
Abdelhalim Amer (Halim)
Postdoctoral Researcher
Argonne National Laboratory, IL, USA
	
Japan-Korea	HPC	Winter	School	
University	of	Tsukuba,	Feb	17,	2016	

Towards an Extreme Scale Multithreaded MPI

Programming Models and Runtime Systems Group

2

Myself
Affilia&on	

–  MathemaGcs	and	Computer	Science	
Division,	ANL	

Group	Lead	
–  Pavan	Balaji	(computer	scienGst)	

Current	Staff	Members	
–  Sangmin	Seo	(Assistant	ScienGsts)	
–  Abdelhalim	Amer	(Halim)	(postdoc)	
–  Yanfei	Guo	(postdoc)	
–  Rob	Latham	(developer)	
–  Lena	Oden	(postdoc)	
–  Ken	RaffeneW	(developer)	
–  Min	Si	(postdoc)	

The PMRS Group Research Areas

3

CommunicaGon	
RunGmes	
(MPICH)	

Threading	
Models	

(OS-level,	user-
level:	Argobots)	

Data-Movement	
in	

Heterogeneous	
and	Deep	
Memory	

Hierarchies	
My	focus:	

CommunicaGon	opGmizaGon	
in	threading	environments	

The MPICH Project

4

MPICH	and	it	deriva&ves	in	the	Top	10	
1.   Tianhe-2	(China):	TH-MPI	
2.   Titan	(US):	Cray	MPI	
3.   Sequoia	(US):	IBM	PE	MPI	
4.  K	Computer	(Japan):	Fujitsu	MPI	
5.   Mira	(US):	IBM	PE	MPI	
6.   Trinity	(US):	Cray	MPI	
7.   Piz	Daint	(Germany):	Cray	MPI	
8.   Hazel	Hen	(Germany):	Cray	MPI	
9.   Shaheen	II	(Saudi	Arabia):	Cray	MPI	
10.  Stampede	(US):	Intel	MPI	and	MVAPICH	

MPICH	

Intel	
MPI	

IBM	
MPI	

Cray	
MPI	

MicrosoV	
MPI	 MVAPICH	

Tianhe	
MPI	

ParaSta&on	
MPI	

FG-MPI	

§  MPICH	and	its	derivaGves	are	the	
world’s	most	widely	used	MPI	
implementaGons	

§  Funded	by	DOE	for	23	years	(turned	23	
this	month)	

§  Has	been	a	key	influencer	in	the	
adopGon	of	MPI	

§  Award	winning	project	
–  DOE	R&D100	award	in	2005	

Threading Models

5

Sangmin Seo
Assistant Computer

Scientist	

§  Argobots	
–  Lightweight	low-level	threading	and	tasking	framework	
–  Targets	massive	on-node	parallelism	
–  Fine-grained	control	over	the	execuGon,	scheduling,	synchronizaGon,	and	data-

movements	
–  Exposes	a	rich	set	of	features	to	higher	programming	systems	and	DSLs	for	

efficient	implementaGons	

§  BOLT	(hfps://press3.mcs.anl.gov/bolt)	
–  Based	on	the	LLVM	OpenMP	runGme	and	the	Clang		

The Argobots Ecosystem

6

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots

..
.

ESn

MPI+Argobots

ULT

ES

ULT

ES

MPI

Argobots runtime

Communication
libraries

Charm++

Applications

Charm++

		

Cilk “Worker”

Argobots
ES

RWS
ULT

Fused ULT
1

Fused ULT
2

Fused ULT
N …

CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP
(BOLT)

Mercury RPC

Origin	

Target	

RPC	proc	

RPC	proc	

OmpSs

GridFTP, Kokkos,	RAJA, ROSE, TASCEL, XMP, etc.	External
Connections

Heterogeneous and Deep Memory Hierarchies

7

§  Prefetching	for	deep	memory	
hierarchies	

§  Currently	focusing	on	MIC	accelerator	
environments		

§  Compiler	support	
–  LLVM	+		user	hints	through	pragma	

direcGves	

§  RunGme	support	
–  Prefetching	between	In-Package	Memory	

(IPM)	and	NVRAM	
–  Sojware-managed	cache	

NVRAM	

	
	

