Japan-Korea HPC Winter School

- Parallel numerical algorithms -

Hiroto Tadano

tadano@cs.tsukuba.ac.jp

Center for Computational Sciences
University of Tsukuba

Contents

- Methods for solving linear systems Ax = b
 - Krylov subspace iterative methods
 - Storage formats for sparse matrices
 - Parallelization of basic linear algebra calculations
- Methods for solving linear systems with multiple right-hand sides AX = B
 - Block Krylov subspace iterative methods
 - Parallelization with OpenMP

Methods for solving linear systems

$$Ax = b$$

Analysis of natural and engineering phenomena

Natural and engineering phenomena

Initial / Boundary value problems of partial differential equations

Analysis

Approximate solution of partial differential equations

Solve Ax = b

Discretization

Linear systems

Ax = b

Linear systems appear in many scientific applications.

However, the solution of linear systems is the most time-consuming part.

Linear systems

Linear systems : Ax = b

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Linear systems appear in many scientific applications.

However, the solution of linear systems is the most time-consuming part.

Direct methods and iterative methods

Direct methods

Gaussian elimination, LU factorization, etc.

- 1) We can always obtain solution in a finite number of operations.
- 2) Number of nonzero elements increases in transformation of coefficient matrix *A*.

We cannot utilize coefficient matrix sparsity.

Direct methods

Gaussian elimination method

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \qquad \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{22} & \dots & u_{2n} \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_n \end{bmatrix}$$

LU decomposition method

is only transformed.

$$\begin{bmatrix} 1 \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots \end{bmatrix}$$

$$\begin{bmatrix} u_{1n} \\ u_{2n} \\ \vdots \\ u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Direct methods: Gaussian Elimination

Step 1.

- Computational complexity : $n^3 / 3$.

Step 2.

Solve the linear system Ux = b' by backward substitution with the following recursion formula.

$$x_i = (b'_i - u_{i,i+1}x_{i+1} - \dots - u_{i,n}x_n)/u_{i,i}, i = n, n-1, \dots, 1$$

- Computational complexity : $n^2 / 2$.

Direct methods: LU decomposition

Step 1.

Perform the LU decomposition of the coefficient matrix A.

$$A = LU$$

L: Lower triangular matrix, U: Upper triangular matrix.

- Computational complexity : $n^3 / 3$.

$$\begin{bmatrix}
1 & & & & & \\
l_{2,1} & 1 & & & \\
\vdots & \vdots & \ddots & & \\
l_{n,1} & l_{n,2} & \dots & 1
\end{bmatrix}
\begin{bmatrix}
u_{1,1} & u_{1,2} & \dots & u_{1,n} \\
u_{2,2} & \dots & u_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n,n} & u_{n,n}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}$$

Direct methods: LU decomposition

- **Step 2.** Find *x* using forward / backward substitution.
 - 1) Solve Ly = b for y by forward substitution. Here, y = Ux.

$$\begin{bmatrix} 1 & & \mathbf{O} \\ l_{2,1} & 1 & \\ \vdots & \vdots & \ddots \\ l_{n,1} & l_{n,2} & \dots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

2) Solve Ux = y for x by backward substitution.

$$\begin{bmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,n} \\ u_{2,2} & \dots & u_{2,n} \\ \vdots & \vdots & \vdots \\ u_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Computational complexity : n^2 .

Direct methods and iterative methods

Iterative methods

Krylov subspace methods

- 1) Required operations are
 - Multiplication of a coefficient matrix and a vector : Au
 - Inner product of vectors : $(u, v) = u^{T}v$
 - Constant times a vector plus a vector (AXPY): $a\mathbf{u} + \mathbf{v}$
 - We can utilize coefficient matrix sparsity.
- 2) Some problems may require many number of iterations

Krylov subspace methods

- x_0 is an initial guess. The vector x_k is k-th approximate solution of the linear system Ax = b. x_k is updated by the iteration process.
- $\mathcal{K}_j(A; \mathbf{r}_0)$ is called a Krylov subspace. This subspace is spanned by the vectors $\mathbf{r}_0, A\mathbf{r}_0, ..., A^{j-1}\mathbf{r}_0$.
- The vector $\mathbf{r}_0 = \mathbf{b} A\mathbf{x}_0$ is called an initial residual vector.

