	over	the	execuGon,	scheduling,	synchronizaGon,	and	data-

movements	
–  Exposes	a	rich	set	of	features	to	higher	programming	systems	and	DSLs	for	

efficient	implementaGons	

§  BOLT	(hfps://press3.mcs.anl.gov/bolt)	
–  Based	on	the	LLVM	OpenMP	runGme	and	the	Clang		
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Heterogeneous and Deep Memory Hierarchies 

7 

§  Prefetching	for	deep	memory	
hierarchies	

§  Currently	focusing	on	MIC	accelerator	
environments		

§  Compiler	support	
–  LLVM	+		user	hints	through	pragma	

direcGves	

§  RunGme	support	
–  Prefetching	between	In-Package	Memory	

(IPM)	and	NVRAM	
–  Sojware-managed	cache	

NVRAM	

	
	

IPM	

Lena Oden 
Postdoc	

Yanfei Guo 
Postdoc	
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CommunicaGon	
RunGmes	
(MPICH)	

Threading	
Models	

(OS-level,	user-
level:	Argobots)	

Data-Movement	
in	

Heterogeneous/
Hierarchical	
Memories	

My	focus:	
CommunicaGon	opGmizaGon	
in	threading	environments	

Today’s Talk 



Outline 

§  Introduc>on	to	hybrid	MPI+threads	programming	
–  Hybrid	MPI	programming	
– Mul>threaded-Driven	MPI	communica>on	

§  MPI	+	OS-Threading	Op>miza>on	Space	
–  Op>mizing	the	coarse-grained	global	locking	model	
– Moving	towards	a	fine-grained	model	

§  MPI	+	User-Level	Threading	Op>miza>on	Space	
–  Op>miza>on	Opportuni>es	over	OS-threading	
–  Advanced	coarse-grained	locking	in	MPI	

§  Summary	
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Introduction to Hybrid MPI Programming 



Why Going Hybrid MPI + Shared-Memory (X) 
Programming  

Core	

Core	 Core	

Core	 Core	

Core	 Core	

Core	

Core	

Core	 Core	

Core	 Core	

Core	 Core	

Core	
Growth of node resources in the Top500 systems. Peter Kogge: “Reading the Tea-

Leaves: How Architecture Has Evolved at the High End”. IPDPS 2014 Keynote 
 



Main Forms of Hybrid MPI Programming 

W
Walker data 

§  E.g.	Quantum	Monte	Carlo	simulaGons	
§  Two	different	models	

–  MPI	+	shared-memory	(X		=	MPI)	
–  MPI	+	threads	(e.g.	X	=	OpenMP)	

§  Both	models	use	direct	load/store	operaGons	

Large	B-spline	table	

W	 W	 W	 W		
	
	
	
	
Thread	0	

	
	
	
	
	
Thread	1	

MPI Task 1 

Core	 Core	

MPI + Theads 
•  Share everything by default 
•  Privatize data when necessary 

MPI + Shared-Memory (MPI 3.0~) 
•  Everything private by default 
•  Expose shared data explicitly 

MPI Task 1 MPI Task 0 

Large	B-spline	table	in	a	Share-Memory	Window	

W	
	
	 Core	

W	

Core	

W	W	
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Multithreaded MPI Communication: Current Situation 
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Node-to-node message rate on Haswell + Mellanox FDR Fabric: processes vs. threads 

Node-to-node message rate (1B) on 
Haswell + Mellanox FDR Fabric 
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§  Becoming	more	difficult	for	a	single-core	to	
saturate	the	network	

§  Network	fabrics	are	going	parallel	
–  E.g.	BG/Q	has	16	injecGon/recepGon	FIFOs	

§  Core	frequencies	are	reducing	
–  Local	message	processing	Gme	increases	

§  Driving	MPI	communicaGon	through	threads	
backfires	



Applications to Exploit Multithreaded MPI Communication   
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§  Several	applicaGons	are	moving	to	MPI
+Threads	models	

§  Most	of	them	rely	on	funneled 
communication!	

§  Certain	type	of	applicaGons	fit	befer	
mulGthreaded	communicaGon	model	
–  E.g.	Task-parallel	applicaGons	

§  Several	applicaGons	can	scale	well	with	
current	MPI	runGmes	if:	
–  Data	movements	are	not	too	fine-grained	
–  Frequency	of	calling	concurrently	MPI	is	not	

too	high	
§  A	scalable	mulGthreaded	support	is	

necessary	for	other	applicaGons	

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012. 
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Quantum Monte Carlo Simulations [1]	
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OS-Thread-Level Optimization Space 



MPI_Call(...)
{
  CS_ENTER;
  ...