IPM	

Lena Oden
Postdoc	

Yanfei Guo
Postdoc	

The PMRS Group Research Areas

8

CommunicaGon	
RunGmes	
(MPICH)	

Threading	
Models	

(OS-level,	user-
level:	Argobots)	

Data-Movement	
in	

Heterogeneous/
Hierarchical	
Memories	

My	focus:	
CommunicaGon	opGmizaGon	
in	threading	environments	

Today’s Talk

Outline

§  Introduc>on	to	hybrid	MPI+threads	programming	
–  Hybrid	MPI	programming	
– Mul>threaded-Driven	MPI	communica>on	

§  MPI	+	OS-Threading	Op>miza>on	Space	
–  Op>mizing	the	coarse-grained	global	locking	model	
– Moving	towards	a	fine-grained	model	

§  MPI	+	User-Level	Threading	Op>miza>on	Space	
–  Op>miza>on	Opportuni>es	over	OS-threading	
–  Advanced	coarse-grained	locking	in	MPI	

§  Summary	

9

Introduction to Hybrid MPI Programming

Why Going Hybrid MPI + Shared-Memory (X)
Programming

Core	

Core	 Core	

Core	 Core	

Core	 Core	

Core	

Core	

Core	 Core	

Core	 Core	

Core	 Core	

Core	
Growth of node resources in the Top500 systems. Peter Kogge: “Reading the Tea-

Leaves: How Architecture Has Evolved at the High End”. IPDPS 2014 Keynote

Main Forms of Hybrid MPI Programming

W
Walker data

§  E.g.	Quantum	Monte	Carlo	simulaGons	
§  Two	different	models	

–  MPI	+	shared-memory	(X		=	MPI)	
–  MPI	+	threads	(e.g.	X	=	OpenMP)	

§  Both	models	use	direct	load/store	operaGons	

Large	B-spline	table	

W	 W	 W	 W		
	
	
	
	
Thread	0	

	
	
	
	
	
Thread	1	

MPI Task 1

Core	 Core	

MPI + Theads
•  Share everything by default
•  Privatize data when necessary

MPI + Shared-Memory (MPI 3.0~)
•  Everything private by default
•  Expose shared data explicitly

MPI Task 1 MPI Task 0

Large	B-spline	table	in	a	Share-Memory	Window	

W	
	
	 Core	

W	

Core	

W	W	
	
	

13

Multithreaded MPI Communication: Current Situation

0.E+00	
5.E+06	
1.E+07	
2.E+07	
2.E+07	
3.E+07	
3.E+07	
4.E+07	
4.E+07	

0	 10	 20	 30	 40	

M
es
sa
ge
	R
at
e	

Number	of	Cores	per	Node	

1.E+03	

8.E+03	

6.E+04	

5.E+05	

4.E+06	

3.E+07	

1	 16	 256	 4096	 65536	 1048576	

M
es
sa
ge
	R
at
e	
(M

es
sa
ge
s/
s)
	

Message	Size	(Bytes)	

1	Process	 2	Processes	 4	Processes	
8	Processes	 18	Processes	

Node-to-node message rate on Haswell + Mellanox FDR Fabric: processes vs. threads

Node-to-node message rate (1B) on
Haswell + Mellanox FDR Fabric

1 Core

1.E+03	

8.E+03	

6.E+04	

5.E+05	

4.E+06	

3.E+07	

1	 16	 256	 4096	 65536	 1048576	

M
es
sa
ge
	R
at
e	
(M

es
sa
ge
s/
s)
	

Message	Size	(Bytes)	

1	Thread	 2	Threads	 4	Threads	
9	Threads	 18	Threads	

§  Becoming	more	difficult	for	a	single-core	to	
saturate	the	network	

§  Network	fabrics	are	going	parallel	
–  E.g.	BG/Q	has	16	injecGon/recepGon	FIFOs	

§  Core	frequencies	are	reducing	
–  Local	message	processing	Gme	increases	

§  Driving	MPI	communicaGon	through	threads	
backfires	

Applications to Exploit Multithreaded MPI Communication

14	

§  Several	applicaGons	are	moving	to	MPI
+Threads	models	

§  Most	of	them	rely	on	funneled
communication!	

