
Optimization 2: Communication
Optimization	

Osamu Tatebe	
tatebe@cs.tsukuba.ac.jp

Faculty of Engineering, Information and Systems /
Center for Computational Sciences,

University of Tsukuba	

1
2016/2/16	 Japan-Korea HPC Winter School

Agenda	

•  Basic communication performance	
– Point-to-point communication	

– Collective communication	

•  Profiling	

•  Communication optimization technique	
– Communication reduction
– Communication latency hiding	

– Communication blocking	

– Load balancing
2

2016/2/16	 Japan-Korea HPC Winter School

Basic Performance	

•  Performance for basic communications
should be understood to optimize
communication	

– Understand performance in various
communication patterns	

– Decide the block size of communication
blocking	

–  Improve the performance communication
library compared with the peak network
performance	

3
2016/2/16	 Japan-Korea HPC Winter School

PC Cluster Platform [P1]	
•  4 cluster nodes	

–  2.6GHz Dualcore Opteron x 2 sockets (4 cores)
–  4GB memory
–  Linux 2.6.18-1.2798.fc6
–  OpenMPI 1.1-7.fc6

•  Connected by Gigabit Ethernet	
–  Theoretical peak in TCP is 949 Mbps (= 113.1 MB/sec)

Gigabit Ethernet Switch

Dualcore Opteron x 2
4GB memory

Gigabit
Ethernet

4

PC Cluster Platform [P2]	

•  T2K Tsukuba 4 nodes	

– 2.3GHz Quadcore Opteron x 4 sockets (16
cores)

– 32GB memory
– MVAPICH2

•  Connected by 4xDDR Infiniband (multirail)	
– Theoretical peak is 8 GB/sec (= 64 Gbps)

•  No memory location optimization

5
2016/2/16	 Japan-Korea HPC Winter School

Performance of point-to-point
communication	

MPI_Send

MPI_Recv

Process 1	 Process 2	

data	

6
2016/2/16	 Japan-Korea HPC Winter School

PingPong Benchmark (1)	

MPI_Send
MPI_Recv

Process １	 Process ２	

Data size s [MB]

MPI_Send

MPI_Recv
MPI_Wtime

MPI_Wtime

Elapsed
time	
t [sec]

Network bandwidth)2//(ts [MByte/sec]

7
2016/2/16	 Japan-Korea HPC Winter School

PingPong Benchmark (2)	
for (s = 1; s <=P MAX_MSGSIZE; s <<= 1) {
 t = MPI_Wtime();
 for (i = 0; i < ITER; ++i)
 if (rank == 0) {
 MPI_Send(BUF, s, MPI_BYTE, 1, TAG1, COMM);
 MPI_Recv(BUF, s, MPI_BYTE, 1, TAG2, COMM, &status);
 } else if (rank == 1) {
 MPI_Recv(BUF, s, MPI_BYTE, 0, TAG1, COMM, &status);
 MPI_Send(BUF, s, MPI_BYTE, 0, TAG2, COMM);
 }
 t = (MPI_Wtime() – t) / 2 / ITER;
 if (rank == 0)
 printf(“%d %g %g\n”, s, t, s / t); // size, time, bandwidth	
}

8
2016/2/16	 Japan-Korea HPC Winter School

PingPong

0

20

40

60

80

100

120

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	size	[B yte]

[M
B
/
se
c
]

[P１] PingPong Benchmark	

Protocol switch between
32 KB and 64 KB	

Half of peak
performance at 16 KB	

111.9 MB/sec

9
2016/2/16	 Japan-Korea HPC Winter School

Protocol of point-to-point
communication	

•  Eager protocol (1-way protocol)
–  for relatively small size of messages
–  A sender sends both the message header and the message

body (data, payload) at the same time
–  It can reduce the communication latency, but incurs copy

overhead at the receiver

•  Rendezvous protocol (3-way protocol)
–  for larger size of message
–  A sender sends the message header, and waits for the

acknowledgement
–  The sender sends the message body
–  It can achieve good communication bandwidth by reducing the

copy overhead, but has longer latency than the eager protocol

10
2016/2/16	 Japan-Korea HPC Winter School

•  MPI selects one of several protocols according to the
message size

•  It is visible if we carefully measure the performance with
various message size

•  Most MPI allows for users to specify the threshold of the
message size for the protocol switch to optimize the
communication performance	

11

Protocol of point-to-point
communication (continued)	

2016/2/16	 Japan-Korea HPC Winter School

0	

20	

40	

60	

80	

100	

120	

1 	 10 	 100 	 1,000 	 10,000 	 100,000 	1,000,000 	10,000,000 	

[M
B

/
se

c
]	