  Progress();

  ...
  CS_EXIT;
}

Shared state

Global Read-
only

Local state

while (!
req_complete)
{
  poll();
  CS_EXIT;
  CS_YIELD;
  CS_ENTER;
}

Challenges and Aspects Being Considered 
§  Granularity	

–  The	current	coarse-grained	lock/work/unlock	
model	is	not	scalable	

–  Fully	lock-free	is	not	pracGcal	
•  Rank-wise	progress	constrains	
•  Ordering	constrains	
•  Overuse	of	atomics	and	memory	barriers	can	backfire	

§  Arbitra>on	
–  TradiGonal	Pthread mutex	locking	is	biased	by	the	

hardware	(NUCA)	and	the	OS	(slow	wakeups)	
–  Causes	waste	because	of	the	lack	of	correlaGon	

between	resource	acquisiGon	and	work	
§  Hand-off	latency	

–  Slow	hand-off	latencies	waste	the	advantages	of	
fine-granularity	and	smart	arbitraGon	

–  Trade-off	must	be	carefully	addressed	

Threads 
Critical  
Section 
Length 

Arbitration 

Hand-off 
Latency 
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Production Thread-Safe MPI Implementations on Linux 
§  OS-thread-level	synchronizaGon	
§  Most	implementaGons	rely	on	coarse-grained	

criGcal	secGons	
–  Only	MPICH	on	BG/Q	is	known	to	implement	fine-

grained	locking	

§  Most	implementaGons	rely	on	Pthread	
synchronizaGon	API	(mutex,	spinlock,	…)	

§  Mutex	in	NaGve	Posix	Thread	Library	(NPTL)	
–  Ships	with	glibc		
–  Fast	user-space	locking	afempt;	usually	with	a	

Compare	And	Swap	(CAS)	
–  Futex	wait/wake	in	contended	cases	
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Analysis of MPICH on a Linux Cluster 
§  Thread-safety	in	MPICH	

–  Full	THREAD_MULTIPLE	support	
–  OS-thread-level	synchronizaGon	
–  Single	coarse-grained	criGcal	secGon	
–  Uses	by	default	Pthread	mutex	

§  Fairness	analysis	
–  Bias	factor	(BF):	
–  BF	<=1	à	fair	arbitraGon	

§  Progress	analysis	
–  Wasted	progress	polls	=	unsuccessful	progress	polls	

while	other	threads	are	waiGng	at	entry	

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_ENTER	

CS_EXIT	
CS_EXIT	

YIELD	

OPERATION	
COMPLETE?	

YES	

NO	
2	

1	

#pragma omp parallel
{
  for (i=0; i<nreq; i++)
    MPI_Irecv(&reqs[i]);

  MPI_Waitall(nreq,reqs);
}

P(same_ domain_ acquisition)
P(random_uniform)
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Fairness and progress analysis with a message rate benchmark on Haswell + Mellanox FDR fabric 



Smart Progress and Fast Hand-off  

Prioritizing issuing ops over 
waiting for internal progress 	

§  FIFO	locks	overcome	the	
shortcomings	of	mutexes	

§  Polling	for	progress	can	be	wasteful	
(wai>ng	does	not	generate	work!)	

§  PrioriGzing	issuing	operaGons	
•  Feed	the	communicaGon	pipeline	
•  Reduce	chances	of	wasteful	internal	

process	(e.g.	more	requests	on	the	fly	
è	higher	chances	of	making	
progress)	

§  Same	arbitraGon	cab	be	achieve	with	different	locks	
(e.g.	Gcket,	MCS,	CLH,	etc.	are	FIFO)	
§  Trade-off	between	desired	arbitraGon	and	hand-off	
latency	

•  E.g.	for	FIFO,	CLH	is	more	scalable	than	Gcket	
§  Going	through	the	kernel	(e.g.	using	futex)	is	
expensive	and	should	not	be	done	frequently	
§  A	more	scalable	scalable	hierarchical	lock	is	being			
								integrated		

Pt2Pt message rate with 36 Haswell 
Cores and Mellanox FDR	
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Fairness and Cohort Locking 
§  Unfairness	itself	IS	NOT	EVIL	
§  Unbounded	unfairness	IS	EVIL	
§  Unfairness	can	improve	locality	of	

reference	
§  Exploit	locality	of	reference	through	

cohorGng	
–  Threads	sharing	some	level	of	the	

memory	hierarchy	
–  Local	passing	within	a	threshold	

Hierarchical MCS Lock. Chabbi, Milind, 
Michael Fagan, and John Mellor-
Crummey. "High performance locks for 
multi-level NUMA systems." Proceedings 
of the 20th ACM SIGPLAN Symposium on 
Principles and Practice of Parallel 
Programming. ACM, 2015. 
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Granularity Optimization Being Considered 
MPI_Call(...)
{