§  Certain	type	of	applicaGons	fit	befer	
mulGthreaded	communicaGon	model	
–  E.g.	Task-parallel	applicaGons	

§  Several	applicaGons	can	scale	well	with	
current	MPI	runGmes	if:	
–  Data	movements	are	not	too	fine-grained	
–  Frequency	of	calling	concurrently	MPI	is	not	

too	high	
§  A	scalable	mulGthreaded	support	is	

necessary	for	other	applicaGons	

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.

Distributed	B-
spline	table	

W W W W	
	
	
	
	
Thread	0	

	
	
	
	
	
Thread	1	

MPI Task 0

Core	 Core	

Distributed	large	
B-spline	table	

W W W W	
	
	
	
	
Thread	0	

	
	
	
	
	
Thread	1	

MPI Task 1

Core	 Core	

Communicate
Walker and B-

spline Data

 Distributed B-spline table if it cannot fit in memory fin
Quantum Monte Carlo Simulations [1]	

1.E+03	

8.E+03	

6.E+04	

5.E+05	

4.E+06	

3.E+07	

1	 16	 256	 4096	 65536	 1048576	

M
es
sa
ge
	R
at
e	
(M

es
sa
ge
s/
s)
	

Message	Size	(Bytes)	

1	Thread	 2	Threads	 4	Threads	
9	Threads	 18	Threads	

OS-Thread-Level Optimization Space

MPI_Call(...)
{
 CS_ENTER;
 ...

 Progress();

 ...
 CS_EXIT;
}

Shared state

Global Read-
only

Local state

while (!
req_complete)
{
 poll();
 CS_EXIT;
 CS_YIELD;
 CS_ENTER;
}

Challenges and Aspects Being Considered
§  Granularity	

–  The	current	coarse-grained	lock/work/unlock	
model	is	not	scalable	

–  Fully	lock-free	is	not	pracGcal	
•  Rank-wise	progress	constrains	
•  Ordering	constrains	
•  Overuse	of	atomics	and	memory	barriers	can	backfire	

§  Arbitra>on	
–  TradiGonal	Pthread mutex	locking	is	biased	by	the	

hardware	(NUCA)	and	the	OS	(slow	wakeups)	
–  Causes	waste	because	of	the	lack	of	correlaGon	

between	resource	acquisiGon	and	work	
§  Hand-off	latency	

–  Slow	hand-off	latencies	waste	the	advantages	of	
fine-granularity	and	smart	arbitraGon	

–  Trade-off	must	be	carefully	addressed	

Threads
Critical
Section
Length

Arbitration

Hand-off
Latency

17

Production Thread-Safe MPI Implementations on Linux
§  OS-thread-level	synchronizaGon	
§  Most	implementaGons	rely	on	coarse-grained	

criGcal	secGons	
–  Only	MPICH	on	BG/Q	is	known	to	implement	fine-

grained	locking	

§  Most	implementaGons	rely	on	Pthread	
synchronizaGon	API	(mutex,	spinlock,	…)	

§  Mutex	in	NaGve	Posix	Thread	Library	(NPTL)	
–  Ships	with	glibc		
–  Fast	user-space	locking	afempt;	usually	with	a	

Compare	And	Swap	(CAS)	
–  Futex	wait/wake	in	contended	cases	

U
se

r-
Sp

ac
e

K
ernel-Space

pthread_mutex_lock

CAS FUTEX_WAIT

FUTEX_
WAKE

S
l
e
e
p

FUTEX_WAIT

FUTEX_
WAKE

S
l
e
e
p

CAS

CAS

Lock	Acquired	

Main	Memory	
	Mutex	

Core	 Core	

L1	 L1	
LLC	 LLC	

Core	 Core	

L1	 L1	

Lock acquisition hardware bias (e.g. CAS) OS-bias from slow futex wakeups

1.00E+02	

1.00E+03	

1.00E+04	

1.00E+05	

0	 10	 20	 30	 40	

La
te
nc
y	
(c
yc
le
s)
	

Number	of	Threads 		

signal	 wakeup	

~10x

18

Analysis of MPICH on a Linux Cluster
§  Thread-safety	in	MPICH	

–  Full	THREAD_MULTIPLE	support	
–  OS-thread-level	synchronizaGon	
–  Single	coarse-grained	criGcal	secGon	
–  Uses	by	default	Pthread	mutex	

§  Fairness	analysis	
–  Bias	factor	(BF):	
–  BF	<=1	à	fair	arbitraGon	

§  Progress	analysis	
–  Wasted	progress	polls	=	unsuccessful	progress	polls	

while	other	threads	are	waiGng	at	entry	

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_ENTER	

CS_EXIT	
CS_EXIT	

YIELD	

OPERATION	
COMPLETE?	

