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Methods for solving linear systems
Ax=D>b
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Analysis of natural and engineering

phenomena

Approximate solution of

Natural and engineering ¢ partial differential
phenomena equations
Analysis

@ Modeling ﬁ Solve Ax=b

Initial / Boundary value Linear svstems
problems of partial differential j‘> " yb
. X =
equations Discretization

Linear systems appear in many scientific applications.

However, the solution of linear systems 1s the most time-consuming part.
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Linear systems

Linear systems : Ax = b

a ap Ain X1 b1

ay, ay o X2 b
A = . . X = , b =

anl 4% UAnn Xn bn

Linear systems appear in many scientific applications.
However, the solution of linear systems 1s the most time-consuming part.
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Direct methods and iterative methods

Direct methods

Gaussian elimination, LU factorization, etc.

2) Number of nonzero elements increases in transformation of

coefficient matrix A.

—~ We cannot utilize coefficient matrix sparsity.

1) We can always obtain solution in a finite number of operations.




Direct methods
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Direct methods: Gaussian Elimination

Step 1. . . [ uip Ui ... Uy 11 X1 ] [ b,l ]
Transtform the matrix A of the linear [ 0 y,, ... uy, || xo A
system Ax = b to an upper triangular | . . . = S I
matrix U. 0 ... 0w 1L X, D),
- Computational complexity : n? /3. - - - T e

Step 2.
Solve the linear system Ux = b’ by backward substitution with
the following recursion formula.

Xi = (0! — Uij1Xip1 — - — UinXy) Uiy, T=n,n—1,...,1

- Computational complexity : n?/ 2.
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Direct methods: LU decomposition

Step 1.
Perform the LU decomposition of the coefficient matrix A.

A=LU
L : Lower triangular matrix, U : Upper triangular matrix.

- Computational complexity : n?/ 3.

] ()_ [ Ui, U122 ... Uy 11 X1 | [ bl ]
12,1 1 Uy ... Uy X2 bz
B ln’l ln’z o o o 1 1L O l/anl 1L .Xn B | bn B

- — - -

h
< <
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Direct methods: LU decomposition

Step 2. Find x using forward / backward substitution.

1) Solve Ly = b for y by forward substitution. Here, y = Ux.

1 O (vi| [ b1]

by 1 2 )

U | e
2) Solve Ux =y for x by backward substitution.

U U ... U, || X [ V1 ]
Uzo ... Uy X2 2

_O Uppn 1L Xn | [ Yn |

- Computational complexity : n?.

_10_
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Direct methods and iterative methods

Iterative methods

Krylov subspace methods
1) Required operations are
* Multiplication of a coefficient matrix and a vector : Au

« Inner product of vectors : (u,v) = u'v

* Constant times a vector plus a vector (AXPY) : au +v

___~ We can utilize coefficient matrix sparsity.

2) Some problems may require many number of iterations

_11_
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Krylov subspace methods

* X, 1s an initial guess. The vector x, 1s k-th approximate solution of
the linear system Ax = b. x, is updated by the iteration process.

o K(A;rp) is called a Krylov subspace. This subspace is spanned by
the vectors r,, Ar,, ..., A'r,.

e The vector r, = b — Ax, is called an initial residual vector.
X0 + Ki(A; ro)

xo + Ki—1(A4; rp)

o=

Sketch of Krylov subspace methods. -12-
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Methods for symmetric matrix

1. Coefficient matrix is a symmetric matrix (A =AT)

* Conjugate Gradient (CG) method
* Conjugate Residual (CR) method
* Minimal Residual (MINRES) method

Using the symmetric property of the coetficient matrix A,
algorithms with short recurrence formula (low computational

complexity) can be obtained.

_13_
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Algorithm of the CG method

Xo 1S an 1nitial guess,

Compute ryp = b — Axy,
Set py = ro,
For k = O, 1, cees until ||l’k||2 < 8TOL||b||2 do :

i = Apr, <—s== Matrix-vector multiplicationl

(g, 1) . et
= (egy = Inner product |

Xi+1 = X + Qr Pk, AXPY

Fi+1 = Tk — O 4k, {—I

B, (Pt Th+1) : Fa
o) <% nner produc I

DPik+1 = Tir1 + BkPr <%AXPY I

End For

_14_
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Relative residual history of the CG method

E 100 | I | | I |
= i 7 | In this figure, the iteration is
= 103} 1 | stopped when the condition
- - 12
§ i ] Irill2/1lbll2 < 10
6 .
S U 1 | is satisfied.
ER 17
S 107} ;
> I
2 [
% 10'12 1 1 1 1 1 1
= 0 100 200 300

Iteration number, k
The relative residual norm ||r¢||>/||b||>is monitored during the iterations.
If the condition ||r«ll2/||bll2 < eroL is satisfied, the iteration is stopped.
Then, the approximate solution x, 1s employed as the solution.

