experience
what's inside”

KISTI Intel® Parallel Computing Center (intelo)

MIC Programming with Intel® Xeon Phi™ Coprocessors
- Overview on Its Validity for Realistic Scientific Computing -

Hoon Ryu, Ph.D.
Principal Investigator, (E: elec1020@kisti.re.kr)
Intel® Parallel Computing Center @
Korea Institute of Science and Technology Information

Environment for MIC Programming
Intel® Xeon Phi Coprocessors and the MIC Architecture

= PCle end-point device (KNC: card-type) h

= High power efficiency |
= ~1 TFlops/sec in double-precision ops.
= Heterogeneous clustering

192.168.9.11

((((((

= 3 | = (May be) beneficial for highly
~ - =2y | parallel applications reaching

----- e T : the scaling limit on multicores
T /8 = KNL? Later in this talk

el From white paper in coalfaxinternational.com
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 2

Environment for MIC Programming
Intel® Xeon Phi Coprocessors and the MIC Architecture (cont'd)

Intel® Xeon™ CPUs Intel® Xeon Phi™ Coprocessors

» C/C++/Fortran; OpenMP/MPI C/C++/Fortran; OpenMP/MPI

» Standard Linux OS Special Linux yOS distribution

= Up to 768GB of DDR3 (D)RAM 6-16GB cached GDDRS (SD)RAM
= <12 cores per socket ~ 3GHz 57~61 cores per card ~ 1GHz

= 2-way hyper-threading = 4 hardware threads per core

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 3

Environment for MIC Programming
Linux yOS on Intel® Xeon Phi™ Coprocessors (part of MPSS)

= Figuring out Xeon Phi™ coprocessors in host servers

user@host% 1lspci | grep -i "co-processor"

06:00.0 Co-processor: Intel Corporation Xeon Phi coprocessor 3120 series (rev 20)
82:00.0 Co-processor: Intel Corporation Xeon Phi coprocessor 3120 series (rev 20)
user@host% sudo service mpss status

mpss is running

user@host% cat /etc/hosts | grep mic

172.31.1.1 host-micO micO

172.31.2.1 host-micl micl

user@host% ssh micO

user@mic0% cat /proc/cpuinfo | grep proc | tail -n 3

processor : 237

processor : 238

processor : 239

user@mic0% 1ls /

amplxe dev home 1ib64 oldroot proc sbin sys usr

bin etc 1lib linuxrc opt root sep3.10 tmp var

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

A Glance at Performance in Dense Arithmetic

Linpack in Xeon™ and Xeon Phi™ Family Product

= (Dense) Matrix Multiplication BMT

with Linpack
= Performance comparison

o CPU only vs. Single coprocessor card
o Up to ~3x speed-up

Matrix Multiplication (Linpack*)

= Single code for two platforms
o Easy Porting
o Incremental optimization B intel® Xeon

l Intel® Xeon

W Intel® Xeon
W Intel® Xeon

Phi™ Coproces:

Phi™ Coprocessor
Phi™ Coprocessor 5110P (8GB, 1.053 GHz, 60 core)

Phi™ Coprocessor

800

Gigaflops / second

sor 7120D (16GB, 1.238 GHz, 61 core)

7120P (16GB, 1.238 GHz, 61 core)

5120D (8GB, 1.053 GHz, 60 core)

. [l Intel® Xeon Phi™ Coprocessor 3120P (6GB, 1.100 GHz, 57 core)
= Performance may be worse without e ot o
[l Intel® Xeon® Processor E5-2670 (20M Cache, 2.60 GHz, 8.00 GT/s Intel® QPI)
. " " " Platform Configured with Two Processors
careful consideration in numerical

https://www-ssl.intel.com/content/dam/www/public/us/

analysis; i.e.; sparse-matrix ops. en/images/charts/chart-id-635.png

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

9

Vectorization: A Rough Concept
SIMD Operations

SIMD: Single Instruction Multiple Data

Each SIMD (arithmetic) operator acts on 16 (SP) numbers at a time
o DP (Double Precision): 8 numbers at a time

Scalar 1oop

]
Vector Unit

Data Pool

SIMD loop (for SP ops.)

