
Computational Research Division

Large-­‐scale	
 Eigenvalue	
 Calculations	

in	
 Scientific	
 Problems	

Esmond	
 G.	
 Ng	

Lawrence	
 Berkeley	
 National	
 Laboratory	

Computational Research Division

The	
 team	

q  Metin Aktulga
q  Lin Lin
q  Esmond Ng
q  Eugene Vecharynski
q  Chao Yang

q  Summer student – Christopher Haine

q  Funding source: DOE SciDAC Program

Computational Research Division

Eigenvalue	
 problems	

q  Sources of eigenvalue problems
§  Accelerator physics (e.g., modeling of accelerator cavities)
§  Nuclear physics (e.g., understanding of nuclear structures)

§  Chemical sciences (e.g., understanding excited state electronic structure)
§  Materials science (e.g., understanding properties of materials)

q  Types of eigenvalue problems
§  Linear problems

§  Nonlinear problems
 Ax = λBx

 H(X)X = XΛ

 F(λ)x = 0

Computational Research Division

Focus	
 on	
 large-­‐scale	
 linear	
 eignvalue	
 problems	

q  Computing a few smallest/largest/interior eignvalues
§  Examples: the ground or low excited states of a many-body Schrödinger’s

equation, structure analysis (resonant frequency)

§  Methods
�  Krylov subspace based methods (Lanczos, Krylov-Schur, etc.)
�  Jacobi-Davidson

�  Optimization based method (trace minimization)

Computational Research Division

Large-­‐scale	
 symmetric	
 linear	
 eignvalue	
 problems	

q  Computing a relatively “large” number of eigenpairs
§  What is “large”?
�  1% of one million = 10,000

§  Kohn-Sham density functional theory based electronic structure
calculation. The number of eigenpairs is proportional to the number of
electrons (hundred to thousands to hundreds of thousands depending on
the system)

§  Excited state calculation through Green’s function formalism of many-
body perturbation theory (the GW approximation)

Computational Research Division

Methods	
 for	
 computing	
 many	
 eigenpairs	

q  LAPACK or ScaLAPACK if the NEV is a significant portion of the matrix
dimension (50%, 30% or maybe even 20%) unless the eigenvectors are
structured (e.g., block diagonal)

q  Compute all at once using block methods
§  EigPen
§  LOBPCG
§  Chebyshev-Davidson
§  Block Krylov-Schur

q  Spectrum slicing
§  Divide the spectrum into subintervals

§  Compute interior eigenvalues within each interval

Computational Research Division

q  More concurrency; eigenvalues belonging to different intervals
computed (almost) independently

q  Reduced Rayleigh-Ritz/orthogonalization cost

Why	
 spectrum	
 slicing?	

λ

Computational Research Division

What	
 to	
 use	
 in	
 each	
 interval?	

q  Shift-invert Lanczos (MSIL)

q  Contour integral projection method (MCISPM)

q  Polynomial transformation

(A −σ I)−1

x = 1
λ −σ

x

E"

P(E)"

σ
2

σ
1

σ
k

P = 1

2πi
(A − zI)−1dz ≈ ω

i
(A − z

i
I)−1

1

np

∑Γ!∫

Computational Research Division

Optimal	
 partition?	

q  Objective:
§  Load balancing
§  Rapid convergence within each interval

§  Minimize the number of factorizations (hence the total cost)

q  Dynamic (Boeing code, SIPs) vs static
q  Estimate of the density of state

§  Inertia count (Sylvester’s inertia theorem)
§  Other methods that do not require matrix factorization

q  Estimate the cost of computing k eigenvalues within each interval

Computational Research Division

Estimate	
 the	
 (cumulative)	
 density	
 of	
 state	

Computational Research Division

Cost	
 model	

q  Assumption:
§  Matrix dimension: n
§  q processors per interval

§  Uniform eigenvalue distribution
§  Factorization and triangular solution costs:
§  Parallel efficiencies:
§ 
§  Rayleigh-Ritz and orthogonalization costs are negligible

q  Wall clock time for computing k eigenpairs per interval:

c

f
n
α f ,c

s
nα s

η

f
,η

s
∈(0,1)