Data size [Byte]	

[P1] Comparison with theoretical
curve	

200 µsec of latency
113.1 MB/s of BW

Theoretical curve	 ()BsLs +
latency	 bandwidth	L BBLNhalf =

12

[P1] PingPong Benchmark
Summary	
•  Larger data size gets better performance	

•  Cf. theoretical peak is 113.1 MB/sec
•  More than half → 16 KB or larger	
•  More than 90% of peak → 512 KB or larger	

•  Performance follows the curve of 200µsec
latency in long message
– Although latency of 1-byte PingPong is 563 µsec	

13
2016/2/16	 Japan-Korea HPC Winter School

[P2] PingPong Benchmark	
PingPong

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 10,000 1,000,000 100,000,00
0

Data	size	[Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Performance is around	
3500 MB/sec	

Half of peak
performance at 128 KB	

Multirail is beneficial when data
size is larger than 128 KB	

14
2016/2/16	

[P2] Comparison with theoretical
curve	

PingPong

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 10,000 1,000,00
0

100,000,
000

Data	size	[Byte]

[M
B
/
se
c
]

IBx1

IBx2

IBx3

IBx4

遅延14.7μs

遅延16.3μs

遅延20.4μs

遅延24.1μs

latency	
latency	
latency	
latency	

15
2016/2/16	

[P2] PingPong Benchmark
Summary	

•  Larger data size gets better performance	

•  Performance follows the curve of around 20µs
latency in both short and long messages	

#IB	 1 2 3 4
BW[MB/s] 1366 2674 3256 3468

Latency[µsec] 14.7 16.3 20.4 24.1
Nhalf[KB] 20 42 68 86

16
2016/2/16	 Japan-Korea HPC Winter School

Intel® MPI Benchmark
•  Basic MPI Benchmark Kernel	
•  MPI1

–  PingPong
–  PingPing
–  Sendrecv
–  Exchange*
–  Bcast
–  Allgather
–  Allgatherv
–  Alltoall*
–  Alltoallv*
–  Reduce
–  Reduce_scatter
–  Allreduce*
–  Barrier
–  Multiple version that executes

above in parallel	

•  EXT
–  Window
–  Unidir_Put
–  Unidir_Get
–  Bidir_Get
–  Bidir_Put
–  Accumulate

•  IO
–  S_{Write,Read}_{indv,expl}
–  P_{Write,Read}

_{indv,expl,shared,priv}
–  C_{Write,Read}

_{indv,expl,shared}

Single
Transfer
Parallel
Transfer

Collective

17
2016/2/16	 Japan-Korea HPC Winter School

Exchange Pattern	
•  Communication pattern to exchange

border elements	

*From Intel MPI Benchmarks Users Guide and Methodology Description	
18

2016/2/16	

[P1] Exchange (4 nodes)
[3 trials]

Exchange	(4nodes)

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1000000 10000000

D ata	size	[B yte]

[M
B
/
se
c
]

Local peak at 16 KB	

performance drop
at 32 KB	

Unstable at 512KB
or larger	

19
2016/2/16	

[P1] Exchange (4 nodes)
Summary	

•  Basically larger data size gets better
performance except around 32 KB	

•  Cf. Theoretical peak is 2*113.1 = 226.2
MB/sec

•  More than half → 16KB and 128 KB or
larger	
– Less than half at 32 KB and 64 KB	

•  Unstable at 512 KB or larger due to packet
loss and RTO	

20
2016/2/16	 Japan-Korea HPC Winter School

[P2] Exchange (4 nodes)	
Exchange	(4	nodes)

0

1000

2000

3000

4000

5000

6000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	size	[Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Multirail is beneficial at
32 KB or larger	

4 rails do not show good
performance	

21
2016/2/16	

[P2] Exchange Summary	

•  Larger data size gets better performance	

•  Multirail is beneficial at 32 KB or larger	
•  4 rails do not show good performance	

•  Performance is stable
–  Infiniband does not drop packets	

22
2016/2/16	 Japan-Korea HPC Winter School

Allreduce
•  Do specified operation (sum, max, logical

and/or, …) among arrays of each process,
and store the result in all processes	

•  Example of MPI_SUM	

Array of
process １	

Array of
process ２	

Array of
process 3	

Array of
process 4	

＋	 ＋	 ＋	 ＝	

∑ =
=+++

4

14321 i ixxxxx

All processes have
the result	

23
2016/2/16	

[P1] Allreduce (4 nodes) 
[data size / time]

Allreduce	(4nodes)

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	size	[B yte]

[M
B
/
se
c
]