) e el B
c c c c

0l for (1 =0; 1 < n; i += 16)

02 A[i: (1+16)]=A[i:(1i+16)]+B[i:(1+16)];

Parallel access to data with
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors a single instruction 6

Vectorization: SIMD Instruction Sets
Instruction Sets in Intel® Architectures

Instruction Set Year / Intel® Proc. Vector Register Packed Data Types

MMX 1997 / Pentium 64-bit 8-, 16- and 32-bit INT

SSE 1999 / Pentium I 128-bit 32-bit SP

SSE2 2001 / Pentium IV 128-bit 8 to 64-bit INT; SP & DP
SSE3-SSE4.2 2004 - 2009 128-Dbit Additional instructions

AVX 2011 / Sandy Bridge 256-bit SP & DP

AVX2 2013 / Haswell 256-Dbit INT, Additional instructions
IMCI 2012 / KNC Xeon Phi 512-bit 32- and 64-bit INT; SP & DP
AVX-512 (2016) / KNL Xeon Phi 512-bit 32- and 64-bit INT; SP & DP

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

How to Parallelize?
Conceptual Flow of Parallelization of Large-scale Computation

SIMD Unit Conceptual Flow for Parallelization
Node
Socket
:
g 2 Core &
=} - 3
e
SIMD é
MPI (openMP) é—”
= Very Rough Concept: Assume
o 2 nodes (definitely needs MPI)
o 2 sockets per node, 2 cores per socket
(either MPI or openMP) 7

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 8

In Xeon/Xeon Phi?

Conceptual Flow of Parallelization in Xeon Phi™
> Computing Flow

Host CPUs Xeon Phi coprocessor Xeon Phi coprocessor

Compute Node 1

= |nter-node or Inter-multicore communication: MPI (solid red line)
= Additional SIMD units: Processors and Coprocessors (Xeon Phi™)

= Excellent for dense matrix operation or EP-type tasks: Vectorization
o Still nice for sparse-data-involved PDE problems — Will be back
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Execution Modes
Native, Offload and Symmetric Modes

= Native Mode
Host (Main CPUs) Coprocessors

main() {

myFuntion () ;

= Offload Mode

Host (Main CPUs) Coprocessors

main() {

#pragma offload target (mic) myFuntion() ;

}

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 10

Native Mode

Running Applications on Coprocessors

= A Simple “Hello World” Application (hello.c)

#include <stdio.h>
#include <unistd.h>

int main () {

printf ("Hello world! I have %1d logical cores.\n”, \

sysconf (_SC_NPROCESSORS_ONLN)) ; » Returns # of
processors
= Compile and Run on Host currently online

user@host% icc hello.c
user@host% ./a.out

Hello world! I have 32 logical cores.
user@host%

11

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Native Mode

Running Applications on Coprocessors (cont'd)

= Compile and Run on Coprocessors in Native Mode

user@host%
user@host%
a.out 100%
user@host%
user@mic0%
/home/user
user@mic0%
a.out

user@mic0%

icc hello.c —-mmic
scp a.out micO:~/
10KB 10.4KB/s 00:00

ssh mic0 = Xeon Phi 7120a

pwd

- 61 physical cores

1s - 4 hardware threads

./a.out

Hello world! I have 244 logical cores.

user@mic0%

= “mmic” Option: Runs on coprocessors; Compile and link on host
= Executable MUST be transferred to coprocessor cards

= Native MPI applications work the same way (needs Intel MPI)
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 12

Native Mode

Super-easy Porting of User Applications for Native Execution

= Simple CPU applications can be compiled for native execution
o By presenting the flag “-mmic” to the Intel compiler

o So far just for native executions: Performance improvement normally requires
additional works for optimization.

user@host% icpc -c myobjectl.cc —mmic
user@host% icpc -c myobject2.cc —-mmic
user@host% icpc -o myapplication myobjectl.o myobject2.o0 -mmic