W(k) =

c
f
n
α f

q
ηf

+
c

s
nα sk

qηs

k

opt
=

η
f
c

f

(1−η
s
)c

s

⎛

⎝
⎜

⎞

⎠
⎟

1
η

f
−η

s
+1

c
n

c
p

⎛

⎝
⎜

⎞

⎠
⎟

η
f
−η

s

η
f
−η

s
+1

n

α
f
−α

s

η
f
−η

s
+1

p = c

p
n, nev = c

n
n

Computational Research Division

Observations	

q  When is constant, optimal
k depends on problem size and
relative cost of factorization and
triangular solution

q  When are close to 1, we should place more eigenvaues in each
interval without increasing Rayleigh-Ritz and orthogonalization cost/
slowing down convergence

q  When

§  independent of the total # of processors

§ 

k

opt
=

η
f
c

f

(1−η
s
)c

s

⎛

⎝
⎜

⎞

⎠
⎟

1
η

f
−η

s
+1

c
n

c
p

⎛

⎝
⎜

⎞

⎠
⎟

η
f
−η

s

η
f
−η

s
+1

n

α
f
−α

s

η
f
−η

s
+1

c

n
/c

p

η

f
,η

s

η

f
= η

s
= η

k

opt
=

ηc
f

(1−η)c
s

⎛

⎝
⎜

⎞

⎠
⎟ n

α
f
−α

s

W(k

opt
) =

c
f
n
α

f

u
+ η

1−η
c

s
n
α

s

u
, u = q

η

Computational Research Division

The	
 effect	
 of	
 interval	
 size	
 (MSIL)	

0"

5"

10"

15"

20"

25"

30"

35"

12
8x
4"

85
x6
"
64
x8
"

51
x1
0"

42
x1
2"

32
x1
6"

25
x2
0"

21
x2
4"

16
x3
2"

12
x4
2"

10
x4
8"

8x
64
"

w
al
l.c
lo
ck
"2
m
e"
(in

"se
co
nd

s)
"

#"intervals"x"#"processors"per"interval"="512"""

max.avg"solve"
tsolve"
Bactor"

Graphene 512

Computational Research Division

Implementation	
 of	
 multiple	
 shift-­‐invert	
 Lanczos	

q  Place the target shift in the middle of the interval
q  Set k to be slight larger than the number of eigenvalues estimated to

be in this interval
q  Use the implicit restart to limit the size of the Krylov subspace

(hence the cost of orthogonalization and Rayleigh-Ritz calculation)
q  Set maximum number of restarts to limit the total cost for this

interval

E"

P(E)"

σ
2

σ
1

σ
k

Computational Research Division

Implementation	
 of	
 contour	
 integral	
 projection	
 method	

q  Use the FEAST package (Polizzi)
q  In most cases, 16 quadrature points (poles) are sufficient for

constructing
q  Apply the approximate spectral projector P to an orthonormal basis

of a subspace S within a subspace iterative (2-3 iterations often
sufficient)

 P = (A − z
i
I)−1ω

ii∑

Pick an orthonormal basis V for S
While no convergence
• 
• 
•  Check convergence

•  dim(S) = 1.5k

 W ← PV

 V ← qr(W)

Computational Research Division

MSIL:

q  One factorization per interval

q  Real arithmetic

q  One solve at a time, a
sequential process

MICISPM:

q  8-16 factorizations per interval

q  Complex arithmetic

q  Multiple right-hand sides.
§  However, if the factor is

distributed, the solves cannot
be performed completely in
parallel

§  Some efficiency (2-3x) can be
gained from blocking (BLAS3)

MSIL	
 vs	
 MCISPM	

Computational Research Division

Why	
 is	
 MCIPM	
 less	
 efficient	
 than	
 MSIL	
 on	
 distributed-­‐
memory	
 systems?	

