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殻模型軌道(0s,0p,…)
の生成演算子	


次元数:	
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Fig. 5. M-scheme dimensions as functions of basis-space size, Nshell.

extended by using the importance measure evaluated by the perturbation theory. Another approach
is the symmetry-adapted NCSM (SA-NCSM) [74–76], where the model spaces are truncated by the
selected symmetry groups.

Besides the Nmax truncation of the model space in the ab initio shell models, the FCI method can
give exact solutions in the fixed model space. Unlike the Nmax truncation in the NCSM and NCFC
methods, the FCI truncates the model space by the single-particle states, so-called Nshell or emax(≡
Nshell − 1). As shown in Fig. 5, the explosion of the dimensionality prohibits full ab initio solutions
of the FCI (and also the NCSM) beyond the lower p-shell region. Like the attempts of the IT-NCSM
and SA-NCSM, the MCSM is a promising candidate to go beyond the FCI method [54,77]. Note
that there is a similar approach to the no-core MCSM, referred to as the hybrid multi-determinant
method [78]. In the following subsection we will show some recent investigations by the ab initio
no-core MCSM.

3.2. Benchmarks for the MCSM to the ab initio no-core FCI
In some exploratory work, the original MCSM has been applied to no-core calculations for the struc-
ture and spectroscopy of beryllium isotopes [79]. The low-lying excited states of 10Be and 12Be have
been investigated. The excitation energies of the first and second 2+ states and the B(E2; 2+

1 →
0+

g.s.) for 10Be with spurious center-of-mass motion treatment show good agreement with experi-
mental data. The deformation properties of the 2+

1 and 2+
2 states for 10Be and of the 2+

1 state for
12Be are studied in terms of electric quadrupole moments, E2 transitions and single-particle occu-
pations. The triaxial deformation of 10Be is also discussed in terms of the B(E2; 2+

2 → 2+
1 ) value.

This work motivates a further extension of the MCSM application to ab initio FCI calculations [77].
Currently, the availability of the MCSM for no-core calculations has been tested extensively in light
nuclei [54].

As a typical example, the behavior of the ground-state energies of 4He (0+) with respect to the
number of basis states and to the energy variance in Nshell = 2–5 are shown in Fig. 6. Figure 7
illustrates the comparisons of the energies for each state and model space between the MCSM and
FCI methods. The FCI gives the exact energies in the fixed size of the mode space, while the MCSM
gives approximated ones. Thus the comparisons between them show how well the MCSM works in
no-core calculations. For this benchmark comparison, the JISP16 two-nucleon interaction is adopted
and the Coulomb force is turned off. Isospin symmetry is assumed. The energies are evaluated for
optimal harmonic oscillator frequencies where the calculated energies are minimized for each state
and model space. Here, contributions from spurious center-of-mass motion are ignored for simplicity.
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モンテカルロ殻模型計算の概要	
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by converting the sparse Hamiltonian matrix into the block-dense matrix and performing the
matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =

Nf
∏

i

a†i (q)|−〉 =

Nf
∏

i

(

Ns
∑

l

D(q)lic
†
l

)

|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf ) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)

(

Ns
∑

l1l2

tl1l2 ρl2l1(q
′, q) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q

′, q)

)

, (3)
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N(q′, q) = det
(
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,

H(q′, q) = N(q′, q)

(

Ns
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ρl3l1(q
′, q) v̄l1l2,l3l4 ρl4l2(q
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where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):

ρ(q′, q) = D(q) ·
(

D(q′)† ·D(q)
)−1

·D(q′)†. (4)

The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes

N(q′, q) =
Nm
∑

r

W rN0(q′, qr), H(q′, q) =
Nm
∑

r

W rN0(q′, qr)H0(q′, qr),

N0(q′, qr) ≡ det
(

D(q′)† ·D(qr)
)

,

H0(q′, qr) ≡
Ns
∑

l1l2

tl1l2 ρl2l1(q
′, qr) +

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr), (5)

where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes

1

2

Ns
∑

l1l2l3l4

ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr)

=
1

2

∑

∆m13∆m24

∑

k′k

ρ̃ (∆m13, q
′, qr)k′ ṽ (∆m13,∆m24)k′k ρ̃ (∆m24, q

′, qr)k

=
1

2

∑

∆m

∑

k′k

ρ̃ (−∆m, q′, qr)k′ ṽ (−∆m,∆m)k′k ρ̃ (∆m, q′, qr)k, (6)

where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
−∆m. Since the density matrix ρ̃(∆m, q′, qr) and the two-body matrix ṽ(−∆m,∆m) for a
given ∆m are one- and two-dimensional arrays, respectively, Eq. (6) is regarded as a t(vector)
× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,
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密度行列:	