Methods for symmetric matrix

1. Coefficient matrix is a symmetric matrix ($A = A^{T}$)

- Conjugate Gradient (CG) method
- Conjugate Residual (CR) method
- Minimal Residual (MINRES) method

Using the symmetric property of the coefficient matrix A, algorithms with short recurrence formula (low computational complexity) can be obtained.

Algorithm of the CG method

```
x_0 is an initial guess,
Compute r_0 = b - Ax_0,
Set p_0 = r_0,
For k = 0, 1, \ldots, until ||r_k||_2 \le \varepsilon_{\text{TOL}} ||b||_2 do:
      q_k = Ap_k, Matrix-vector multiplication
     \alpha_k = \frac{(\boldsymbol{r}_k, \boldsymbol{r}_k)}{(\boldsymbol{p}_k, \boldsymbol{q}_k)}, Inner product
  \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k,
                                                       AXPY
   r_{k+1} = r_k - \alpha_k q_k
     \beta_k = \frac{(\boldsymbol{r}_{k+1}, \boldsymbol{r}_{k+1})}{(\boldsymbol{r}_{k}, \boldsymbol{r}_{k})}, Inner product
  \boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \beta_k \boldsymbol{p}_k, \quad \boldsymbol{\smile}
                                                          AXPY
End For
```

Relative residual history of the CG method

The relative residual norm $||r_k||_2/||b||_2$ is monitored during the iterations. If the condition $||r_k||_2/||b||_2 \le \varepsilon_{TOL}$ is satisfied, the iteration is stopped. Then, the approximate solution x_k is employed as the solution.

Methods for non-symmetric matrix

2. Coefficient matrix is a non-symmetric matrix $(A \neq A^T)$

Methods derived from residual bi-orthobonality condition

- Bi-Conjugate Gradient (BiCG) method
- Conjugate Gradient Squared (CGS) method
- · BiCG Stabilization (BiCGSTAB) method

Computational complexity is low, but the residual norm does not decrease monotonically.

Methods derived from residual norm minimization condition

- · Generalized Conjugate Residual (GCR) method
- · Generalized Minimal Residual (GMRES) method

Residual norm decreases monotonically, but long-term recurrence relations are required.

Algorithm of the BiCG method

 x_0 is an initial guess,

Compute $r_0 = b - Ax_0$,

Choose r_0^* such that $(r_0^*, r_0) \neq 0$,

Set $p_0 = r_0$ and $p_0^* = r_0^*$,

For $k = 0, 1, ..., \text{ until } ||r_k||_2 \le \varepsilon_{\text{TOL}} ||b||_2 \text{ do}$:

$$\alpha_k = A p_k,$$

$$\alpha_k = \frac{(r_k^*, r_k)}{(p_k^*, q_k)},$$

$$\boldsymbol{q}_k^* = A^{\mathrm{T}} \boldsymbol{p}_k^*,$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k,$$

$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k \boldsymbol{q}_k, \quad \boldsymbol{r}_{k+1}^* = \boldsymbol{r}_k^* - \alpha_k \boldsymbol{q}_k^*,$$

$$\beta_k = \frac{(\boldsymbol{r}_{k+1}^*, \boldsymbol{r}_{k+1})}{(\boldsymbol{r}_k^*, \boldsymbol{r}_k)},$$

$$p_{k+1} = r_{k+1} + \beta_k p_k, p_{k+1}^* = r_{k+1}^* + \beta_k p_k^*,$$

End For

Matrix-vector multiplication

Inner product

AXPY

Algorithm of the GCR method

 x_0 is an initial guess,

Compute
$$r_0 = b - Ax_0$$
,

Set
$$p_0 = r_0$$
 and $q_0 = s_0 = Ar_0$,

For k = 0, 1, ...,until $||r_k||_2 \le \varepsilon_{TOL} ||b||_2$ do :

$$\alpha_k = \frac{(\boldsymbol{q}_k, \boldsymbol{r}_k)}{(\boldsymbol{q}_k, \boldsymbol{q}_k)},$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k,$$