_15_
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Methods for non-symmetric matrix

2. Coefficient matrix is a non-symmetric matrix (4 # A")

Methods derived from residual bi-orthobonality condition
* Bi-Conjugate Gradient (BiCG) method
* Conjugate Gradient Squared (CGS) method
- BiCG Stabilization (BiICGSTAB) method

Computational complexity is low, but the residual norm does
—~" not decrease monotonically.

Methods derived from residual norm minimization condition
* Generalized Conjugate Residual (GCR) method

* Generalized Minimal Residual (GMRES) method

Residual norm decreases monotonically, but long-term recurrence
—~" relations are required. 16—
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Algorithm of the BiCG method

Xp 1s an initial guess,

Compute ry = b — Axy,
Choose r; such that (rj, ry) # 0,
Set py = ro and p; = ry,

Matrix-vector multiplication

For k =0, 1,...,until ||rl, < erollbll, do:
g = Apx, q, = A'p;,
(r,, r)
ar = " ;
(P;> qx)

Xi+1 = X + Qi Pr,

Inner product

AXPY

Feel = Fe— Qiqi, | | Ty = 1 — aiq,,
E3
k= :
(r, ro)
Pkl = Tiel + BiDis\\Pryy = Ty + By

End For

_17_
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Algorithm of the GCR method

X 1s an initial guess,
Compute ro = b — Axy,
Set pp = rp and gy = 5o = Ary,

For k=0,1,...,until ||r:|> < eroLl|b||> do :
_ (qis1i)
ak - )
(qr> qr)
Xi+1 = Xk + Qi Pk,
Fiiv1 = T — Qi 4k,
Skel = AFpgt,
i»S :
Bri = _(q_k“), (i=0,1,....k
(i, qki)
e The number of matrix-vector multiplications per
Pis1 = Tiet + ) Bribis S P P
i=0 1teration 1s 1.
Gi+1 = Sk+1 t Z Briqi» * This method requires large computational
End For =0 complexity and memory requirement.

Computational complexity and memory requirement

can be reduced by restart technique.

_18_
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Convergence properties of iterative

methods

~ 100 I T | | | |

§ _
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Iteration number, &

Relative residual norm histories of iterative methods.
B BiCG, B : CGS, B : BiCGSTAB, H : GCR.
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Example of sparse matrix

2D Poisson problem ly “ 052

u  u ,

6x2+0y2 =f, 1mQ Q

U=, on 0(2

f, u are given functions .
O 1 X

The region Q 1s divided into (M+1) equal parts in x, y directions
and discretized by central difference with S-points.

l
N

A linear system with matrix of order M? can be obtained.

- Total number of elements in matrix : M*
- Number of nonzero elements: SM? —4M

_20_
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Sparse matrix storage format

Compressed Row Storage (CRS) format
Search row-wise for nonzero elements

a0 apy 0 aps] val stores nonzero elements of A.

U an U axu @5 | ool ind stores column number of nonzero
A=laz ax ayxz 0 0

0 0 aq3 dqq 0
| U asp U as4 as5 1 row_ptr stores location of first nonzero

elements of A.

element in each row.

val: |aii|az|ais|ax|ara|azs|asr|asz|ass|aas|asa|asy|asal|ass

col_ind: [ 1 |3 |5 |24 |S5|1]123|3]4|2]4]35

row ptr: |1 ]4]17]110] 12| 15 The last entry 1s the number
of nonzero elements + 1 a1
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Sparse matrix storage format

Compressed Column Storage (CCS) format
Search column-wise for nonzero elements

‘a;; 0 apz 0 aps val stores nonzero elements of A.

0 ax 0 ay a row_ind stores row number of nonzero
A=|az ax a3z O 0O

) 0 as3 dqq )
| U asp U as4 as51 col_ptr stores location of first nonzero

elements of A.

element in each column.

val: |ai|az1|ax|asz|asz|aiz|ass|ass|aza|aas|ass|ais|azs|ass

row_ind: | 1 |3 2|3 |5|1]|31412[4]|5]|1]|2]5

G The last entry 1s the number

col ptr: |1 |3]16]9] 12
of nonzero elements + 1. _ -




Japan-Korea HPC Winter School 2016

Matrix-vector multiplication CRS format

Multiplication of matrix A and vector x for y =Ax

Cyvi ] [ an a2 ... ap || x|
Y2 d; dyp ... dp X2
. Vn | | dpl an Apn 1L Xn |

Fortran Code

0.0DO

_23_
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Matrix-vector multiplication CCS format