Hamiltonian行列要素:	


※基底の情報は数値的には Ns	
  (軌道数)	
  	
  ×	
  Nf	
  (粒子数)	
  の行列	
  
　 で表される。	


射影前の基底:	


スピン(J)・パリティ(π)射影:	


1体相互作用	
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matrix multiplication by the BLAS [3] interface. Despite of this improvement, the computa-
tional cost of Hamiltonian matrix elements accounts for almost of the whole and it is still the
bottelneck in the Monte Carlo shell model calculation. In order to overcome this bottleneck,
the performance of matrix multiplication of the dense matrices needs to be considered. Recent
computation with a GPU accelarator demonstrates about 1 TFLOPS for the matrix multiplica-
tion by the cuBLAS [4] interface. This performance is about seventy times the performance of a
single-threaded process of the up-to-date CPU whose performance presents about 15 GFLOPS.
Hence, we attempt to apply GPGPU to the computation of Hamiltonian matrix elements and
achieve the high performance computing for the Monte Carlo shell model calculation.

In section 2, we give an overview of the efficient numerical method for computing Hamil-
tonian matrix elements between non-orthogonal Slater determinants. In section 3, we explain
the procedure to compute Hamiltonian matrix elements for GPGPU. The performance results
are discussed in section 4. Finally, we summarize the present work in section 5.

2 Numerical Method for Computing Hamiltonian Matrix

Elements

In Monte Carlo shell model, the solution of the nuclear many-body Hamiltonian is approximated
by a superposition of a finite number of non-orthogonal Slater determinants as

|Ψ〉 =
∑

q

f(q)|Φ(q)〉, (1)

where |Φ(q)〉 and f(q) denote a Slater determinant and its amplitude indexed by the state q,
respectively. Each Slater determinant is represented by a product of creation operators of a
linear combination of harmonic oscillator basis a†i (q):

|Φ(q)〉 =
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∏
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a†i (q)|−〉 =

Nf
∏

i
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l

D(q)lic
†
l
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|−〉, (2)

where Nf and Ns are the numbers of fermions regarded as nucleons (protons and neutrons)
in a nuclear system and the number of single-particle states of the harmonic-oscillator orbit,
respectively. D(q)li is a complex coefficient of a linear combination and c†l is a creation operator
of the single-particle state. Hence, the Slater determinants |Φ(q)〉 are characterized practically
by the Ns×Nf matrix (Ns ≥ Nf ) D(q). In general, the above states |Φ(q)〉 are non-orthogonal
between one another: 〈Φ(q′)|Φ(q)〉 &= 0. The detail of the way how to solve the optimized matrix
for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
vector f(q) in Eq. (1) is usually carried out by the variational principle with the Hill-Wheeler
equation [5] for the norm matrix: 〈Φ(q′)|Φ(q)〉 and the Hamiltonian matrix: 〈Φ(q′)|H|Φ(q)〉.

Here, the computational problem is attributed to calculate the norm and Hamiltonian ma-
trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
tonian consisting of one- and two-body operators are written as

N(q′, q) = det
(

D(q′)† ·D(q)
)

,

H(q′, q) = N(q′, q)
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for D(q) is described in Ref.[1] and we do not mention it in this paper. The optimization of the
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trices. The norm matrix N(q′, q) and the Hamiltonian matrix H(q′, q) described by the Hamil-
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Jπ

Hamiltonian行列要素は密度行列 ρ	
  と相互作用行列との行列演算となる	


有限角度      の3次元回転を行った	
  
基底の重ね合わせ(角分点Nm個)に対応	


Ωr



2体相互作用部分の演算量が一番多い(ボトルネック)	


where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):

ρ(q′, q) = D(q) ·
(

D(q′)† ·D(q)
)−1

·D(q′)†. (4)

The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes

N(q′, q) =
Nm
∑

r

W rN0(q′, qr), H(q′, q) =
Nm
∑

r

W rN0(q′, qr)H0(q′, qr),

N0(q′, qr) ≡ det
(
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ρl3l1(q
′, qr) v̄l1l2,l3l4 ρl4l2(q

