
1

Korea-Japan HPC Winter School 2016 

“Fundamentals of HPC and Parallel Processing”	

Taisuke Boku	
taisuke@cs.tsukuba.ac.jp

Center for Computational Sciences	

University of Tsukuba	

2

Contents	

•  Performance metric on computation and communication
•  What is parallel processing ?	

•  Requirement for parallel processing	

•  Parallel processing methods	

•  Communication & synchronization	

•  Parallel efficiency and Amdhal’s Law	

•  Load balancing (advanced issue)	

Performance metric on
computation and communication	

•  computation performance (mainly floating point)
–  FLOP: (number of) Floating point Operations

number of floating point operations in the processing
ex) for(i=0; i<100; i++) a[i] = b[i] * c + b[i];
 ⇒ 200FLOP

–  FLOPS: Floating point Operations Per Second
floating point operations per second -> Performance
ex) computing the above calculation in 2 micro-sec.-> 100 MFLOPS
 K: 103 M: 106 G: 109 T: 1012 P: 1015 E: 1018

•  communication performance
–  B/s (Byte/sec):

data transfer amount per second
ex) theoretical peak performance of Infiniband 4xQDR = 4 GB/s
sometimes, with bps (bit per second)
Caution: not always 1Byte=8bit !!

3

4

What is parallel processing ?	

•  “Decomposing single problem with in a number of
processes and solving it to enhance the performance
and/or increase problem size”	
–  “Solving single probem” ⇒ differs from distributed processing	
–  “Problem decomposing (parallelizing)” ⇒ careful for efficiency	
–  “Improved” issues ⇒ not just speed, but also problem size,

computing accuracy, etc. (various metrics)	
•  parallel processing v.s. concurrent processing

–  solving parallelized processes in “pseudo” parallel 
⇒concurrent processing

–  solving them in “physically” parallel (simultaneously) 
⇒parallel processing

•  resources to contribute for parallel processing	
–  CPU, memory, disk, network, etc. ⇒ all the computation

resources may contribute for improvement	
–  hereafter, we call these processes to be mapped to multiple

CPUs as “parallel processes”	

5

High performance computing (HPC)
and parallel processing	

•  Requirement for numerical computing performance in scientific computation
and large amount of data processing	

•  Computing order to increase the problem size N is not O(N) (linear)	
–  3-dimensional fluid dynamic (climate simulation etc.)  

when spatial resolution on 1-dimension is N, computing operation’s order is
O(N3)	

–  matrix calculation (linear equation)  
for direct method (Gaussian elimination etc.) for N variables of equation,
computing operation’s order is O(N3)	

–  n-body problem (gravity calculation in astrophysics)
force computation for N particles requires computing operations with O(N2)	

•  There is no “enough performance nor amount” to the requirement 
⇒ large scale scientific computation does no more exist without Parallel
Processing	

•  Large amount of computation, data and communication requirements
always need effective parallel processing with appropriate resource
utilization
⇒ “High Performance” in any issue ⇒ Parallel Processing	

6

Limit of computing performance	
•  Density of semiconductor

integration is growing with a
rate of twice/1.5year 
⇒ Moor’s Law	

•  If all the transistors on the
silicon chip can contribute to
the computation, it says
“processor performance is
growing as twice/1.5year of
speed”	

•  Transistor count on a chip (by
Intel web site)	

•  Memory capacity is also
increased with this rate	

•  It is impossible to catch up
the growth of computing
performance requirement

•  Also, Moor’s Law itself is
reaching to the limit

⇒ (Massively) Parallel (from Intel’s home page)	

7

TOP500 List (HPL performance: ~ peak
performance)	

www.top500.org	

#1 machine	

#500 machine	

Sum. of #1～#500	

#1 machine drops to #500	

8

Parallelization Method	
•  Various parallelization methods for problems	

–  Partitioning a problem 
ex）domain decomposition: partitioning the problem in spatial
domain to dispatch them to parallel processes	

–  Distributing a problem 
ex) parameter search: trying a problem with various parameters
and getting a statistical result ⇒ a set of parameters are
executed in one process, and there is a master process to
collect and statistically process them	

•  Various parallel methods	
–  EP (Embarrassingly Parallel): each of parallel processes is

individual (such as parameter search) and the entire problem is
naturally parallelizable	

–  data parallel: parallelizing the processed data with the same
procedure (ex: domain decomposition)	

–  pipeline: each part of pipelined processes is dispatched to
computational resource	

