
presented by Seungmin Lee

17/Feb/2016

Accelerated Computing 2

GPGPU Programming

2016 Korea Institute of Science and Technology Information

Outline

▶ Introduction

Evolution of Processor

History of GPU Computing

▶ GPGPU Programming

OpenACC

OpenMP

CUDA

OpenCL

2016 Korea Institute of Science and Technology Information

Evolution of Processor

▶ Moore’s Law

 The number of transistors on a chip will double about every 1.5 years

7.0
2

1

2016 Korea Institute of Science and Technology Information

Evolution of Processor (Cont.)

Pentium I Pentium II

Pentium III Pentium IV

Chip area
breakdown

2016 Korea Institute of Science and Technology Information

Evolution of Processor (Cont.)

Penryn Bloomfield

Gulftown Beckton

Multi-core

2016 Korea Institute of Science and Technology Information

HPC vs HTC

▶ HPC (High Performance Computing)

 Metric : FLOPS

▶ HTC (High Throughput Computing)

 Metric : jobs/day or month

▶ An extreme example

 Two processors

• A : 4 cores, 10 GFLOPS/core

• B : 50 cores, 1 GFLOPS/core

 100 jobs : 100 GFLOP / job

 Execution time of 1 job

• 2.5 seconds for A, 2 seconds for B

 Execution time of 100 jobs

• 250 seconds for A : 0.4 jobs/s

• 200 seconds for B : 0.5 jobs/s

2016 Korea Institute of Science and Technology Information

Calculation FLOPS

▶ FLOPS : Floating-point Operations Per Second

 Clock (Hz), # of cores, SIMD, FMA(MAD)

 ex) KISTI TachyonII System

 2.93 x 109 x 25,408 x 2 x 2

 = 297,781.76 x 109 ≒ 300 x 1012

1st Supercomputer (1988) : 2 GFlops

2nd Supercomputer (1993) : 16 GFlops

3rd Supercomputer (2004) : 4.3 TFlops

Notebook(3GHz, Quad-core) : 3 x 109 x 4 x 4 x 2 = 96 GFlops

2016 Korea Institute of Science and Technology Information

Arithmetic Intensity (AI)

 The number of float-point operations to run the program divided by

the number of bytes accessed in main memory

Roofline Model [Williams,Patterson, 2008]

2016 Korea Institute of Science and Technology Information

Arithmetic Intensity (AI)

 for(i = 0; i < N; i++) 3N loads, 1N stores, 2N flop

 A[i] = B[i] + C[i] * D[i]; (6 * 2 * N) / (4 * 8 * N) = 0.375

 for(i = 0; i < N; i++) N2 loads, N2 stores, 2N3 loads, 2N3 flop

 for(j = 0; j < N; j++) (6 * 2N3) / (8 * (2N3 + 2N2)) ≈ 0.75

 for(k = 0; k < N; k++)

 C[i][j] += A[i][k] * B[k][j];

 for(ii=0; ii< N; ii+= NB)

 for(jj=0; jj < N; jj+=NB)

 for(i = ii; i < NB+ii; i++) 3NB2 loads, NB2 stores , 2NB3 flop

 for(j = jj; j < NB+jj; j++) (6 * 2NB3) / (8 * 4NB2) = 0.375*NB

 for(k = 0; k < NB; k++)

 C[i][j] += A[i][jj+k] * B[ii+k][j];

Intel Xeon E5690 (6 cores, 3.73 GHz, 32GB/s)

FLOPS : 3.73 * 6 * 4 * 2 = 179.04 GFLOPS

Flop:byte ratio : 5.595

NB

32KB L1 cache

3 matrices, 8 bytes(double)
9.36

83

232 10

NB 1232375.0

2016 Korea Institute of Science and Technology Information

History of GPU Computing

Brief History of GPU Computing

Source: SIGGRAPH Asia 2010 OpenCL Overview tutorial

2016 Korea Institute of Science and Technology Information

History of GPU Computing (Cont.)

Development 2006 ~ 2007

DirectX 10

Shader model 4.0

Software model:

Unified programmable shader pipeline

Flexible programming on GPU

Nvidia’s H/W

implementation

Geforce 8800 GTX

SM 1.0

Compute Unified Device Architecture

Separate vertex, pixel,

geometry shaders

Microsoft

2016 Korea Institute of Science and Technology Information

History of GPU Computing (Cont.)

C for Graphics(Cg)

Brook+

CUDA
Compute Unified

Device Architecture

CAL
Compute Abstraction Layer

OpenCL

Open Computing Lanaguage

DirectX 10

2016 Korea Institute of Science and Technology Information

GPGPU (General Purpose Graphic Processing Unit)

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2014

▶ GPGPU stands for General-Purpose computation on Graphics Processing

Units, also known as GPU Computing

▶ GPGPU with Cg, OpenGL, DirectX, sh, Brook, RapidMind, PeakStream, Brook++,

CAL, CTM, CUDA, OpenGL Computing, DirectXCompute, MS AMP, OpenCL

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

GPUs are

installed here.