′, qr), (5)

where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes
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ρ̃ (−∆m, q′, qr)k′ ṽ (−∆m,∆m)k′k ρ̃ (∆m, q′, qr)k, (6)

where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
−∆m. Since the density matrix ρ̃(∆m, q′, qr) and the two-body matrix ṽ(−∆m,∆m) for a
given ∆m are one- and two-dimensional arrays, respectively, Eq. (6) is regarded as a t(vector)
× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,
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密ブロック行列	


ベクトル	
  ×	
  行列	
  ×	
  ベクトル	


スピン・パリティ射影では	
  
角分点ごとにこの演算を	
  
行うことになる	


ある程度の数(Nb)の角分点の密度行列
をまとめて一つの行列    として、	
  
2体相互作用行列との行列積を計算	
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行列積をcuBLASで	
  
GPUにより計算	


H ( !q ,q) = WrH ( !q ,qr )
r

Nm

∑

計算内では不変な行列	


Nb	
  列	
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サイズの大きな行列の積において
BLASより高い演算性能が期待できる。	


(ベクトル)	
  	
  x	
  	
  (ベクトル)	
  を OpenACC	
  により行う	


H ( !q ,q) = WrH ( !q ,qr )
r

Nm

∑

1行列要素の演算について	


-­‐	
  角分点の数:	
  Nm	
  =	
  36,000	

-­‐	
  Chunk	
  サイズ:	
  Nb	
  =	
  768	
  	
  
　　　　　　　　　(Nshell=9では	
  512)	

-­‐>	
  47	
  回chunk分上記の演算を行う	


-­‐	
  1	
  chunk当たり cuBLASが	
  
	
  	
  呼ばれる回数:	
  Ex)	
  106	
  in	
  Nshell=7	

-­‐>	
  1行列要素当たり cuBLASが	
  
　 呼ばれる回数:	
  106	
  x	
  47	
  =	
  4,982	
  	


行列のサイズ:	
  
	
  ~	
  O(1000)	
  

Nb	
  列	


Nshellごとの密ブロック行列のサイズ	
  



GPGPU適用に対するチューニングポイント	


1.	
  CPU-­‐GPU	
  ハイブリッド計算 ⇒	
  小さなサイズの行列演算への対応	


-­‐	
  密度行列ρ:	


where tl1l2 and v̄l1l2,l3l4 represent the one- and two-body parts of the matrix elements for single-
particle bases in Hamiltonian, respectively, and ρll′(q′, q) is the component of theNs×Ns density
matrix ρ(q′, q):
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)−1
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The dots in Eqs. (3) and (4) mean the matrix multiplication. This notation is also used in the
following.

Since a general Slater determinant of Eq. (2) does not necessarily possess the symmetries
that the Hamiltonian has, the broken symmetries have to be restored by projecting the wave
function onto good quantum numbers. For instance, the total angular momentum is restored
from |Φ(q)〉 by performing a three-dimensional integration over the Euler angles [6]. Practically,
a numerical integration with the weight function W for Euler angles is carried out for the norm
matrix N(q′, q) and the Hamiltonian matrix H(q′, q). Hence, for the total angular-momentum
projection, Eq. (3) becomes
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where Nm is the number of mesh points in a numerical integration, qr denotes that the state
|Φ(q)〉 is rotated by the Euler angle corresponding to the mesh point r, and W r is the value of
the weight function at the mesh point r.

The numerical calculation directly using Eq. (5) is inefficient because v̄l1l2,l3l4 is very sparse.
The conservation of the z component of the angular momentum j leads to v̄l1l2,l3l4 = 0 unless
jz(l1) + jz(l2) = jz(l3) + jz(l4) is satisfied. Hence, we convert the sparce matrix v̄l1l2,l3l4 into
the block-dense matrix by using this conservation. First, the density-matrix elements ρll′(q′, qr)
are grouped according to ∆m ≡ jz(l′) − jz(l), and the set of (l, l′) having a common ∆m is
indexed by k = 1, 2, ..., N∆m as ρ̃ (∆m, q′, qr)k. In a similar way, the two-body matrix elements
v̄l1l2,l3l4 are categorized according to ∆m13 ≡ jz(l1) − jz(l3) and ∆m24 ≡ jz(l2) − jz(l4) as
ṽ (∆m13,∆m24)k′k, where the sets of (l1, l3) and (l2, l4) having ∆m13 and ∆m24, respectively,
are indexed by k′ and k. Then, the two-body part of H0(q′, qr) in Eq. (5) becomes
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where the last equality is derived from the necessary condition for v̄l1l2,l3l4 being non-zero:
jz(l1) + jz(l2) = jz(l3) + jz(l4), i.e., ∆m13 = jz(l1) − jz(l3) = −(jz(l2) − jz(l4)) = −∆m24 ≡
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× (matrix) × (vector) operation to be tρ̃ · ṽ · ρ̃, where the indeces are omitted for simplicity,