–  master/worker: multiple workers and a management process	

9

Example of EP	

•  Monte Carlo Simulation	
–  Examining a number of cases with random parameters, then

getting the result with statistical process	

–  ex: calculating π with random numbers 
N pairs of (x, y) where  
When C is the number of pairs which satisfies ,
C/N is closing to 4/π 	

–  The examination on each pair of (x, y) can be performed
individually and simultaneously ⇒ completely in parallel	

–  Finally, getting the summation of C from
these parallel processes	

(0 ≤ x ≤1,0 ≤ y ≤1)
x2 + y2 <1

C/N

10

Example of data parallel case	

•  domain decomposition
–  Calculating points are uniformly distributed in

some dimensions of space, and partitioning
them into orthogonal blocks to be parallelized	

–  There are some communication required to
exchange data
ex) for PDE with explicit method, surface points
data are exchanged with neighbors	

–  ex (1-dimension))  
for(t=0; t < T; t++){
 for(i=0; i < N; i++)
 a[i] = b[i-1] + 2*b[i] + b[i+1];
 for(i=0; i < N; i++)
 b[i] = a[i];
}

problem space	

parallel process unit	

11

domain decomposition (cont’d)	

for(t=0; t < T; t++){
for(i=0; i < N; i++)
 a(i) = b(i-1) + 2*b(i) + b(i+1);　// communication required 
for(i=0; i < N; i++)
 b(i) = a(i); // communication not required	

}

.... b(5) b(6) b(7) b(8) b(9)

.... a(5) a(6) a(7) a(8) a(9)

border of parallel processes	

12

Pipeline parallelism	

•  A set of data are processed in the same manner and
same order, the entire data stream can be processed by
each computation stage and these stages are connected	

•  Example of vector processing 
for(i=0; i < N; i++){
 a[i]=b[i] * c[i] + s * d[i];
}

multiply	

continuously read b[i]	

continuously read c[i]	

multiply	

continuously
read d[i]	

s (scalar)

sum	

continously write to a[i]	

13

Master/worker parallelization	

•  One master and several workers exist, and the master maintains a
“pool” of data to be processes (# of data sets >> # of workers)	

•  The master retrieves a set of data to dispatch to a worker, and
repeats it while there is a data set in the pool	

•  A worker processes the dispatched data, and returns the result to
the worker, then is assigned the next data 
 
master:: worker::
// give a job to each worker while(1){
while(1){ // receive a job from master
 // receive worker’s result // process the job
 // give a job to the worker // send the result to master
} }

14

Master/Worker (cont’d)	

•  Especially effective when the loads of processes are not
balanced and it is difficult to keep load balance

•  Each process should be in EP manner	

．．．	

master

worker#1

worker#2

worker#3

worker#N

．
．
．	

．
．
．	

job pool (EP)

job assigning/	
result retrieving	

15

Communication and Synchronization	

•  All processes have some interaction with each other and need to
communication at certain point in the processing	

•  These communication may be the overhead which is not required in
sequential processing
ex) surface data exchanging in domain decomposition	

•  Effect of communication to the computation efficiency	

–  Time to be spent for communication itself: 
Overhead which does not exist in sequential process	

–  Time for synchronization (waiting) to stall the process: 
Load imbalance causes the stall to wait for the communication partner	

•  It is required to minimize the overhead caused by communication
and synchronization for efficient parallel processing	

16

Communication patterns and costs	

•  It depends on the parallel processing architecture	

–  Distributed Memory Architecture: 
each process explicitly communicates with each other by data sending/
receiving 
⇒message passing　(send, receive, ...)

–  Shared Memory Architecture: 
each process read/write the data from/to the shared address space 
⇒shared memory access (write read, ...)

•  Communication cost	
–  For message passing, the distance and geometrical relation of

communicating processes is important 
⇒ “neighboring communication” (physically close distance) requires a
low cost and less impact on entire system communication	

–  For shared memory access, the geometrical relation of shared memory
to be accessed is important
⇒ for NUMA architecture, the distance to memory differs	

–  In both cases, the bottom-line hardware performance strongly affects on
the performance	

17

Cost of synchronization	

•  Distributed memory system case	
–  Network topology for parallel communication and synchronizing

algorithm affect on the performance	

–  System size (# of parallel processors) is essential	

•  Shared memory system case	
–  Whether the hardware supports synchronization (primary) or not

is important (ex: memory lock feature)	
–  Process number to be synchronized is essential	