= Same for coprocessor-only MPI applications

user(@host% mpiicpc -c myobjectl.cc -mmic

user(@host% mpiicpc -c myobject2.cc -mmic
user(@host% mpiicpc -o myapplication myobjectl.o myobject2.o0 -mmic

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 13

Native Mode
Sample Code: HelloMPI.c

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

#include <stdlib.h>
#include <stdio.h>
#include "mpi.h”
#define MASTER 0
#define TAG_HELLO 4

void main(int argc, char *argv][])

{
int i, id, remote_id, num procs, namelen;
MPI Status stat;
char name[MPI_MAX PROCESSOR _NAME] ;

if (MPI_Init (&argc, &argv) != MPI_SUCCESS)
{
printf ("Failed to initialize MPI\n");
return;

}

MPI Comm size (MPI_COMM WORLD, &num procs) ;
MPI_Comm rank (MPI COMM WORLD, &id);
MPI Get_processor_ name (name, &namelen);

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Native Mode
Sample Code: HelloMPl.c (cont'd)

if (id == MASTER)
{
printf ("Hello world: rank %d of %d running on %$s\n“, id,num procs,name) ;
for (i = 1; i<num procs; i++)
{
MPI_Recv(&remote_id,1,MPI_INT,i,TAG_ﬂELLO,MPI_COMM_WORLD,&stat);
MPI Recv(&num procs,1l,MPI_INT,i,TAG_HELLO,MPI_COMM WORLD, &stat) ;
MPI_Recv (&namelen,l,MPI_INT,i,TAG HELLO,MPI_COMM WORLD, &stat) ;
MPI Recv(name,namelen+l,MPI CHAR,i,TAG_HELLO,MPI_COMM WORLD, &stat);
printf ("Hello world: rank %d of %d running on %$s\n", remote id, \
num_procs,name) ;

MPI Send (&id, 1, MPI_INT, MASTER, TAG_HELLO, MPI_COMM WORLD) ;

MPI_Send (&num procs, 1, MPI_INT, MASTER, TAG_HELLO, MPI_COMM WORLD) ;
MPI_Send (&namelen, 1, MPI_INT, MASTER, TAG_HELLO, MPI_COMM WORLD) ;

MPI_ Send (name, namelen+l, MPI CHAR, MASTER, TAG HELLO, MPI_COMM WORLD) ;

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Native Mode

Running MPI Applications on Coprocessors

= Copy or NFS-share Intel® MPI library to (with) coprocessors
Enable | _MPI_MIC

o Set to either 1 or “enable” to use Intel® MPI in coprocessors
Compile and link the code with —mmic option and Intel® MPI (host)
Copy executable to coprocessors
Run the executable as if mic is a remote host.

user@host% export I_MPI MIC=1
user@host% mpiicpc -mmic -o HelloMPI.MIC HelloMPI.c
user@host% scp HelloMPI.MIC micO:~/

user@host% mpirun -host micO -np 2 ~/HelloMPI.MIC
Hello world: rank 0 of 2 running on host-micO
Hello world: rank 1 of 2 running on host-micO

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 16

Symmetric Mode
Running MPI Applications on both Host and Coprocessors

= Copy or NFS-share Intel® MPI library to (with) coprocessors
= Home and it's sub-directories in host and mic should be synchronized

= Enable | MPI _MIC and set|_ MPI_MIC_POSTFIX, e.g. to ".mic’
o | _MPI_MIC_POSTFIX: the postfix to be added to the name of executable

= Compile and link the code Intel® MPI in two ways (host)
o For executable in host: With a normal way (name of executable: HelloMP1I)
o For executable in mic: With -mmic option (name of executable: HelloMPl.mic)

= Copy mic-executable to coprocessors
o Path should be identical to what has cpu-executable

= Create a host file and run on host with host-executable

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 17

Symmetric Mode
Running MPI Applications on both Host and Coprocessors (cont'd)

user@host%
user@host%
user@host$%
user@host%
user@host%
user@host%
host
host-micO
user@host%

export I _MPI MIC=1

export I _MPI MIC POSTFIX=.mic

mpiicc HelloMPI.c -o HelloMPI

mpiicc -mmic HelloMPI.c -o HelloMPI.mic
scp HelloMPI.mic host-micO:~/

cat host file

mpirun -hostfile host file -np 2 ~/HelloMPI ex. hOSt_ﬁIe
Hello world: rank 0 of 2 running on host host:2
Hello world: rank 1 of 2 running on host-micO host-micQ:2

