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Agenda	

•  Basic communication performance	
– Point-to-point communication	

– Collective communication	

•  Profiling	

•  Communication optimization technique	
– Communication reduction 
– Communication latency hiding	

– Communication blocking	

– Load balancing 
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Basic Performance	

•  Performance for basic communications 
should be understood to optimize 
communication	

– Understand performance in various 
communication patterns	

– Decide the block size of communication 
blocking	

–  Improve the performance communication 
library compared with the peak network 
performance	
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PC Cluster Platform [P1]	
•  4 cluster nodes	

–  2.6GHz Dualcore Opteron x 2 sockets (4 cores) 
–  4GB memory 
–  Linux 2.6.18-1.2798.fc6 
–  OpenMPI 1.1-7.fc6 

•  Connected by Gigabit Ethernet	
–  Theoretical peak in TCP is 949 Mbps (= 113.1 MB/sec) 

Gigabit Ethernet Switch 

Dualcore Opteron x 2 
4GB memory 

Gigabit 
Ethernet 
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PC Cluster Platform [P2]	

•  T2K Tsukuba 4 nodes	

– 2.3GHz Quadcore Opteron x 4 sockets (16 
cores) 

– 32GB memory 
– MVAPICH2 

•  Connected by 4xDDR Infiniband (multirail)	
– Theoretical peak is 8 GB/sec (= 64 Gbps) 

•  No memory location optimization 
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Performance of point-to-point 
communication	

MPI_Send 

MPI_Recv 

Process  1	 Process  2	

data	
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PingPong Benchmark (1)	

MPI_Send 
MPI_Recv 

Process １	 Process ２	

Data size s [MB] 

MPI_Send 

MPI_Recv 
MPI_Wtime 

MPI_Wtime 

Elapsed 
time	
t [sec] 

Network bandwidth	 )2//(ts [MByte/sec] 
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PingPong Benchmark (2)	
for (s = 1; s <=P MAX_MSGSIZE; s <<= 1) { 
    t = MPI_Wtime(); 
    for (i = 0; i < ITER; ++i) 
        if (rank == 0) { 
            MPI_Send(BUF, s, MPI_BYTE, 1, TAG1, COMM); 
            MPI_Recv(BUF, s, MPI_BYTE, 1, TAG2, COMM, &status); 
        } else if (rank == 1) { 
            MPI_Recv(BUF, s, MPI_BYTE, 0, TAG1, COMM, &status); 
            MPI_Send(BUF, s, MPI_BYTE, 0, TAG2, COMM); 
        } 
    t = (MPI_Wtime() – t) / 2 / ITER; 
    if (rank == 0) 
        printf(“%d %g %g\n”, s, t, s / t); // size, time, bandwidth	
} 
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PingPong
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Protocol switch between 
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Half of peak 
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Protocol of point-to-point 
communication	

•  Eager protocol (1-way protocol) 
–  for relatively small size of messages 
–  A sender sends both the message header and the message 

body (data, payload) at the same time 
–  It can reduce the communication latency, but incurs copy 

overhead at the receiver 

•  Rendezvous protocol (3-way protocol) 
–  for larger size of message 
–  A sender sends the message header, and waits for the 

acknowledgement 
–  The sender sends the message body 
–  It can achieve good communication bandwidth by reducing the 

copy overhead, but has longer latency than the eager protocol 
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•  MPI selects one of several protocols according to the 
message size 

•  It is visible if we carefully measure the performance with 
various message size 

•  Most MPI allows for users to specify the threshold of the 
message size for the protocol switch to optimize the 
communication performance	
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[P1] PingPong Benchmark 
Summary	
•  Larger data size gets better performance	

•  Cf. theoretical peak is 113.1 MB/sec 
•  More than half → 16 KB or larger	
•  More than 90% of peak → 512 KB or larger	