$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k \boldsymbol{q}_k,$$

$$s_{k+1} = Ar_{k+1},$$

$$\beta_{k,i} = -\frac{(\boldsymbol{q}_i, \boldsymbol{s}_{k+1})}{(\boldsymbol{q}_i, \boldsymbol{q}_i)}, \ (i = 0, 1, \dots, k)$$

$$p_{k+1} = r_{k+1} + \sum_{i=0}^{k} \beta_{k,i} p_i$$

$$q_{k+1} = s_{k+1} + \sum_{i=0}^{k} \beta_{k,i} q_i,$$

End For

- $\beta_{k,i} = -\frac{(q_i, s_{k+1})}{(q_i, q_i)}, \quad (i = 0, 1, ..., k)$ $p_{k+1} = r_{k+1} + \sum_{i=0}^{k} \beta_{k,i} p_i,$ $q_{k+1} = s_{k+1} + \sum_{i=0}^{k} \beta_{k,i} q_i,$ $q_{k+1} = s_{k+1} + \sum_{i=0}^{k} \beta_{k,i} q_i,$ The number of matrix-vector multiplications per iteration is 1.

 This method requires large computational complexity and memory requirement.
 - complexity and memory requirement.
 - Computational complexity and memory requirement can be reduced by restart technique.

Convergence properties of iterative methods

Relative residual norm histories of iterative methods.

■ : BiCG, ■ : CGS, ■ : BiCGSTAB, ■ : GCR.

Example of sparse matrix

2D Poisson problem

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f, & \text{in } \Omega \\ u = \bar{u}, & \text{on } \partial \Omega \end{cases}$$

f, \bar{u} are given functions

The region Ω is divided into (M+1) equal parts in x, y directions and discretized by central difference with 5-points.

A linear system with matrix of order M^2 can be obtained.

- Total number of elements in matrix : M^4
- Number of nonzero elements: $5M^2 4M$

Sparse matrix storage format

Compressed Row Storage (CRS) format Search row-wise for nonzero elements

$$A = \begin{bmatrix} a_{11} & 0 & a_{13} & 0 & a_{15} \\ 0 & a_{22} & 0 & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & 0 \\ 0 & a_{52} & 0 & a_{54} & a_{55} \end{bmatrix}$$
 val stores nonzero elements of A .
$$\text{col_ind stores column number of nonzero}$$
 elements of A .
$$\text{row_ptr stores location of first nonzero}$$
 element in each row.

Sparse matrix storage format

Compressed Column Storage (CCS) format Search column-wise for nonzero elements

$$A = \begin{bmatrix} a_{11} & 0 & a_{13} & 0 & a_{15} \\ 0 & a_{22} & 0 & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & 0 \\ 0 & a_{52} & 0 & a_{54} & a_{55} \end{bmatrix}$$
val stores nonzero elements of A .
$$\text{row_ind} \text{ stores row number of nonzero elements of } A.$$

$$\text{element in each column}$$

element in each column.

The last entry is the number of nonzero elements + 1.

Matrix-vector multiplication CRS format

Multiplication of matrix A and vector x for y = Ax

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Fortran Code

```
do i=1,n
   y(i) = 0.0D0
   do j=row_ptr(i), row_ptr(i+1)-1
      y(i) = y(i) + val(j) * x(col_ind(j))
   end do
end do
```

Matrix-vector multiplication CCS format

Multiplication of matrix A and vector x for y = Ax

$$\mathbf{y} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i$$

Fortran Code

```
do i=1,n
    y(i) = 0.0D0
end do
do j=1,n
    do i=col_ptr(j), col_ptr(j+1)-1
        y(row_ind(i)) = y(row_ind(i)) + val(i) * x(j)
    end do
end do
```