= # of ranks can be controlled: one way with host _file

= More diverse ways and details for MPI runs in symmetric mode
o https://software.intel.com/en-us/articles/using-the-intel-mpi-library-on-intel-

xeon-phi-coprocessor-systems

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 18

Offload Mode
Explicit Offload Model

= Reuvisit to “Hello World”: In an explicit offload mode (hello_offload.cpp)

01 #include <stdio.h>

02

03 int main(int argc, char * argv[]) {
04

05 printf ("Hello World from host!\n");
06

07 #pragma offload target (mic)

08 {

09 printf ("Hello World from coprocessor!\n"); £flush(0);
10 }

11

12 printf ("Bye\n") ;

13 }

= Application runs on host
o Some parts of code and data are moved (“offloaded)” to coprocessors
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 19

Offload Mode
Compiling and Running an Offload Application

Compile, link and execute on host

user@host% icpc hello offload.cpp -o hello offload
user@host% ./hello_offload

Hello World from host!
Bye
Hello World from coprocessor!

Code inside #pragma offload runs in Xeon Phi™ coprocessors
Console output on coprocessors is buffered and mirrored to host

With no coprocessor installed,
o Code inside #pragma offload may fall back to host
o Compiler complains “unknown preprocessor #pragma offload” with an warning
o Easily to make the code be versatile in both CPU-only and offload mode

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 20

Offload Mode

Sample Code: offloadExample.c

#include <stdio.h>
#include <unistd.h>

#define ALLOC alloc_if (1) free_ if(0)
#define REUSE alloc_if (0) free_ if(0)
#define FREE alloc_if (0) free if (1)
#define LOCAL alloc_if(l) free if (1)

int main() {

int *ncore = (int*)malloc(sizeof (int) *2);
int phi_tid = 0;

ncore[0] = sysconf (_SC_NPROCESSORS_ONLN) ; // # of cores in host
ncore[l] 0; // initialize

printf ("[HOST] # of CPUs in (host, mic): (%d, %d)\n", ncore[0], ncore[l]);

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 21

Offload Mode

Sample Code: offloadExample.c (cont'd)

#pragma offload target(mic:phi_tid) \
in(ncore[0:2] : ALLOC) \
out (ncore[1l:1] : REUSE)
{
ncore[l] = sysconf(_SC_NPROCESSORS ONLN); // # of cores in mic
}
printf ("[HOST] # of CPUs in (host, mic): (%d, %d)\n", ncore[0], ncore[l]);

ncore[0] = -1; ncore[l] = -1;

offload target(mic:phi_tid) \
in(ncore[0:2]
out (ncore[0:2]
{
ncore[0] = sysconf (_SC_NPROCESSORS_ ONLN) ;
ncore[l] = sysconf (_SC_NPROCESSORS_ONLN) ;
}
printf ("[HOST] # of CPUs in (mic, mic): (%d, %d)\n", ncore[0], ncore[l]);
free (ncore) ;
return O;

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Offload Mode
Running Applications in Offload Mode

user@host% icc offloadExample.c -o offloadExample
user@host% ./offloadExample

[HOST] # of CPUs in (host, mic): (20, 0)

[HOST] # of CPUs in (host, mic): (20, 244)

[HOST] # of CPUs in (mic, mic): (244, 244)

= General format: #pragma offload target (mic) opt(data: clause)

Option Description Clause Description
in copy (host->mic) alloc(1) free(1) | data is local in offload

copy (mic—>host) alloc(1) free(0) allocated in offload, but will be
used in next offload

copy (host&—->mic) alloc(0) free(1) | Has been used enough, so don't
need it any more

nocopy | reuse with new offload alloc(0) free(0) | Ready to reuse

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

23

Knights Landing (KNL)

Self-bootable: “a cluster full of coprocessors”