YES	

NO	
2	

1	

#pragma omp parallel
{
 for (i=0; i<nreq; i++)
 MPI_Irecv(&reqs[i]);

 MPI_Waitall(nreq,reqs);
}

P(same_ domain_ acquisition)
P(random_uniform)

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

0	 5	 10	 15	 20	 25	 30	 35	 40	

Bi
as
	F
ac
to
r	

Number	of	Threads	per	Rank	

Mutex-Core-Level	

Mutex-NUMA-Nodel-Level	

Ticket-Core-Level	

Ticket-NUMA-Node-Level	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 5	 10	 15	 20	 25	 30	 35	 40	

W
as
te
d	
Pr
og
re
ss
	P
ol
ls
	(%

)	

Number	of	Threads	per	Rank	

Mutex	

Ticket	

Fairness and progress analysis with a message rate benchmark on Haswell + Mellanox FDR fabric

Smart Progress and Fast Hand-off

Prioritizing issuing ops over
waiting for internal progress 	

§  FIFO	locks	overcome	the	
shortcomings	of	mutexes	

§  Polling	for	progress	can	be	wasteful	
(wai>ng	does	not	generate	work!)	

§  PrioriGzing	issuing	operaGons	
•  Feed	the	communicaGon	pipeline	
•  Reduce	chances	of	wasteful	internal	

process	(e.g.	more	requests	on	the	fly	
è	higher	chances	of	making	
progress)	

§  Same	arbitraGon	cab	be	achieve	with	different	locks	
(e.g.	Gcket,	MCS,	CLH,	etc.	are	FIFO)	
§  Trade-off	between	desired	arbitraGon	and	hand-off	
latency	

•  E.g.	for	FIFO,	CLH	is	more	scalable	than	Gcket	
§  Going	through	the	kernel	(e.g.	using	futex)	is	
expensive	and	should	not	be	done	frequently	
§  A	more	scalable	scalable	hierarchical	lock	is	being			
								integrated		

Pt2Pt message rate with 36 Haswell
Cores and Mellanox FDR	

	

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_EXIT	

CS_EXIT	
CS_ENTER	

YIELD	

OPERATION	
COMPLETE?	

YES	

NO	
2	

1	

65536

262144

1 32 1024 32768
M

es
sa

ge
 R

at
e

(M
es

sa
ge

s/
s)

Message Size (Bytes)

Mutex
Ticket
Priority
CLH

Time
Penalty

Fairness (FIFO) reduces wasted
resource acquisitions

Time
Penalty

Pthread Mutex

FIFO Lock

Hand-off latency must be kept low

Adapt arbitration to maximize work

Fairness and Cohort Locking
§  Unfairness	itself	IS	NOT	EVIL	
§  Unbounded	unfairness	IS	EVIL	
§  Unfairness	can	improve	locality	of	

reference	
§  Exploit	locality	of	reference	through	

cohorGng	
–  Threads	sharing	some	level	of	the	

memory	hierarchy	
–  Local	passing	within	a	threshold	

Hierarchical MCS Lock. Chabbi, Milind,
Michael Fagan, and John Mellor-
Crummey. "High performance locks for
multi-level NUMA systems." Proceedings
of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel
Programming. ACM, 2015.