Multiplication of matrix A and vector x for y = Ax

X1
X2 n
y:[alaaZa“-aan] : :Zaixi
i=1
| Xn

Fortran Code

do i=1,n
y(i) = 0.0DO
end do
do j=1,n
do i=col ptr(j), col ptr(j+1l)-1
y(row ind(1i)) = y(row ind(1i)) + wval(1i)
end do

end do

_24_
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Parallelization of matrix-vector

multiplication
* y=Ax in CRS format

Proc. 0
Proc. 1
sk —
Proc. 2
Proc.3
A X Yy
x is stored in all Gather to Proc. 0

processes by MPI_Gather

_25_
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Parallelization of matrix-vector

multiplication
* y=Ax in CCS format

S | e | N [ en
s | S| g 2| = — | 4] |+l e
Bt | B | R |
Ry | R | R | R
A X Y

Sum results by MPI_Reduce

and send to Proc. 0 e



Japan-Korea HPC Winter School 2016

Parallelization of inner products
(x,y) =Y Xy
j=1
Proc. 0 Proc. 1 Proc. 2 Proc. 3

tmp sum tmp sum tmp sum tmp sum

N

Gather to Proc. 0 by MPI_Reduce

_27_
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Example of MPI code

n
program main (x,y) = ¥
include 'mpif.h’ Y ; 17

call mpi init(ierr)
call mpi comm size(mpi comm world, npu, ierr)
call mpi comm rank(mpi comm world, mype, lerr)
tmp sum = (0.0D0, 0.0DO)
do i=istart(mype+l), iend(mype+l)
tmp sum = tmp sum + conj(x(i)) * y(1i)
end do
call mpi reduce(tmp sum, sum, 1, mpi double complex,
mpi sum, 0, mpi comm world, ierr)

call mpi finalize(ierr)

_28_
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Parallelization of constant times ™

a vector plus a vector

y=y+ax, a: SC&I&I’, X,y . vector.

Send a scalar «a to all processes by MPI_Bcast

Proc. 0 Proc. 1 Proc. 2 Proc. 3

a MPI Bcast

a a a a

X X X X
X

+ + + +

_29_
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Methods for linear systems
with multiple right-hand sides
AX =B
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Linear systems with multiple right-han

sides
- Linear systems with L right-hand sides ~N
AX=B

where, A 1s a matrix of order n and
X =[x0.x®, 2], B=[p0.5O, . p]

- J

Solution by Direct methods
* Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system
by L forward and backward substitutions.
* Large computational complexity and memory usage are required

for complete factorization.

_31_
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Block Krylov subspace methods

Types of Block Krylov subspace methods

/

o

* Block BiCG

* Block GMRES

* Block QMR

* Block BiCGSTAB
* Block BiCGGR

O’Leary (1980)
Vital (1990)
Freund (1997)
Guennouni (2003)
Tadano (2009)

\

J

We can efficiently obtain solution vectors by using
Block Krylov subspace methods.

_32_
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Block Krylov subspace methods
What is the meaning of “good efficiency” ?
j> EResidual may converge in fewer iterations than Krylov }

subspace methods for single right-hand side.

Relative residual norm

10'14 i l I l l
0 500 1000 1500 2000

Iteration number

Relatrive residual histories of the Block BICGSTAB methods.
Mm:L.=1, B:L=2 B L=4

_33_
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Xo € R™L is an initial guess,

Compute Ry = B — AX),

Set PO = RO,
For k=0,1,...,untll ||[R|lg < etoL]|B|lg do:
Ok = APy,

Solve (Pg Qvay = Rng for ay,
Xiv1 = Xp + Prag,
Ri+1 = R — Oray,
Solve (R, R\)Bi = R, Ris1 for By,
Pii1 = Riv1 + PrfBr,

End For

Differences from CG method
1. The number of matrix-vector

multiplications is increased from
1 to L.

2. o, and 3, become matrices of
order L.

3. AXPY calculation becomes matrix-

matrix multiplications.

_34_
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Efficient matrix-vector multiplication

* Let the matrix A be stored in CRS format.
* Compute Y = AX. Y and X are n-row L-column arrays.

do k=1,L
do i=1,n
do j=row ptr(i), row ptr(i+l)-1
Y(1i,k)=Y(1,k)+A(])*X(col ind(3]),k)
end do
end do
end do

| Problems |

* Continuous memory access for X 1s not available.