Knights Landing Overview

Stand-alone, Self-boot CPU

Up to 72 new Silvermont-based cores

4 Threads per core. 2 AVX 512 vector units
Binary Compatible with Intel® Xeon® processor

2-dimensional Mesh on-die interconnect

MCDRAM: On-Package memory: 400+ GB/s of BW?
DDR memory
Intel® Omni-path Fabric

3+ TFLops (DP) peak per package

~3x ST performance over KNC

A. Sodani, Intel® Xeon Phi™ Processor “Knights Landing” Architectural Overview, ISC (2015)

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

<16GB
< 384GB

24

Knights Landing (KNL)

Self-bootable: “a cluster full of coprocessors”

Knights Landing Products

A. Sodani, Intel® Xeon

Phi™ Processor “Knights
Landing” Architectural
PCI ' Overview, ISC (2015
PO [Rootpor KNL gt I8
Root Port
?
o o Are we happy~
No worries?
KNL KNL with Fabric KNL Card
DDR4 DDR4 No DDR
MCDRAM: up to 16 GB MCDRAM: up to 16 GB MCDRAM: up to 16 GB
Gen3 PCle (Root port) Gen3 PCle (Root port) Gen3 PCle (End point)
Omni-Path Fabric
Self Boot Socket PCle Card
15Q4/16Q1) 17Q4/18Q1

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 25

Knights Landing (KNL)

Potentlal Slots of Bottleneck in Performance, and When?
= Are we happy? No worries?

MCDRAM MCDRAM KNI
Seslll - Memory Access Pattern

o Do we have the most efficient path for
each core?

o When we have “multiple cores”
access a single block of memory?
= So, HBW (MCD)RAM
o 16G enough? Not sure before “do”ing

! o Wwill be good anyway for dense-matrix
MCDRAM MCDRAM ; operations which fully use the power
of vectorization

A. Sodani, Intel® Xeon Phi™ Processor “Knights
Landing” Architectural Overview, ISC (2015) o Large-scale PDE problems

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

26

Summary or More?
Intel Xeon Phi™ Coprocessors

= Environment of MIC Programming:
o Characteristics of Xeon Phi™ Coprocesors
o Performance: Dense Operations
o Vectorization and Parallelization
= Execution Modes (Programming Models)
o Native Mode
o Symmetric Mode
o Offload Mode
= Very short discussions: Knights Landing
= Go more if we have time: Introduction to Ongoing Research

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 27

Large-scale, Parallel Computing?
A viewpoint from computing category

EP (Embarrassingly Parallelism): ex) Monte Carlo (Event-Driven) etc.
Communication w/ Dense Array-involved OP.: ex) MD / FFT etc.

Communication w/ Sparse Array-involved OP.: ex) Most PDEs etc.
= A system matrix describing simulation domain

- CFD, Materials, Electronics, Structural Dynamics X
—> Vectorization: can't avoid huge cache-miss X

= Sparse-matrix MV-multiplication W
- Conditional statement: ignore “zero” elements Ade | W

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 28

How large is the related numerical society?

ElEHEHEEE

Group: Sparse Matrix (PDE) Operation
A simple statistic from KISTI 2013-2014 HPC utilizations

Type of jobs submitted to TACHYON-II Monte Carl
PDE-involved jobs > 70+alpha (%) oot M Eenvaie
Eigenvalue PDE problem 3 2o

o 36.2 (%): Electronic structure, Heavy-ion
acceleration, Resonance frequency etc.