65536	

131072	

262144	

524288	

1048576	

1	 4	 16	 64	 256	 1024	 4096	 16384	

M
es
sa
ge
	R
at
e	
(M

es
sa
ge
s/
s)
	

Message	Size	(Bytes)	

Mutex	 Ticket	 Priority	 CLH	 HCLH<2>	

Granularity Optimization Being Considered
MPI_Call(...)
{

 MEM_BARRIER();

 CS_ENTER;

 CS_EXIT;

}

Shared state

Global Read-only

Local state

Local state

ATOMIC_UPDATE
(obj.ref_count)

Combination of several methods to achieve fine granularity
§  Locks and atomics are not always necessary

•  Memory barriers can be enough
•  E.g. only read barrier for MPI_Comm_rank

§  Brief-global locking: only protect shared objects
§  Lock-free wherever possible

•  Atomic reference count updates
•  Lock-free queue operations

§  Reduce locking requirements and move to a
mostly lock-free queue/dequeue model

§  Reduce unnecessary progress polling for
nonblocking operations

§  Enqueue operations all atomic
§  Dequeue operations

•  Atomic for unordered queues (RMA)
•  Fine-grained locking for ordered queues

§  The result is a mostly lock-free model for
nonblocking operations

Moving towards a lightweight queue/dequeue model

MPI_Call(...)
{

 CS_TRY_ENTER;

 Wait_Progress();

 CS_EXIT;
}

Atomic_
enqueue

MPI_Icall(...)
{

CS_TRY_ENTER;
/*Return*/
}

Atomic_
enqueue

Locked or
Atomic
Dequeue

User-Level Threads Optimization Space

MPI+User-Level Threads Optimization Opportunities

Applica>ons	

OpenMP,	OmpSs,	XMP,		 MPI	

POSIX	Threads	(glibc)	

Applica>ons	

OpenMP,	OmpSs,	XMP,		 MPI	

POSIX	Threads	(glibc)	

User-Level	Thread	Library	

MPI_Isend();
Computation();
MPI_Wait(...)
{

}

MPI_Irecv ();
Computation();
MPI_Wait(...)
{

}

Stalls

Pthread1 Pthread2

ULT1
Lockless yield when

leaving CSMPI_Isend();
Computation();
MPI_Wait(...)
{

}

MPI_Irecv ();
Computation();
MPI_Wait(...)
{

}

Computation();
MPI_Irecv ();
MPI_Wait(...)
{

}

Pthread

ULT2ULT0

Context-switch

Yield-to i
nstead of

blocking

Advanced Argobots Locking Support

Argobots Mutex API Argobots Mutex Data-Strctures

ABT_mutex_lock()

ABT_mutex_unlock()

ABT_mutex_lock_low()

ABT_mutex_unlock_se()

…...	

High priority
Low priority

Status = LOCKED/UNLOCKED

Acquire(table_lock)

Release(table_lock)

ES 0

ES N
Local status
flag

conditional
push

conditional
push

If ULTs on my ES
Pop without atomics

Mutexes

Push unconditionally if prior
ULT already blocked

Mapping Argobots Advanced Locking to MPI

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_EXIT	

CS_EXIT	

CS_ENTER	

YIELD	

OP	
COMPLETE

?	

YES	

NO	
2

MPI Side Argobots API

ABT_mutex_lock()

ABT_mutex_unlock_se()

ABT_mutex_lock_low()

ABT_mutex_unlock()

2048	

8192	

32768	

131072	

524288	

2097152	

1	 8	 64	 512	 4096	32768	262144	

M
es
sa
ge
	R
at
e	
(M

sg
/s
)	

Message	Size	(Bytes)	

Pthread	Mutex	 Argobots	Mutex	

Single-Threaded	

Pt2Pt message rate with 36 Haswell
Cores and Mellanox FDR	

	

1

Average of 4x improvement for
fine-grained communication!	

Summary

To Take Out
§  Why	would	you	care	about	MPI+threads	communicaGon?	

–  ApplicaGons,	libraries,	and	languages	are	moving	towards	driving	both	
computaGon	and	communicaGon	because	of	

•  Hardware	constraints	
•  Programmability	

§  The	current	situaGon	
– MulGthreaded	MPI	communicaGon	is	sGll	not	Exascale	
level	

– We	improved	upon	exisGng	runGmes	but	sGll	more	to	go	
§  Insight	into	the	future	

–  Hopefully	the	fine-grained	model	will	be	enough	for	both	
OS-level	and	user-level	threading	

–  Otherwise,	a	combinaGon	of	advanced	thread-
synchronizaGon	and	threading	runGmes	will	be	necessary	

27