( In Fortran, arrays are stored in column major order. )

* Coefficient matrix data must be read L times from memory.

_35_
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Efficient matrix-vector multiplication

| Modification |
* We store X and Y in transposed form. ( L-row n-column array ).

do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L
Y(k,1)=Y(k,i)+A(J)*X(k,col ind (7))
end do
end do
end do

* Continuous access ( at least L times ) can be provided for X.
* Matrix data are read in just once from memory.

* Continuous access can also be provided for Y. -
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LxL matrix multiplication

* The vectors are transposed, for efficient matrix-vector multiplication.

Transposition
T T T pT

do j=1,n
do i=1,L
do k=1,L
X(k,j)=X(k,j)+Alpha(k,i)*P(i,])
end do
end do
end do

Continuous access 1s enabled by

transposing.

The matrix Alpha is transposed in advance.

_37_
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nxL matrix multiplication

* This computation is required to compute ¢, and f,.

+ Let us consider the computation of Cy = P; Oy.

do j=1,n

do i=1,L
do k=1,L
C(k,i) = C(k,i) + P(k,3) * Q(i,3)
end do

end do

end do

* We can also maintain continuous memory access in computation of C,.

_38_
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Parallelization with OpenMP

* Parallelization interface for shared memory.

* Parallelization can be obtained simply by adding a few lines to the
exist program.

!SOMP PARALLEL
| program |
!SOMP END PARALLEL

Writing as above enables thread start and separate processing
in each thread.
( We assume that the following codes are enclosed by
1SOMP PARALLEL and ! SOMP END PARALLEL directives. )

_39_
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Parallelization with OpenMP

1. Parallelization of matrix-vector multiplication

ISOMP DO PRIVATE(7j,k)

do 1i=1,n

do j=row ptr(i), row ptr(i+l)-1
do k=1,L
Y(k,1)=Y(k,i)+A(J)*X(k,col ind (7))
end do

end do

end do

Simply add ! SOMP DO before the first do loop.

_40_
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Parallelization with OpenMP

2. Parallelization of nxL matrix by LxL matrix multiplication

1SOMP DO PRIVATE (i, k)

do j=1,n

do i=1,L
do k=1,L
X(k,j) = X(k,j) + Alpha(k,i) * P(i,3)
end do

end do

end do

Simply add ! SOMP DO before the first do loop.

_41_
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Parallelization with OpenMP

3. Parallelization of Lxn matrix by nxL matrix multiplication

! SOMP SINGLE

do j=1,L
do i=1,L
C(i,3j) = 0.0DO
end do

end do

!SOMP END SINGLE

1SOMP DO PRIVATE(i,k) REDUCTION(+:C)

do j=1,n

do i=1,L
do k=1,L
C(k,i) = C(k,i) + dconjg(P(k,j)) * Q(i,J)
end do

end do

end do

_42_
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Performance of Matrix-vector

multiplication
— 010} -
2
: 0.08 | -
- —eo— Efficient implementation
g 0.06 | —e— Naive implementation |7
= 004} ]
=
5 002} -
5]
[
ﬂ 0.00 ] 1 1 1 ] ]

0 2 4 6 8 10 12

Number of vectors, L

- Execution time of the naive and efficient implementation of Mat-vec mult.
- Matrix size : 1,572,864, #nonzero elements : 80,216,064

- Experimental environment: CPU : AMD Opteron 2.3GHz x 4.
- Parallelization : 16 OpenMP threads.

_43_
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Parallelization with OpenMP

[ Test linear system]
- Size : 1,572, 864

- #right-hand sides : 4

- #fnonzero elements : 80, 216, 064

- Method: Block BiCGSTAB

[ Computing environment |

CPU: Intel Xeon X5550 2.67GHz x 2

Mem: 48GBytes
OS: CentOS 5.3
Compiler . Intel Fortran ver. 11.1

Option - —-fast -openmp

#Threads | Time [sec] (#Iterations) | Time / #Iterations Speedup
1 303.49 (179) 1.6955 1.00
2 183.07 (179) 1.0227 1.66
3 138.07 (179) 0.7713 2.20
4 104.61 (181) 0.5749 2.95
5 80 57 (181) 0.4451 3.81
6 78.56 (181) 0.4340 391
7 74.96 (181) 04141 4.09
8 68.18 (181) 0.3767 4.50

_44_
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Summary

In this lecture, we have considered in particular

| 2016

* Krylov subspace methods for solving linear systems.

* Methods of implementing and parallelizing matrix-
vector multiplication for sparse matrices.
* Block Krylov subspace methods, code optimization,

and parallelization with OpenMP.
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