Linear system PDE problem

o 36.4 (%): Most of linear PDE equations,

including (linear) Poisson, Drift-diffusion,]
Heat, Black-Scholes etc. Nanoelectronics

Power of Xeon Phi™ Coprocessors in solving PDEs?
- Extremely Large (Sparse) System Matrices

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 29

Nanoelectronics Computing: Overview
“TINY” Device Size, “LARGE” Computing Power

Size Downscaling Materials and Electrical Properties
65nm Node

2005

450m Node = Quantum Effects
- » Energy-level quantization, Tunneling

(Production ramp-up)

Layers with different band alignments
(Development|

liam g -V Devic

- et A SR Froto

o SRR S o 4 esearch) '
11-V
18nm Length i S- y » -
(Research) 1onm Length - — —
(Research) |
,:?::’”; ~Nanowire

(l arch) 7
Robert Chau (Intel), 2004 : Pretetype ¢ ’ ’

(Researchy
’

Computing Load: Hamiltonian

= System matrix of 3D device structure Governing Equations @

= DOF directly proportional to # of atoms = Schrodinger PDE

AW, 30nm3 Si box ~ 1M atoms = Non-equilibrium Green’s Function
Device 10 basis for 1 atom? Normal eigenvalue

- Involves H of 10M DOFs

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors Inverse Matrix 30

Nanoelectronics Computing: Focus

Electronic Structure of Realistically Sized Devices: Under External Bias

Schrédinger = Schrodinger-Poisson Loop

(H+VA)w = Ep Bandstructure Fermi-Dirac

o Self-consistent Field

o Materials Properties under
“External” Biases

: e ")) o Targeted for multi-million atom
Self-Consistent E NN . :
S TR systems: Physically Realizable
o Poisson szamall = Intel® Parallel Computing Center
Potential V(eVV) = gn . .
o KISTI designated since 2014
LDA .
Exchange-Correlation @) DevelOpment and Production of

VA = V+Vxc Vxc « n'3

Qualified Research Outcomes
H. Ryu et al., Nanoscale 5, 18, 8666 (2013)

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 31

Development Strategy: Parallelization

Large-scale Schrodinger, Poisson Eqgns.

Schrodinger Equation Poisson Equation
= Normal Eigenvalue Problem = Linear System Problem
(Electronic Structure Calc.)

= Hamiltonian is always symmetric = Poisson matrix is always symmetric

Steps for Parallelization
= Domain Decomposition on CPU-level ﬁ ..
y = 4 Adiag | W

o System matrices directly mapped to real-space 5
= Suitable algorithm for numerical solvers for scalability = ...
W+ | Adiag W

o Should be purely iterative 1
o Direct algorithm is bad, (e.g.) No memory -
reduction with increasing # of CPUs

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 32

Numerical Algorithm: Eigenvalue Solver
LANCZOS lterations
= Schrodinger Eqns. with LANCZOS Algorithm
- C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255
= Original Matrix (Hamiltonian) - T Matrix by Basis-Reduction

= Qverall Steps for Iteration: Purely Scalable Algebraic Operations

v;: (Nx1) vectors (1=0, ..., K); a, and b;: scalars (1=1, ..., K)
Lanczos

vy € 0, v, = random vector with norm 1 ;
b, <0;
loop for (j=1; j<=K; j++)

w; € Avj ;

a; € w;evgs
W € W; - ay;- b.v.

i
b;,, € ||W,|| ;

Vit € Wi/ by s
construct T matrix;
end loop

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 33

Numerical Algorithm: Poisson Solver
Conjugate Gradient (CG) Iterations

= Poisson Egns. with Conjugate Gradient Algorithm
- A Problem of Solving Linear Systems
= Convergence guaranteed: symmetric and positive definite system matrices

= Qverall Steps for Iteration: Purely Scalable Algebraic Operations

We want to solve Ax =b. First compute ry=b —Ax), p,=1,
loop for (j=1; j<=K; j++)
a; € <r;°r; >/<Apj°pj>;

if ([l lrol| <€)
declare r;,, is the solution of Ax =b and break the loop
C; € <Ij41°Fjsy >/<I;°r;>;
Pj+1 € Fjr T ¢P;s
end loop

34

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Performance on a CPU-level

1D Domain Decomposition: Lanczos Iteration
Domain Decomposition

-—-Developed
-= -ldeal

N Comm. Ratio
Scalability

Wall-time (sec)
Wall-time (sec)

Performance BMT @ KISTI Tachyon-li

= 278x16x16nm [100] Si nanowires

= 4194304 atoms
» Find 5 lowest energy-levels

= Scalability upto ~80%: Communication Bottleneck
= How to reduce wall-time more with less # of nodes?
o BUT with NO LOSS in computing time
35