Performance
drop at 32 KB	

Good performance at 8KB
and 64KB or later	

24
2016/2/16	

[P1] Allreduce Summary	

•  Basically larger data size gets better
performance except around 32 KB	

•  Good performance is achieved at 8 KB
and 64 KB or larger

25
2016/2/16	 Japan-Korea HPC Winter School

[P2] Allreduce (4 nodes) 
[data size / time]

Allreduce	(4	nodes)

0

100

200

300

400

500

600

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	size	[Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Performance down
at 1MB or larger	

Multirail is beneficial
at 64 KB or larger	

26
2016/2/16	

[P2] Allreduce Summary	

•  Larger data size gets better performance
until 1 MB	

– Performance deteriorates when data size is
larger than 1 MB	

•  Multirail is beneficial at 64 KB or larger	
•  4 rails do not show good performance	

27
2016/2/16	 Japan-Korea HPC Winter School

Multirail solution	
•  Multi-rail (or “binding”) solution theoretically improves the

performance in bandwidth, but the latency is not improved
•  For large size of messages, it works in most of cases
•  When the number of bound links increases, the efficiency typically

goes down
•  Several use cases of multirail. If you have four links bound:

–  Use them as a single channel logically
–  Use them as two sets of 2-rail binding
–  Use them as four sets of single channel

•  Most MPI libraries that support multirail provide the feature to
control “how many links are bound” by user

•  There is no generic best usage, and it depends on the
behavior of application	

28
2016/2/16	 Japan-Korea HPC Winter School

Profiling	

•  Understand the behavior of programs	
–  Frequently called functions	
–  Time-consumed functions	
–  Call tree	
–  Memory usage of functions, …	

•  Understand the most time-consumed code	
•  Understand synchronization and load imbalance in

parallel programs	

Profiler is required not to change the behavior of
parallel program so much	

29
2016/2/16	 Japan-Korea HPC Winter School

Communication profiling by
users	

•  Users insert an instrumenting code at the point of interest by
themself

•  Put “wall clock measuring” (ex. MPI_Wtime, gettimeofday()) before
and after to measure time of a certain block
–  for each MPI function
–  for some important blocks

•  The accuracy of measuring “ticks” depends on the system

•  It is easy, but there are more sophisticated tools	

double t1, t;

t1 = MPI_Wtime();
MPI_Allgather(....);
t = MPI_Wtime() – t1;

30
2016/2/16	 Japan-Korea HPC Winter School

tlog – time log
•  Light-weight profiling library by Prof. Sato at University of

Tsukuba	
–  16 B of memory space for each event	

•  9 kinds of single events and 9 kinds of interval events	
–  It can be extended since event number field is 8 bit	

•  Record the elapsed time in seconds from tlog_initialize	

–  Time difference among processes is measured in tlog_initialize	

–  Recorded time is “absolute” time in parallel processes relative to
tlog_initialize	

•  Temporal URL for download
–  http://www.ccs.tsukuba.ac.jp/workshop/HPCseminar/2011/software/tlog-0.9.tar.gz

31
2016/2/16	 Japan-Korea HPC Winter School

tlog – major API
void tlog_initialize(void)

 initializes the tlog environment. It should be called after
MPI_Init	

void tlog_log(int event)
 records a log of the specified event	

void tlog_finalize(void)
 outputs the logs to trace.log. It should be called before
MPI_Finalize()	

tlog_initialize();
…
tlog_log(TLOG_EVENT_1_IN);
/* EVENT 1 */
tlog_log(TLOG_EVENT_1_OUT);
…
tlog_finalize(); 32

2016/2/16	

Example - cpi.c

•  Test program that computes π	

MPI_Init(&argc, &argv);
tlog_initialize();
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
/* compute mypi (partial sum) */
tlog_log(TLOG_EVENT_2_IN);
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_2_OUT);
if (rank == 0) /* display the result */
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
tlog_finalize();
MPI_Finalize(); 33

2016/2/16	 Japan-Korea HPC Winter School

Example – compilation of cpi	
•  How to link tlog library	

•  How to install tlog library and tlogview

% mpicc -O -o cpi cpi.c -ltlog

% ./configure
% make
% sudo make install

Example to install in
/usr/local	

34
2016/2/16	 Japan-Korea HPC Winter School

Example – output of cpi	
$ mpiexec -hostfile hosts -n 4 cpi
adjust i=1,t1=0.011781,t2=0.011886,t0=0.011769,diff=6.7e-05
adjust i=2,t1=0.012911,t2=0.013015,t0=0.012877,diff=8.8e-05
adjust i=3,t1=0.014441,t2=0.014548,t0=0.014392,diff=0.000115
adjust i=1,t1=0.01623,t2=0.016335,t0=0.016285,diff=-2e-06
adjust i=2,t1=0.017314,t2=0.017418,t0=0.017367,diff=-2e-06
adjust i=3,t1=0.018401,t2=0.018504,t0=0.018454,diff=2.5e-06
tlog on ...
Process 0 on exp0.omni.hpcc.jp
pi is approximately 3.1416009869231249, Error is 0.0000083333333318
wall clock time = 0.000213
tlog finalizing ...
Process 3 on exp3.omni.hpcc.jp
Process 1 on exp1.omni.hpcc.jp
Process 2 on exp2.omni.hpcc.jp
tlog dump done ...