Ns	
  (軌道数):	
  ~	
  O(100)	
  ×	
  Nf	
  (粒子数)	
  :	
  ~	
  O(10)	
  

密度行列ρは主にCPUで計算を行う	


2.	
  GPUへのデータ転送	


-­‐	
  計算内で不変な行列(1体,2体相互作用部分)は最初にGPUに　	
  
	
  	
  データを転送しておく	
  

-­‐	
  角分点ごとに可変な密度行列ρに関しては計算途中の行列を	
  
	
  	
  １つにまとめて転送する	
  



D(q '), D(q)が与えられる	
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  Nm	


角分点のメッシュ:	


(1),	
  (2),	
  …	
  (i),	
  …	
  (Nb)のループ	


	
  　　　 から(i)	
  番目の回転角に対応した　　　   を生成し	
D(q) D(q(i) )

D(q(i) ) ⋅ (D( "q )† ⋅D(q(i) ))−1
NbNs	
  

(1)	


(i)	

θ tmp

θ tmp

配列　　　　        をGPUに転送	
  θ tmp, D( !q )†

1.	
  　　　　　　　 を計算し、密行列積に対応した形に置換:	
  	
  	
  	
  	
  	
  	
  	
  	
  θ tmp ⋅D( "q )† θ = ( ρ (1),…, ρ (i),…, ρ (Nb ) )

2.	
  Hamiltonian行列要素              　を計算:	
  	
  	
  	
  	
  	
  	
  	
  	
  t ⋅ θ( )
(i) t ρ (i) ⋅ v ⋅ θ( )

(i)
H 0 ( !q ,q(i) )

計算結果                                                        をホスト側に転送	
  	
  	
  	
  	
  	
  	
  	
  	
  H 0 ( !q ,q(1) ),…,H 0 ( !q ,q(i) ),…,H 0 ( !q ,q(Nb ) )

(GPU	
  compu@ng)	


まで計算を行い　 　 に保存	


+	


フローチャート(単体ノード,	
  1GPUの場合)	
  
(OpenMP	
  +	
  GPGPU)	


1体演算子	
 2体演算子	


※相互作用のデータ　　　は	
  
	
  	
  	
  	
  予めGPUに転送	


t , v

OpenMPで	
  
スレッド並列化	
  

※配列をまとめて一度に転送	
  

TT,	
  N.Shimizu,	
  Y.Utsuno,	
  T.Abe,	
  
T.Otsuka,	
  Procedia	
  Computer	
  
Science	
  29,	
  1711	
  (2014)	




密ブロック行列(2体相互作用部分)で必要なメモリ容量	


相互作用:	
  JISP16	
  (A.M.Shirokov	
  et	
  al.,	
  PLB644,	
  33	
  (2007))	
  

Nshell	
 bytes	

4	
 3M	


5	
 22M	


6	
   125M	


7	
 547M	


8	
 2.0G	


9	
 6.4G	


HA-­‐PACSで使用されているGPU(NVIDIA	
  M2090,	
  K20X)のメモリ容量が6GB
なので Nshell=9	
  以上では密ブロック行列の分割化が必要となる。	
  

⇒	
  マルチGPU環境を利用した密ブロック行列の分割化を行いつつ、	
  
	
  	
  	
  	
  	
  MPI並列によりさらなる効率化を試みる。	
  

••
•�

••
•�

0� +1�+2�&1�&2�

0�

0�

v

Δm =



フローチャート(1ノード当たり4GPU)	
  
(OpenMP	
  +	
  MPI	
  +	
  GPGPU)	


ノードごとに角分点メッシュを分割しそれぞれ実行	


	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  …	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  …	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  …	
  	


••
•�

••
•�

0�

0�

v

t ρ (i) •�
•� ρ (1),, ρ (i),

θ
(i)v ⋅θ

密ブロック行列を分割して演算を行う	


演算量を可能な限り均等するように	
  
4つのパートに分割する	
  
(HA-­‐PACSでは1ノード当たり4GPUあるので)	