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

Strategy: Performance Improvement
Asynchronous Offloading

The real bottleneck of computing

= Vector dot-product is not expensive: All-reduce, but small communication loads

= Vector communication is not a big deal: only communicates between adjacent layers
= Sparse-matrix-vector multiplication itself is indeed a big deal

Schrodinger (LANCZOS) Communication Pattern for MV multiplier

B . . . y = 4
loop for G=1; j<=K; j++) e THREADS
a; € wW;°v.; A—" . s
N =
W, €W, -av.-bv; ;;
€ 2 4B -
by € Wl 5
Y
Vi €W, / bj+1 ; THREADS
= Matrix-vector multiplier: Comm?? Food for Thoughts
= Vector dot product: Reduction = Sparse MV multiplier: performance vectorization?
= Others: No communication = Synchronous offload: CPU should be idle: Asynchronous?

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 36

Strategy: Performance Improvement
Asynchronous Offloading

The real bottleneck of computing

= Vector dot-product is not expensive: All-reduce, but small communication loads
= Vector communication is not a big deal: only communicates between adjacent layers
= Sparse-matrix-vector multiplication itself is indeed a big deal

Schrodinger (LANCZOS)
lo_op for =1; j<=K; j++)
w. € Ay. ;
YAY AR 4
a; € w;°v.;
WY NIV

Coprocessor

First K rows
(K< M)

“Truncated M”’V Multiplier

wmnmen |

bjy € liwy] CPU

W, < W.-av.-bv: ;;
Y Rty SRS Aar SRS Mt Ml

Vis1 € Wy /by 5

» Matrix-vector multiplier: Comm??
» Vector dot product: Reduction
= Others: No communication

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

37

Some Results: Performance Improvement

Asynchronous Offloading: Server spec is moderate
Benchmark in a testbed 1 @ KISTI

» 1 node: 4 Xeon E5-2603 v2 CPUs (1.8GHz), 16GB M w/ a 3120 card (6GB M)
» Problem size: A P-atom integrated in 22nmx22nmx22nm Si box (DOF: 5.12M, M ~ 3.8GB)

» Target: Run 5000 Lanczos iterations to find as many eigenvalues as possible
= Cond: 1 MPI process with 4 threads per CPU, 224 threads in MIC (564)

Schrodinger (LANCZOS)
loop for (j=1; j<=K; j++)
W; < Ay

a, € W.°V:;
WY MINYIIINY

—
o
o
o

W, €W, -av.-bv. ;;
Y et ARG Sar SEERES Mt A

&8
3
©
£
b1 € ”wv!',, ; §

[l Others
[VVDot

COMPI
CIMVMul

BMT Summary
= 85% MIC load: Best

= ~3x Improvement in
MVMul, ~2x in Total

[6)]
o
o

Vi1 € W/ byyy

= Matrix-vector multiplier: Comm??
» Vector dot product: Reduction
= Others: No communication MIC load (%)

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors

38

Some Results: Performance Improvement
Asynchronous Offloading: Server spec is super-excellent

Benchmark in a testbed 2 @ KISTI — super-excellent spec
= 2 nodes: 20 Xeon E5-2680 v2 CPUs (2.8GHz), 256GB M w/ two 7120 card (32GB M total)
= Problem size: A P-atom integrated in 22nmx71nmx71nm Si box (DOF: 54M, M ~ 41GB)

= Target: Run 5000 Lanczos iterations to find as many eigenvalues as possible
= Cond: 4 MPI process with 10 threads per CPU, 240 threads in MIC (60*4)

Schrodinger (LANCZOS)
loop for (j=1; j<=K; j*++)
W; € AV

a, € W,°V;;
har's MINTYINY

[l Others
[VVDot

CIMPI
CIMVMuI

BMT Summary
= 65% MIC load: Best

= ~1.5x Improvement in
MVMul, ~1.3x in Total

-
o
o
o

W, €W, -av.-bv, ;;
Y At ARG Sar SRS Mot A

bj+1 < “!YQr 5

Vi1 € W/ byyy

—_
o
o
o

@
O
(0]