Parallelization of matrix-vector multiplication

• y = Ax in CRS format

x is stored in all Gather to Proc. 0 by MPI_Gather processes

Parallelization of matrix-vector multiplication

• y = Ax in CCS format

Sum results by MPI_Reduce and send to Proc. 0

Parallelization of inner products

Gather to Proc. 0 by MPI_Reduce

Example of MPI code

```
(\boldsymbol{x},\boldsymbol{y}) = \sum_{j=1}^{n} \bar{x}_j y_j
program main
include 'mpif.h'
call mpi init(ierr)
call mpi comm size(mpi comm world, npu, ierr)
call mpi comm rank(mpi comm world, mype, ierr)
tmp sum = (0.0D0, 0.0D0)
do i=istart(mype+1), iend(mype+1)
  tmp sum = tmp sum + conj(x(i)) * y(i)
end do
call mpi reduce(tmp sum, sum, 1, mpi double complex,
mpi sum, 0, mpi comm world, ierr)
. . .
call mpi finalize(ierr)
```

Parallelization of constant times a vector plus a vector

y = y + ax, a : scalar, x, y : vector.

Send a scalar a to all processes by MPI_Bcast

Methods for linear systems with multiple right-hand sides

$$AX = B$$

Linear systems with multiple right-hand sides

Linear systems with L right-hand sides

$$AX = B$$

where, A is a matrix of order n and

$$X = [\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(L)}], B = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \dots, \mathbf{b}^{(L)}]$$

Solution by Direct methods

- Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system by L forward and backward substitutions.
- Large computational complexity and memory usage are required for complete factorization.

Block Krylov subspace methods

Types of Block Krylov subspace methods

· Block BiCG O'Leary (1980)

Block GMRES Vital (1990)

• Block QMR Freund (1997)

• Block BiCGSTAB Guennouni (2003)

• Block BiCGGR Tadano (2009)

We can efficiently obtain solution vectors by using Block Krylov subspace methods.

Block Krylov subspace methods

What is the meaning of "good efficiency"?

Residual may converge in fewer iterations than Krylov subspace methods for single right-hand side.

Relatrive residual histories of the Block BiCGSTAB methods.

$$L = 1, L = 2, L = 4.$$

$$: L = 2,$$

$$L = 4$$
.

Block CG method

 $X_0 \in \mathbb{R}^{n \times L}$ is an initial guess,

Compute $R_0 = B - AX_0$,

Set
$$P_0 = R_0$$
,

For $k = 0, 1, ..., \text{ until } ||R_k||_F \le \varepsilon_{\text{TOL}} ||B||_F \text{ do:}$

$$Q_k = AP_k$$
,

Solve $(P_k^{\mathrm{T}} Q_k) \alpha_k = R_k^{\mathrm{T}} R_k$ for α_k ,

$$X_{k+1} = X_k + P_k \alpha_k,$$

$$R_{k+1} = R_k - Q_k \alpha_k,$$

Solve $(R_k^{\mathrm{T}} R_k) \beta_k = R_{k+1}^{\mathrm{T}} R_{k+1}$ for β_k ,

$$P_{k+1} = R_{k+1} + P_k \beta_k,$$

End For

Differences from CG method

- The number of matrix-vector multiplications is increased from 1 to L.
- 2. α_k and β_k become matrices of order L.
- 3. AXPY calculation becomes matrix-matrix multiplications.

Efficient matrix-vector multiplication

- Let the matrix A be stored in CRS format.
- Compute Y = AX. Y and X are n-row L-column arrays.

```
do k=1,L
  do i=1,n
  do j=row_ptr(i), row_ptr(i+1)-1
    Y(i,k)=Y(i,k)+A(j)*X(col_ind(j),k)
  end do
  end do
end do
```

[Problems]

- Continuous memory access for X is not available.
 (In Fortran, arrays are stored in column major order.)
- Coefficient matrix data must be read *L* times from memory.

Efficient matrix-vector multiplication

[Modification]

• We store *X* and *Y* in transposed form. (*L*-row *n*-column array).

```
do i=1,n
  do j=row_ptr(i), row_ptr(i+1)-1
   do k=1,L
    Y(k,i)=Y(k,i)+A(j)*X(k,col_ind(j))
  end do
  end do
end do
```

- Continuous access (at least L times) can be provided for X.
- Matrix data are read in just once from memory.
- Continuous access can also be provided for Y.