P-­‐P	
  pair	
  
(+空間反転)	


N-­‐N	
  pair	
  
(+空間反転)	


P-­‐N	
  pair	
   P-­‐N	
  pairの	
  
空間反転部分	
  

角分点のメッシュ:	


ChunkサイズNb	
(1),	
  (2),	
  …	
  (i),	
  …	
  (Nb)のループ	


ノード	
  1	
 ノード	
  2	
 ノード	
  3	
  …	

1ノード当たり	
  
MPI	
  4プロセスを実行	


1角分点当たりの	
  
密度行列ρに関する計算	
  

OpenMP	


MPIプロセス	
  x	
  4	


GPU	
  compu@ng	


※	
  MPI	
  1プロセスに	
  1GPU	
  が割り当てられる	
  

Nb	
  列	




ベンチマークテスト	


16O	
  (陽子数:8,	
  中性子数:8),	
  	
  スピン・パリティ:	
  0+	
  
主殻(Nshell)	
  :	
  4-­‐9	
  
相互作用:	
  JISP16	
  
　　→　5基底のHamiltonian行列要素の計算(15要素)を行う	
  

対象とする原子核	


コンパイラ:	

GPU使用の場合:	
  
　　PGI	
  Accelerator	
  Fortran	
  13.9	
  (NVIDIA	
  CUDA	
  5.5	
  使用オプション),	
  mvapich2	
  1.8.1	
  	
  
CPUのみを使用の場合:	
  
　　Intel	
  Composer	
  XE	
  2013	
  SP1	
  14.0.3	
  (Intel	
  Math	
  Kernel	
  Library	
  11.1.3を使用)	
  

計算環境	


HA-­‐PACS	
  base部を使用	
  (CPU	
  16core,	
  GPU×4)	

CPU:	
  Intel	
  E5	
  (SandyBridge-­‐EP)	
  8core	
  x2	
  -­‐>	
  理論性能：20.8	
  GFLOPS/core	

GPU:	
  NVIDIA	
  M2090	
  -­‐>	
  理論性能：665	
  GFLOPS	


1ノード当たりの性能比較	


CPUのみ(16core),	
  1GPU	
  (+OpenMP:	
  CPU	
  16core使用),	
  	
  
4GPU	
  (+MPI	
  4プロセス ×	
  OpenMP:CPU	
  4	
  core)	
  で性能を比較	


並列性能	


1ノード4GPUを使用した Nshell=9	
  で	
  32ノードまでの並列性能(strong	
  scale)を計測	
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1ノード計算での性能比較	


CPUのみ(16core)と比較して	
  
1GPU	
  (+OpenMP:16core),	
  4GPU	
  (+MPI	
  4プロセス ×	
  OpenMP:4core)	
  での性能向上を図示	


⇒	
  4GPUの場合にNshell=6以上で性能向上が見られる	
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2体相互作用(ボトルネック)部分の性能計測	


1ノード4GPUによる2体相互作用部分計算の性能(GFLOPS)を図示	
  
理論ピーク性能:	
  665	
  GFLOPS	
  ×	
  4	
  =	
  2,660	
  GFLOPS	
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実時間計測(1ノード計算)	


1行列要素当たりの計算にかかった実時間を図示	


Nshell=6以降:	
  CPUのみ	
  -­‐>	
  Nshellが増えるごとに~3倍で増加	
  
　　　　　　　　　　	
  	
  	
  	
  	
  	
  4GPU	
  	
  -­‐>	
  Nshellが増えるごとに~2倍で増加	
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並列性能	
  (1ノード4GPU,	
  Nshell=9)	

1ノードの場合と比較した性能向上を図示	
  (ノード数2,4,8,16,32で計測)	


⇒	
  16ノードまでのスケーリングを確認	




まとめ	


-­‐	
  マルチGPU環境を利用した2体相互作用部分の密ブロック行列の	
  
	
  	
  分割化を行うことで、GPGPUでNshell=9までの計算が可能となった。	
  

-­‐	
  1ノードでの計算においては、4GPUを用いたOpenMP	
  +	
  MPI	
  +	
  GPGPU	
  
	
  	
  でCPU	
  16coreの~3.5倍の性能、2体相互作用部分で~40%の実行効率	
  
	
  	
  が得られた(Nshell=9)	
  

-­‐	
  並列性能として16ノードまでのスケーリングを確認した。	
  

実計算コードの実装へ	
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