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

▶ ORNL(Oak Ridge National Laboratory)

 TITAN => SUBMIT (> 150 PFLOPS)

▶ LLNL (Lawrence Livermore National Laboratory)

 SEQUOIA => SIERRA (> 100 PFLOPS)

Ref. http://www.teratec.eu/actu/calcul/Nvidia_Coral_White_Paper_Final_3_1.pdf

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

▶ Intel

 Intel Skylake Gen9 GT4/e

 1152 GFlops (GPU only)

• 72 x 2 x 8 x 1 = 1152

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

▶ AMD APU(Accelerated Processing Unit)

 APU Kaveri (Nov. 2013) : 855.68 (GFlops)

 CPU : 3.7 GHz x 4 x 4 x 2 = 118.4 (GFlops)

 GPU : 0.72 GHz x 512 x 2 = 737.28 (GFlops)

2016 Korea Institute of Science and Technology Information

GPGPU Programming

▶ 3 ways to accelerate applications

 Libraries, OpenACC, CUDA

▶ 3 ways to accelerate applications

 Libraries, OpenMP, OpenCL

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

GPGPU Programming (Cont.)

GPU Accelerated libraries

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

Drop-in Acceleration

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

GPGPU (Cont.)

x y

malloc
d_x

cudaMalloc, cublasAlloc

d_y

2016 Korea Institute of Science and Technology Information

OpenACC

3 ways to accelerate applications

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

OpenACC (Cont.)

Directive Syntax

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

OpenACC (Cont.)

Familiar to OpenMP Programmers

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

Example : Jacobi Iteration

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

▶ Iteratively converges to correct value (e.g. Temperature),

by computing new values at each point from the average

of neighboring points

Common, useful algorithm

Example : Solve Laplace equation in 2D: 0),(2 yxf

2016 Korea Institute of Science and Technology Information

Jacobi Iteration C Code

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

OpenMP C Code

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

2016 Korea Institute of Science and Technology Information

OpenACC C Code

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

CPU GPU

A

Anew

Anew

A

2016 Korea Institute of Science and Technology Information

OpenACC C Code with Data Management

Ref. Acclerated Computing 1: GPGPU Programming and Computing, Korea-Japan HPC Winter School 2015

CPU GPU

A
Anew

A

2016 Korea Institute of Science and Technology Information

OpenMP 4.0

▶ Approved in 2013

▶ Accelerator device extension

▶ Directive Syntax

 #pragma omp target

 #pragma omp target map(…)

▶ From GNU gcc 4.9.1, OpenMP 4.0 is fully supported.

▶ However

 It is possible for CPU and Intel Xeon Phi

 It will be available AMD/ATI graphic card from 2016 (expected)

 No information related to NVIDIA GPU

2016 Korea Institute of Science and Technology Information

Compile and Run

gcc 6 in Mac OS X (supports OpenMP 4.0)

gcc -fopenacc -fopenmp -o sum.x sum.c

2016 Korea Institute of Science and Technology Information

CUDA Programming

cudaMalloc

cudaMemcpy

saxpy <= implement

cudaMemcpy

cudaFree

2016 Korea Institute of Science and Technology Information

CUDA Programming

2016 Korea Institute of Science and Technology Information

CUDA Programming

▶ CUDA Kernels

 kenel_function<<<num_blocks, num_threads>>>(param1, param2, …)

 num_threads = 256, num_blocks = 20

 total # of threads created = 256 x 20 = 5120

▶ Inside kernel function

 blockDim.x = 256 (num_threads)

 136th threads in 19th block (index starts 0) = 19 x 256 + 136 = 5000

2016 Korea Institute of Science and Technology Information

CUDA Programming

NVIDIA GPU

GPU

 Multiprocessor

 Streaming Processor

AMD GPU

GPU

 Compute Unit

 Stream Core

Intel GPU

Slice

 subslice

 Execute Unit

2016 Korea Institute of Science and Technology Information

OpenCL Platform Model

2016 Korea Institute of Science and Technology Information

OpenCL Memory Model

2016 Korea Institute of Science and Technology Information

OpenCL Programming

__global__

void kernel_func(…)

{

}

cudaMalloc

cudaMemcpy

kernel_func<<<…>>>(…)

cudaMemcpy

cudaFree

CUDA Programming OpenCL Programming

__kernel void kernel_func(…)

{

}

Decide platform

Find and select device

Allocate device memory

Copy data from host to device

Select kernel function

Build (compile) kernel function

Run kernel func

Copy data from device to host

Deallocate device memory

2016 Korea Institute of Science and Technology Information

OpenCL Programming

2016 Korea Institute of Science and Technology Information

OpenCL Programming

2016 Korea Institute of Science and Technology Information

OpenCL Programming

2016 Korea Institute of Science and Technology Information

OpenCL Programming

Compile

$ gcc -o source.x source.c -lOpenCL

2016 Korea Institute of Science and Technology Information

Heterogeneous Computing Resources

CPU

GPU

FPGA MIC

2016 Korea Institute of Science and Technology Information

Summary

▶ GPU computing is possible by using

 Libraries

Directive based OpenACC or OpenMP

CUDA or OpenCL

▶ GNU gcc covers OpenMP 4.0 for CPU, MIC

and will cover for GPU(ATI) soon

▶ We can use CPU, MIC, GPU(on chip, card) by using

OpenCL