q  Because MCISPM requires multiple complex factorizations, one would

like to include as many eigenvalues as possible in an interval to
amortize the factorization cost
§  Ideally, the number of eigenvalues should be 8 or 16x those in an MSIL

q  But having too many eigenvalues in an interval will increase the cost
of triangular substitution

q  The number of eigenvalues is also limited by Rayleigh-Ritz/
orthogonalization cost and convergence rate of the subspace
iteration

q  The conclusion may be different if each linear system is solved
iteratively or if shared-memory parallelism is used

Computational Research Division

MSIL	
 vs	
 MCISPM	

q  Use MUMPS for factorization and triangular solution
q  FEAST for MCISPM
q  PARPACK for MSIL
q  Experiments performed on Hopper at NERSC. Each node has two 12-

core AMD Magny Cours 2.1GHz processors, 32GB shared memory
q  Convergence tolerance (for relative residual norm) set to 10-10

problem n nev p tmsil tmcispm

Graphene512 20,480 2,048 128 16 125

Graphene2048 81,920 8,192 512 31 208

C60 17,576 1,757 8,192 5.5 46

SiO 33,401 3,340 2,048 27 98

GaAsH6 61,349 6,134 16,384 50 198

Computational Research Division

Weak	
 and	
 strong	
 scaling	
 study	

q  Matrices generated from DGDFT
q  Use MUMPS for factorization and triangular solution
q  FEAST for MCISPM
q  PARPACK for MSIL
q  Experiments performed on Hopper at NERSC. Each node has two 12-

core AMD Magny Cours 2.1GHz processors, 32GB shared memory
q  Convergence tolerance (for relative residual norm) set to 10-10

Matrix name dimension nnz Lnnz

Graphene128 5120 1M 3.1M

Graphene512 20480 4.1M 43.2M

Graphene2048 81920 16.4M 135.4M

Graphene8192 327680 65.7M 727.5M

Computational Research Division

MSIL	
 strong	
 scaling	

Computational Research Division

MSIL	
 weak	
 scaling	

q  The expected scaling factors are calculated from the cost model and
the actual time measured for factorization and triangular solutions,
and the assumption that ηf

= η
s
= 0.5

problem p q x l k twall

expect/
actual
scaling

Graphene512 512 20 x 25 82 16.4

Graphene2048 2048 20 x 102 80 50.6 3.2/3.1

Graphene8192 8192 20 x 108 96 353 5.2/7

l = # intervals; q = # processors/interval

Computational Research Division

MCISPM	
 Strong	
 scaling	

q  Graphene2048, n = 81,920, nev = 8,192

q  Optimal choice of q x l

p q x l k t f ts tother twall

8,192 256 x 32 256 65 104 37 208

16,384 256 x 64 128 65 52 18 137

32,768 256 x 128 64 65 26 18 104

65,536 256 x 256 32 65 12 27 89

131,072 256 x 512 16 65 6 12 87

262,144 256 x 1024 8 65 3.2 10 83

p q x l k t f ts tother twall

8,192 256 x 32 256 65 104 37 208

16,384 512 x 32 256 33 68 30 131

32,768 512 x 64 128 33 36 16 85

131,072 512 x 256 32 33 9 5 47

262,144 1024 x 256 16 24 9 4 38

Computational Research Division

MCISPM	
 weak	
 scaling	

q  The expected scaling factors are calculated from the cost model and

the actual time measured for factorization and triangular solutions,
and the assumption that ηf

= η
s
= 0.5

problem p q x l k t wall
expect/actual

scaling

Graphene128 512 64 x 8 64 3.6

Graphene512 2048 128 x 16 128 55 5.6/16

Graphene2048 8192 256 x 32 256 208 5.6/3.8

l = # intervals; q = # processors/interval

Computational Research Division

Conclusion	

q  Spectrum slicing introduces additional levels of concurrency
q  Optimal partition depends on the relative cost of factorization and

triangular substitution in addition to several other constraints

q  MSIL appears to be more efficient than MCISPM on distributed-
memory parallel machines when direct methods are used to factor
the matrix and solve triangular systems

q  It will be interesting to see how these methods perform when
preconditioned iterative solvers are used to solve the linear systems

q  Performance on nonsymmetric eigenvalue problems???