measurement of
time difference
among nodes
(output in debug
mode)

output in debug
mode	

output in debug
mode	

Output of
program	

35
2016/2/16	 Japan-Korea HPC Winter School

Profiling result of cpi (1)	

•  tlogview – visualization tool for tlog output	

•  Profiling example when using 4 processes	

% tlogview trace.log

Elapsed time from tlog_initialize in seconds
(adjusted using the time difference among nodes)	

MPI_Bcast

MPI_Reduce

36

Profiling result of cpi (2)	
•  Profile example when using 16 processes	

MPI_Bcast MPI_Reduce
37

2016/2/16	

Communication optimization	

•  Communication reduction*	

•  Load balancing*
•  Communication blocking

– Basically larger data size is better
performance

•  Communication latency hiding for short
message communication
– Overlapping computation and communication
– Pipeline execution

38
2016/2/16	 Japan-Korea HPC Winter School

Communication blocking	

•  Data size is a major factor for
communication performance	

•  Communication blocking enlarges the data
size by aggregating the communication
data	

– Block distribution of data	

– Aggregation of multiple iterations (temporal
blocking)	

39
2016/2/16	 Japan-Korea HPC Winter School

Example of communication blocking
– Jacobi method	

•  Solving a sparse matrix that arises when discretizing 2D
Laplace equation in 5 point stencil	

jacobi() {
 while (!converge) {
 for(i = 1; i < N - 1; ++i)
 for(j = 1; j < N - 1; ++j)
 b[i][j] = .25 *
 (a[i - 1][j] + a[i][j - 1]
 + a[i][j + 1] + a[i + 1][j]);
 /* convergence test */
 /* copy b to a */
 }
}

a[i-1][j]

a[i+1][j]

a[i][j-1] a[i][j+1]

Data dependency	

*In fact, not to use Jacobi method but RB-SOR etc.	
40

2016/2/16	

Block distribution of data	

PE 2

PE 0 PE 1

PE 3

PE 0 PE 1 PE 2 PE 3

(A) (B)1D block distribution	 2D block distribution	

•  Block distribution of data enlarges the
communication data size	

–  In case of 1D	

–  In case of 2D	 pn /
n

41

Communication of shadow
region (boundary region)	

•  To update the
boundary , data of
is required

•  To update the
boundary , data of
is required

1. Exchange 　　and 　　
2. Update all data in each

process

42
2016/2/16	

Internal region

Overlapping computation and
communication	

•  To update internal
region, data of
is not required

1. Send data of
2. Update internal

region
3. Receive data of
4. Update boundary

region
43

2016/2/16	

Overlapping computation and
communication (2)	

•  MPI_Isend(, …, &req[0])
•  MPI_Irecv(, …, &req[1])
•  Calculation in internal region (A)
•  MPI_Waitall(2, req, status)
•  Calculation on boundary region (B)	

44
2016/2/16	 Japan-Korea HPC Winter School

(A)	

com.	

(B)	

com	 (A) + (B)	

Hide communication latency by
overlapping computation of internal
region and communication	

Note for overlapping
computation and communication	
•  This may cause the performance

degradation
– Computation of boundary region makes cache

miss rate higher
– Com + all should be less than inner + bound.

45
2016/2/16	

Inner region	 b.r.	

All region	com	

com	

Longer computation	

Communication aggregation of multiple
iterations (temporal blocking) (1)	
•  Aggregation of 2 iterations of Jacobi

method	

•  The first iteration
requires	

•  Next iteration
requires	

•  Transferring and
 　enables calcula-
tion of two iterations	
–  In 1D	

–  In 2D	 pn /2
n2

46

Communication aggregation of
multiple iterations (2)	

•  Transfer and
•  [First iteration]

Compute red part
including edge part

•  [Second iteration]
Compute without
communication

47
2016/2/16	

Summary	

•  Basic communication performance	
– Point-to-point communication	

– Collective communication	

•  profiling	

•  Communication optimization	
– Communication reduction	

– Communication latency hiding	

– Communication blocking	

– Load balancing
48

2016/2/16	 Japan-Korea HPC Winter School