•  Performance follows the curve of 200µsec 
latency in long message 
– Although latency of 1-byte PingPong is 563 µsec	
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[P2] PingPong Benchmark	
PingPong
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[P2] Comparison with theoretical 
curve	

PingPong
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[P2] PingPong Benchmark 
Summary	

•  Larger data size gets better performance	

•  Performance follows the curve of around 20µs 
latency in both short and long messages	

#IB	 1 2 3 4 
BW[MB/s] 1366 2674 3256 3468 

Latency[µsec] 14.7 16.3 20.4 24.1 
Nhalf[KB] 20 42 68 86 
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Intel® MPI Benchmark 
•  Basic MPI Benchmark Kernel	
•  MPI1 

–  PingPong 
–  PingPing 
–  Sendrecv 
–  Exchange* 
–  Bcast 
–  Allgather 
–  Allgatherv 
–  Alltoall* 
–  Alltoallv* 
–  Reduce 
–  Reduce_scatter 
–  Allreduce* 
–  Barrier 
–  Multiple version that executes 

above in parallel	

•  EXT 
–  Window 
–  Unidir_Put 
–  Unidir_Get 
–  Bidir_Get 
–  Bidir_Put 
–  Accumulate 

•  IO 
–  S_{Write,Read}_{indv,expl} 
–  P_{Write,Read}

_{indv,expl,shared,priv} 
–  C_{Write,Read}

_{indv,expl,shared} 

Single 
Transfer 
Parallel 
Transfer 

Collective 
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Exchange Pattern	
•  Communication pattern to exchange 

border elements	

*From Intel MPI Benchmarks Users Guide and Methodology Description	
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[P1] Exchange (4 nodes) 
[3 trials] 

Exchange	(4nodes)
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[P1] Exchange (4 nodes) 
Summary	

•  Basically larger data size gets better 
performance except around 32 KB	

•  Cf. Theoretical peak is 2*113.1 = 226.2 
MB/sec 

•  More than half → 16KB and 128 KB or 
larger	
– Less than half at 32 KB and 64 KB	

•  Unstable at 512 KB or larger due to packet 
loss and RTO	
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[P2] Exchange (4 nodes)	
Exchange	(4	nodes)
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[P2] Exchange Summary	

•  Larger data size gets better performance	

•  Multirail is beneficial at 32 KB or larger	
•  4 rails do not show good performance	

•  Performance is stable 
–  Infiniband does not drop packets	
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Allreduce 
•  Do specified operation (sum, max, logical 

and/or, …) among arrays of each process, 
and store the result in all processes	

•  Example of MPI_SUM	

Array of 
process １	

Array of 
process ２	

Array of 
process 3	

Array of 
process 4	

＋	 ＋	 ＋	 ＝	

∑ =
=+++

4

14321 i ixxxxx

All processes have 
the result	
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[P1] Allreduce (4 nodes) 
[data size / time] 

Allreduce	(4nodes)
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[P1] Allreduce Summary	

•  Basically larger data size gets better 
performance except around 32 KB	

•  Good performance is achieved at 8 KB 
and 64 KB or larger 
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[P2] Allreduce (4 nodes) 
[data size / time] 

Allreduce	(4	nodes)
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[P2] Allreduce Summary	

•  Larger data size gets better performance 
until 1 MB	

– Performance deteriorates when data size is 
larger than 1 MB	

•  Multirail is beneficial at 64 KB or larger	
•  4 rails do not show good performance	
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Multirail solution	
•  Multi-rail (or “binding”) solution theoretically improves the 

performance in bandwidth, but the latency is not improved 
•  For large size of messages, it works in most of cases 
•  When the number of bound links increases, the efficiency typically 

goes down 
•  Several use cases of multirail.  If you have four links bound: 

–  Use them as a single channel logically 
–  Use them as two sets of 2-rail binding 
–  Use them as four sets of single channel 

•  Most MPI libraries that support multirail provide the feature to 
control “how many links are bound” by user 