Computation of $n \times L$ matrix by $L \times L$ matrix multiplication

• The vectors are transposed, for efficient matrix-vector multiplication.

Transposition

$$X_{k+1} = X_k + P_k \alpha_k \qquad \qquad X_{k+1}^{\mathrm{T}} = X_k^{\mathrm{T}} + \alpha_k^{\mathrm{T}} P_k^{\mathrm{T}}$$

```
do j=1,n
  do i=1,L
  do k=1,L
   X(k,j)=X(k,j)+Alpha(k,i)*P(i,j)
  end do
  end do
end do
```

Continuous access is enabled by transposing.

The matrix Alpha is transposed in advance.

Computation of $L \times n$ matrix by $n \times L$ matrix multiplication

- This computation is required to compute α_k and β_k .
- Let us consider the computation of $C_k = P_k^{\mathrm{T}} Q_k$.

```
do j=1,n
  do i=1,L
  do k=1,L
    C(k,i) = C(k,i) + P(k,j) * Q(i,j)
  end do
  end do
end do
```

• We can also maintain continuous memory access in computation of C_k .

- · Parallelization interface for shared memory.
- Parallelization can be obtained simply by adding a few lines to the exist program.

```
!$OMP PARALLEL

[ program ]
!$OMP END PARALLEL
```

Writing as above enables thread start and separate processing in each thread.

```
(We assume that the following codes are enclosed by !$OMP PARALLEL and !$OMP END PARALLEL directives.)
```

1. Parallelization of matrix-vector multiplication

```
!$OMP DO PRIVATE(j,k)
do i=1,n
  do j=row_ptr(i), row_ptr(i+1)-1
   do k=1,L
    Y(k,i)=Y(k,i)+A(j)*X(k,col_ind(j))
   end do
  end do
end do
```

Simply add ! \$OMP DO before the first do loop.

2. Parallelization of $n \times L$ matrix by $L \times L$ matrix multiplication

```
!$OMP DO PRIVATE(i,k)
do j=1,n
do i=1,L
do k=1,L
X(k,j) = X(k,j) + Alpha(k,i) * P(i,j)
end do
end do
end do
end do
```

3. Parallelization of $L \times n$ matrix by $n \times L$ matrix multiplication

```
!$OMP SINGLE
do j=1,L
 do i=1,L
  C(i,j) = 0.0D0
 end do
end do
!$OMP END SINGLE
!$OMP DO PRIVATE(i,k) REDUCTION(+:C)
do j=1,n
do i=1,L
 do k=1,L
  C(k,i) = C(k,i) + dconjg(P(k,j)) * Q(i,j)
 end do
end do
end do
```

Performance of Matrix-vector multiplication

- Execution time of the naive and efficient implementation of Mat-vec mult.
- Matrix size: 1,572,864, #nonzero elements: 80,216,064.
- Experimental environment: CPU : AMD Opteron $2.3GHz \times 4$.
- Parallelization: 16 OpenMP threads.

[Test linear system]

- Size: 1,572,864

- #nonzero elements : 80, 216, 064

- #right-hand sides : 4

- Method: Block BiCGSTAB

[Computing environment]

CPU: Intel Xeon X5550 2.67GHz \times 2

Mem: 48GBytes

OS: Cent OS 5.3

Compiler: Intel Fortran ver. 11.1

Option: -fast -openmp

#Threads	Time [sec] (#Iterations)	Time / #Iterations	Speedup
1	303.49 (179)	1.6955	1.00
2	183.07 (179)	1.0227	1.66
3	138.07 (179)	0.7713	2.20
4	104.61 (181)	0.5749	2.95
5	80 57 (181)	0.4451	3.81
6	78.56 (181)	0.4340	3.91
7	74.96 (181)	0.4141	4.09
8	68.18 (181)	0.3767	4.50

Summary

In this lecture, we have considered in particular

- Krylov subspace methods for solving linear systems.
- Methods of implementing and parallelizing matrixvector multiplication for sparse matrices.
- Block Krylov subspace methods, code optimization, and parallelization with OpenMP.