)
[}
£
i
g

H. Ryu et al., SC 15

Intel Theatre Presentation

» Matrix-vector multiplier: Comm??
= Vector dot product: Reduction 50
= Others: No communication MIC load (%)

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 39

Possibility: Meaning of 1.5x~3x Speedup?
When the computing is not CPU-bound

= Recall: Sparse Matrix is not a BEST example
o It rather is “WORST” example while having a big community
= 20 cores w/ 2 coprocessor cards vs. 30 cores?
o # of nodes: already 66%~33% with rough estimation
= Tachyon-Il: Yes, it is old but
o 50M USD one time vs. 6M every year?
o Electricity and Land: Coprocessor is already a green computing
= Upcoming Knight-Landing: Self-bootable.
o Computing Capability would reduce # of nodes (req. for some performance)

o Sparse Matrix Operation can even improved with High BW memory
o Money Money Money...

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 40

Utility: Developed SP Solver

Nanoelectronics/Materials Research

= P-doped Si nanowires: Attractive
= Problem: What's the size limit of

A Study of Dopant-distribution in Free-standing Si nanowires

materials for designs of ultrathin interconnector.

Dopant-distribution should be uniform (in general) to achieve conducting nanowires.

highly P-doped nanowires that allow uniform dopant-

distribution? — Needs to be understood to provide a design guideline for field engineers.

Dopant-distribution in Si:P nanowire channels

Surface-oriented Uniform
Dopant-distrbution Dopant-distrbution

16nm

(Transport)
110]

Diameter

* g2 [001]
~ [
T e
16nm
Si atom

Patom @
ao = 0.384nm

[10]

=20nm

2
s
@
£
B
c
8
s
3
s
>
o
5]
c
i}

o
a
o
]

c
8
4
3
8
o
€
5.
7]

Diameter

. . |
. 3 . . S . L ?®
.
‘\':‘ .y
20nm J J 20nm J
Surface-oriented Uniform
Dopant-distrbution Dopant-distrbution

H. Ryu et al., Nano Letters 15, 1, 450-456 (2015)

Channel energy variation

NANO iy

Atomistic Study on Dopant-Distributions in Realistically Sized, Highly
P-Doped Si Nanowires

Hoan R *1 Tnngeonh Kim ¥ and Ki-Ha Hono®T

o TERE

3ksT@300K

R
5 2019 AP el 24 92 9
FEKISTI AU, FHzFE &8s A4t

97He] o1 AR}
Surface-oriented ——————— Uniform AlElE U

Dopant-distribution

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 41

Utility: Developed SP Solver

Nanoelectronics/Materials Research

= Mobility behavior in Free-standing P-doped Si nanowires
= Problem: Investigation Major Scattering Mechanisms suppressing Carrier Transport
= Below 10nm CMOS Technology, presenting Design Guideline to Experimentalists.

3nm x 3nm Channel 8nm x 8nm Channel
[100] Transport [110] Transport

10nmx10nm
Channel

53(100] Transport
~[110] Transport

= =
£ £
2 2
S S
o o
— —
& &
S S
~< <

T
o
k4

2
e
5
[=3
8
=
=
z
3
[<}
=

S
6nmxénm
Channel
10° 10°

3nmx3nm
Channel

. ’
10° 10° 10°

H. Ryu, Nanoscale Research Letters 11, 1, 36 (2016) Y
KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 42

Grand Summary
Intel Xeon Phi™ Coprocessors

= Environment of MIC Programming:
o Characteristics of Xeon Phi™ Coprocesors
o Performance: Dense Operations
o Vectorization and Parallelization

= Execution Modes (Programming Models)
o Native Mode

o Symmetric Mode
o Offload Mode

= Very short discussions: Knights Landing

= Validity on Large-scale Sparse-matrix-involced PDE computing
o KISTI Intel® Parallel Computing Center: Schrodinger-Poisson
o Research Activities

KISTI Intel® PCC, MIC Programming with Intel® Xeon Phi™ Coprocessors 43