18

Metric for parallel processing efficiency	

•  Most important purpose of parallel processing is SPEED
•  It is strongly expected to reduce the time for solution when we

introduce the parallel processing... but	
•  It happens that the actual speed does not increased (very often!)	
•  Especially, it will be the problem when the system size (# of parallel

processes) increases 
⇒ “scalability” in parallel processing	

•  The metric to examine the efficiency of parallel processing is
important	

•  degree of parallelism is defined as:	
–  parallelism in the problem: how much natural parallelism (or degree of

parallelisms) exist in the problem	

–  parallelism in the system: how much hardware resources (# of
processors, etc.) exist in the system	

19

Parallel processing performance (1)	

•  Speed-up ratio	

–  Let define the time required with one process as T1	

–  Let define the time required with p processes as T(p)	
–  s(p)=T1 / T(p)

s(p) is called as “Speed-up Ratio with p processors”
If s(p) > 1, it means the speed is increased	

–  Ideally, s(p)=p ⇒ “linear speed-up”
（when p processors are used, there is a gain of p times)	

of processors (p)

s(p)

s(p)=p is ideal
⇒ linear speed-up

saturate with p increases
(very frequently happens)	

it is OK (performance linearly
increases)	

20

Parallel processing performance (2)	

•  Parallel efficiency	

–  Inconvenience of s(p): it depends on p, and not an absolute value	

–  “It is ideal when s(p)=p” ⇒ “How is it achieved ?” as the efficiency	

–  e(p)=s(p)/p ⇒ “linear speed-up” : e(p) = 1
e(p) does not depend on p, and it is better to achieve to 1 (normally it is
lower than 1)	

e(p)

e(p)=1 is ideal 
⇒ linear speed-up

(usually) e(p) saturates with
increasing p	

even it is enough 
(constant e(p))	

number of processors: p

1

21

Amdahl’s Law and parallel processing	
•  Amdahl’s Law	

–  “Process efficiency is determined just by the efficiency of inefficient part
rather than the average efficiency of all parts”	

•  Amdahl’s Law in parallel processing	

–  Let assume the sequential execution time as T1, and it can be devided
into Tp as the part which can be parallelized and Ts as the part which
cannot be (only executable as sequential process) 
　　　T1=Tp+Ts

–  If the part for Tp is executed completely in parallel (ideally), the total
execution time with p processors T(p) is: 
　　　T(p)=Ts+Tp/p

–  When p is infinite: 
　　

and 
　　　

Thus “although increasing the number of processors p toward
infinite, the parallel efficiency e(p) becomes 0 with the bottleneck
of Ts”	

T (p)
p→∞

= Ts

e(p)
p→∞

= T (p) / p = Ts / p = 0

22

Scalable Problems	

•  Actually, there exists Ts in any problem, then the scalability of
parallel efficiency is limited	

•  Does it pay to challenge “large scale parallel” or “massively parallel”
actually ?  
⇒ It’s OK if we assume a problem with large portion of Tp
where Ts is negligible  
⇒ It is called as “scalable problem”	

•  There are so many scalable problems in most of scientific
computation, however it is always required to consider how Ts is
large when we increase the system size p

•  Another factor is how the communication/synchronization costs
large because these parts also becomes the bottleneck like Ts 
⇒ granularity: how much is the “grain” of parallel execution ?	

23

Granularity: parallel execution grain	

•  The dominant reason to decrease the parallel efficiency is the
overhead for communication/synchronization	

–  They are just the overhead which does not exist in sequential process	

–  Synchronization causes some idling status without any processing	

•  It corresponds to the case where all other parallel processes stop,
thus it seems to be a temporal sequential execution 
⇒ Shorter time for this makes higher efficiency	

•  How long time is spent just for computation without communication/
synchronization ?	

–  Long ⇒ “coarse grain”
–  Short ⇒ “fine grain”

•  Naturally, when the parallelism increases for a certain size of
problem, the granularity becomes fine 
⇒ difficulty in scalability	

24

Example in domain decomposition	

•  each process treats TWO points of computation	

•  exchanges TWO data sets with neighboring processes	

.... b(5) b(6) b(7) b(8) b(9)

.... a(5) a(6) a(7) a(8) a(9)

•  each process treats ONE point of computation	

•  exchanges TWO data sets with neighboring processes	

.... b(5) b(6) b(7) b(8) b(9)