•  There is no generic best usage, and it depends on the 
behavior of application	
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Profiling	

•  Understand the behavior of programs	
–  Frequently called functions	
–  Time-consumed functions	
–  Call tree	
–  Memory usage of functions, …	

•  Understand the most time-consumed code	
•  Understand synchronization and load imbalance in 

parallel programs	

Profiler is required not to change the behavior of 
parallel program so much	
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Communication profiling by 
users	

•  Users insert an instrumenting code at the point of interest by 
themself 

•  Put “wall clock measuring” (ex. MPI_Wtime, gettimeofday()) before 
and after to measure time of a certain block 
–  for each MPI function 
–  for some important blocks 

•  The accuracy of measuring “ticks” depends on the system 
 
 
 
 
 
 

•  It is easy, but there are more sophisticated tools	

double t1, t;

t1 = MPI_Wtime();
MPI_Allgather(....);
t = MPI_Wtime() – t1;
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tlog – time log 
•  Light-weight profiling library by Prof. Sato at University of 

Tsukuba	
–  16 B of memory space for each event	

•  9 kinds of single events and 9 kinds of interval events	
–  It can be extended since event number field is 8 bit	

•  Record the elapsed time in seconds from tlog_initialize	

–  Time difference among processes is measured in tlog_initialize	

–  Recorded time is “absolute” time in parallel processes relative to 
tlog_initialize	

•  Temporal URL for download 
–  http://www.ccs.tsukuba.ac.jp/workshop/HPCseminar/2011/software/tlog-0.9.tar.gz 
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tlog – major API 
void tlog_initialize(void) 

 initializes the tlog environment.  It should be called after 
MPI_Init	

void tlog_log(int event) 
 records a log of the specified event	

void tlog_finalize(void) 
 outputs the logs to trace.log.  It should be called before 
MPI_Finalize()	

tlog_initialize(); 
… 
tlog_log(TLOG_EVENT_1_IN); 
/* EVENT 1 */ 
tlog_log(TLOG_EVENT_1_OUT); 
… 
tlog_finalize(); 32 
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Example - cpi.c 

•  Test program that computes π	

MPI_Init(&argc, &argv); 
tlog_initialize(); 
tlog_log(TLOG_EVENT_1_IN); 
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_1_OUT); 
/* compute mypi (partial sum) */ 
tlog_log(TLOG_EVENT_2_IN); 
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_2_OUT); 
if (rank == 0) /* display the result */ 
tlog_log(TLOG_EVENT_1_IN); 
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_1_OUT); 
tlog_finalize(); 
MPI_Finalize(); 33 
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Example – compilation of cpi	
•  How to link tlog library	

•  How to install tlog library and tlogview 

% mpicc -O -o cpi cpi.c -ltlog 

% ./configure 
% make 
% sudo make install 

Example to install in 
/usr/local	
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Example – output of cpi	
$ mpiexec -hostfile hosts -n 4 cpi 
adjust i=1,t1=0.011781,t2=0.011886,t0=0.011769,diff=6.7e-05 
adjust i=2,t1=0.012911,t2=0.013015,t0=0.012877,diff=8.8e-05 
adjust i=3,t1=0.014441,t2=0.014548,t0=0.014392,diff=0.000115 
adjust i=1,t1=0.01623,t2=0.016335,t0=0.016285,diff=-2e-06 
adjust i=2,t1=0.017314,t2=0.017418,t0=0.017367,diff=-2e-06 
adjust i=3,t1=0.018401,t2=0.018504,t0=0.018454,diff=2.5e-06 
tlog on ... 
Process 0 on exp0.omni.hpcc.jp 
pi is approximately 3.1416009869231249, Error is 0.0000083333333318 
wall clock time = 0.000213 
tlog finalizing ... 
Process 3 on exp3.omni.hpcc.jp 
Process 1 on exp1.omni.hpcc.jp 
Process 2 on exp2.omni.hpcc.jp 
tlog dump done ... 
 