   MEM_BARRIER();

   CS_ENTER;

   CS_EXIT;

}

Shared state

Global Read-only

Local state

Local state

ATOMIC_UPDATE
(obj.ref_count)

Combination of several methods to achieve fine granularity   
§  Locks and atomics are not always necessary 

•  Memory barriers can be enough 
•  E.g. only read barrier for MPI_Comm_rank 

§  Brief-global locking: only protect shared objects 
§  Lock-free wherever possible 

•  Atomic reference count updates 
•  Lock-free queue operations 

§  Reduce locking requirements and move to a 
mostly lock-free queue/dequeue model 

§  Reduce unnecessary progress polling for 
nonblocking operations 

§  Enqueue operations all atomic 
§  Dequeue operations 

•  Atomic for unordered queues (RMA) 
•  Fine-grained locking for ordered queues 

§  The result is a mostly lock-free model for 
nonblocking operations 

Moving towards a lightweight queue/dequeue model 

MPI_Call(...)
{
   ....

   CS_TRY_ENTER;

   Wait_Progress();

   CS_EXIT;
}

Atomic_
enqueue

MPI_Icall(...)
{
  ....
  ....

   ....         
CS_TRY_ENTER;
/*Return*/
}

Atomic_
enqueue

Locked or 
Atomic
Dequeue



User-Level Threads Optimization Space 



MPI+User-Level Threads Optimization Opportunities 

Applica>ons	

OpenMP,	OmpSs,	XMP,		 MPI	

POSIX	Threads	(glibc)	

Applica>ons	

OpenMP,	OmpSs,	XMP,		 MPI	

POSIX	Threads	(glibc)	

User-Level	Thread	Library	

MPI_Isend();
Computation();
MPI_Wait(...)
{

  
}

MPI_Irecv ();
Computation();
MPI_Wait(...)
{

  
}

Stalls

Pthread1 Pthread2

ULT1
Lockless yield when 

leaving CSMPI_Isend();
Computation();
MPI_Wait(...)
{

}

MPI_Irecv ();
Computation();
MPI_Wait(...)
{

}

Computation();
MPI_Irecv ();
MPI_Wait(...)
{

}

Pthread

ULT2ULT0

Context-switch

Yield-to i
nstead of 

blocking



Advanced Argobots Locking Support 

Argobots Mutex  API Argobots Mutex Data-Strctures 

ABT_mutex_lock() 
 
 
 
 
 
 
ABT_mutex_unlock() 
 
 
 
 
 
 
ABT_mutex_lock_low() 
 
 
 
 
 
 
ABT_mutex_unlock_se() 

…...	

High priority 
Low priority 

Status = LOCKED/UNLOCKED 

Acquire(table_lock) 

Release(table_lock) 

ES 0 

ES N 
Local status 
flag 

conditional 
push 

conditional 
push 

If ULTs on my ES 
Pop without atomics  

Mutexes 

Push unconditionally if prior 
ULT already blocked 



Mapping Argobots Advanced Locking to MPI 

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_EXIT	

CS_EXIT	

CS_ENTER	

YIELD	

OP	
COMPLETE

?	

YES	

NO	
2

MPI Side Argobots API 

ABT_mutex_lock() 
 
 
 
 
 
 
ABT_mutex_unlock_se() 
 
 
 
 
 
 
ABT_mutex_lock_low() 
 
 
 
 
 
 
ABT_mutex_unlock() 
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Pt2Pt message rate with 36 Haswell 
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1

Average of 4x improvement for 
fine-grained communication!	



Summary 



To Take Out 
§  Why	would	you	care	about	MPI+threads	communicaGon?	

–  ApplicaGons,	libraries,	and	languages	are	moving	towards	driving	both	
computaGon	and	communicaGon	because	of	

•  Hardware	constraints	
•  Programmability	

§  The	current	situaGon	
– MulGthreaded	MPI	communicaGon	is	sGll	not	Exascale	
level	

– We	improved	upon	exisGng	runGmes	but	sGll	more	to	go	
§  Insight	into	the	future	

–  Hopefully	the	fine-grained	model	will	be	enough	for	both	
OS-level	and	user-level	threading	

–  Otherwise,	a	combinaGon	of	advanced	thread-
synchronizaGon	and	threading	runGmes	will	be	necessary	

27 