.... a(5) a(6) a(7) a(8) a(9)

coarse grained
processing	

fine grained
processing	

25

Factors to determine parallel efficiency

•  It is easy to achieve high efficiency when the problem size increases
according to the system size increase	

•  The concept of granularity is relative, so it is required to examine the
communication/synchronization overhead in the target application 
⇒ ex) recording the wall clock time before/after the communication

•  Always taking care of the parallel efficiency and resource utilization
when the system size increases, based on the concept of granularity	

•  In some case, the application (algorithm) itself must be fine grained,
and it is strongly required to care of the efficiency and trying to make
it with coarser granularity
ex) combining multiple communication in one	

•  However, also be careful of changing the communication pattern
when combining the communications for coarser granularity	

“Strong” vs “Weak” Scaling	

•  When increasing the system size:
–  If the problem size is fixed and only the system increases

⇒ “Strong Scaling” (fixed problem size)
–  If the problem size is increased according to the system size

increasement
⇒ “Weak Scaling” (fixed computation time)

•  It is relatively easy to achieve Weak Scalability
–  process granularity is not changed
–  only the communication complexity (communication pattern) is changed

and system must have the capacity to accept it
•  It is relatively hard to achieve Strong Scalability

–  process granularity is finer
–  the system must have the capacity to accept higher late of

communication
⇒ shorter latency is required for communication/synchronization	

26

27

Load imbalance and parallel efficiency	

•  Load balance: It is ideal that the computation and
communication amount for each process is equal
–  ex) when taking the global synchronization, all processes

are ready for it at the same time, and there is no time to
wait
	

•  For domain decomposition on uniformly distributed data,
the load is naturally balanced
	

•  How the load imbalanced:	
–  Non-uniformly distributed domain decomposition	

–  In parameter search, each job execution time depends on its
parameter	

28

Problem decomposition caring load imbalance	

•  Basically, it is ideal in domain decomposition to partition
the problem space in large chunk for coarse grained
processing	

•  For nonuniform problem space, the coarse grained
decomposition causes the load imbalance	

•  It is important in some case to partition the problem
space regardless the shape, to achieve load balancing 
⇒ It may cause another imbalance in communication
(pattern)  
⇒ It may cause finer granularity

•  These effects may trade-off with each other	

29

Example: MD with cut-off
•  MD (Molecular Dynamics)	

–  There are p particles in n-dimension and
simulating inter-particle force	

–  The potential energy is not like Coulomb
potential, but with rapidly decreasing
potential according to the distance
⇒ “well” style potential and can be
processed with “cut-off”

	

•  It is possible to reduce the communication
amount to limit the partners in certain domain	

–  Partitioning the space in “cells” as like as
domain decomposition, and processing
the particles in a cell by a process 
⇒ if the size of cell is set “slightly larger
than cut-off radius”, it is necessary to
communicate with neighboring cells only	

target particle	

cut-off radius	

f (r) =α 1
r6
−β

1
r12

30

MD with cut-off (cont’d)	

•  Particles move around in the time step by
the interaction with other particles	

•  Load balance may be broken while the
computation proceeds in cell mapping
manner	

•  It is required to keep the number of
particles within a cell to keep the load
balance	

•  Methods	

–  1) remapping the cells to parallel processes
according to the density of particles per cell,
in every certain steps	

–  2) if the number of cells largely exceeds the
number of processes, mapping the cells to
processes in cyclic manner	

–  3) giving up cell-mapping method, and
directly mapping the particles to processes	

heavy-wight cell
(many particles)

light-weight cell
(few particles)

31

•  Method-1)
When remapping the cell to process, a large amount of data should be
moved, and also the neighboring cells are not mapped to the
neighboring processes	

•  Method-2)
Cyclic mapping of cells to processes realizes easy load balancing, but
the neighboring cells are not mapped to the neighboring processes
(always) to cause long distance communication	

•  Method-3)
It is required to refer the table of particle to process mapping, and the
communication distance may so long 
⇒ There is no best way in any case	

•  It depends on the problem characteristics (ex: how the particles
concentrate/distribute, potential energy, time length), and there is no
general best solution	

•  For heavy load imbalancing, it pays dealing even with heavy
communication cost	

MD with cut-off (cont’d)	

32

Summary	

•  Importance of parallel processing on large scale scientific
computation

•  Parallel processing methodology and parallelization
scheme	

•  Concept of speed-up and efficiency on parallelization
•  Communication cost	
•  Amdahl’s Law and scalability	

•  Scalability and granularity	

•  Load balancing	