measurement of 
time difference 
among nodes 
(output in debug 
mode) 

output in debug 
mode	

output in debug 
mode	

Output of 
program	
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Profiling result of cpi (1)	

•  tlogview – visualization tool for tlog output	

•  Profiling example when using 4 processes	

% tlogview trace.log 

Elapsed time from tlog_initialize in seconds 
(adjusted using the time difference among nodes)	

MPI_Bcast 

MPI_Reduce 
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Profiling result of cpi (2)	
•  Profile example when using 16 processes	

MPI_Bcast MPI_Reduce 
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Communication optimization	

•  Communication reduction*	

•  Load balancing* 
•  Communication blocking 

– Basically larger data size is better 
performance 

•  Communication latency hiding for short 
message communication 
– Overlapping computation and communication 
– Pipeline execution 
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Communication blocking	

•  Data size is a major factor for 
communication performance	

•  Communication blocking enlarges the data 
size by aggregating the communication 
data	

– Block distribution of data	

– Aggregation of multiple iterations (temporal 
blocking)	
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Example of communication blocking 
– Jacobi method	

•  Solving a sparse matrix that arises when discretizing 2D 
Laplace equation in 5 point stencil	

jacobi() { 
  while (!converge) { 
    for(i = 1; i < N - 1; ++i) 
      for(j = 1; j < N - 1; ++j) 
        b[i][j] = .25 * 
              (a[i - 1][j] + a[i][j - 1] 
               + a[i][j + 1] + a[i + 1][j]); 
    /* convergence test */ 
    /* copy b to a */ 
  } 
} 

a[i-1][j]

a[i+1][j]

a[i][j-1] a[i][j+1]

Data dependency	

*In fact, not to use Jacobi method but RB-SOR etc.	
40 
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Block distribution of data	

PE 2

PE 0 PE 1

PE 3

PE 0 PE 1 PE 2 PE 3

(A) (B)1D block distribution	 2D block distribution	

•  Block distribution of data enlarges the 
communication data size	

–  In case of 1D	

–  In case of 2D	 pn /
n
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Communication of shadow 
region (boundary region)	

•  To update the 
boundary     , data of   
is required 

•  To update the 
boundary     , data of  
is required 

1. Exchange 　　and 　　 
2. Update all data in each 

process 
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Internal region 

Overlapping computation and 
communication	

•  To update internal 
region, data of      
is not required 

1. Send data of 
2. Update internal 

region 
3. Receive data of 
4. Update boundary 

region 
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Overlapping computation and 
communication (2)	

•  MPI_Isend(      , …, &req[0]) 
•  MPI_Irecv(      , …, &req[1]) 
•  Calculation in internal region (A) 
•  MPI_Waitall(2, req, status) 
•  Calculation on boundary region (B)	

44 
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com.	

(B)	

com	 (A) + (B)	

Hide communication latency by 
overlapping computation of internal 
region and communication	



Note for overlapping 
computation and communication	
•  This may cause the performance 

degradation 
– Computation of boundary region makes cache 

miss rate higher 
– Com + all should be less than inner + bound. 
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Communication aggregation of multiple 
iterations (temporal blocking) (1)	
•  Aggregation of 2 iterations of Jacobi 

method	

•  The first iteration 
requires	

•  Next iteration 
requires	

•  Transferring     and 
  　enables calcula- 
tion of two iterations	
–  In 1D	

–  In 2D	 pn /2
n2
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Communication aggregation of 
multiple iterations (2)	

•  Transfer     and 
•  [First iteration] 

Compute red part 
including edge part 

•  [Second iteration] 
Compute without 
communication 
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Summary	

•  Basic communication performance	
– Point-to-point communication	

– Collective communication	

•  profiling	

•  Communication optimization	
– Communication reduction	

– Communication latency hiding	

– Communication blocking	

– Load balancing 
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