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Eigenvalue	  problems	  

q  Sources of eigenvalue problems 
§  Accelerator physics (e.g., modeling of accelerator cavities) 
§  Nuclear physics (e.g., understanding of nuclear structures)  

§  Chemical sciences (e.g., understanding excited state electronic structure) 
§  Materials science (e.g., understanding properties of materials) 

q  Types of eigenvalue problems 
§  Linear problems 
 

§  Nonlinear problems 
 Ax = λBx

  H(X)X = XΛ

  F(λ)x = 0
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Focus	  on	  large-‐scale	  linear	  eignvalue	  problems	  

q  Computing a few smallest/largest/interior eignvalues 
§  Examples: the ground or low excited states of a many-body Schrödinger’s 

equation, structure analysis (resonant frequency) 

§  Methods 
�  Krylov subspace based methods (Lanczos, Krylov-Schur, etc.) 
�  Jacobi-Davidson  

�  Optimization based method (trace minimization) 
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Large-‐scale	  symmetric	  linear	  eignvalue	  problems	  

q  Computing a relatively “large” number of eigenpairs 
§  What is “large”? 
�  1% of one million = 10,000 

§  Kohn-Sham density functional theory based electronic structure 
calculation. The number of eigenpairs is proportional to the number of 
electrons (hundred to thousands to hundreds of thousands depending on 
the system) 

§  Excited state calculation through Green’s function formalism of many-
body perturbation theory (the GW approximation) 
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Methods	  for	  computing	  many	  eigenpairs	  

q  LAPACK or ScaLAPACK if the NEV is a significant portion of the matrix 
dimension (50%, 30% or maybe even 20%) unless the eigenvectors are 
structured (e.g., block diagonal) 

q  Compute all at once using block methods 
§  EigPen 
§  LOBPCG 
§  Chebyshev-Davidson 
§  Block Krylov-Schur 

q  Spectrum slicing 
§  Divide the spectrum into subintervals 

§  Compute interior eigenvalues within each interval 
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q  More concurrency; eigenvalues belonging to different intervals 
computed (almost) independently 

 

q  Reduced Rayleigh-Ritz/orthogonalization cost 

Why	  spectrum	  slicing?	  

λ
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What	  to	  use	  in	  each	  interval?	  

q  Shift-invert Lanczos (MSIL) 

q  Contour integral projection method (MCISPM) 

q  Polynomial transformation 
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Optimal	  partition?	  

q  Objective: 
§  Load balancing 
§  Rapid convergence within each interval 

§  Minimize the number of factorizations (hence the total cost) 

q  Dynamic (Boeing code, SIPs) vs static 
q  Estimate of the density of state 

§  Inertia count (Sylvester’s inertia theorem) 
§  Other methods that do not require matrix factorization 

q  Estimate the cost of computing k eigenvalues within each interval 
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Estimate	  the	  (cumulative)	  density	  of	  state	  
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Cost	  model	  

q  Assumption: 
§  Matrix dimension: n 
§  q processors per interval 

§  Uniform eigenvalue distribution 
§  Factorization and triangular solution costs:  
§  Parallel efficiencies: 
§    
§  Rayleigh-Ritz and orthogonalization costs are negligible 

q  Wall clock time for computing k eigenpairs per interval: 
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Observations	  

q  When           is constant, optimal 
k depends on problem size and 
relative cost of factorization and 
triangular solution 

q  When          are close to 1, we should place more eigenvaues in each 
interval without increasing Rayleigh-Ritz and orthogonalization cost/
slowing down convergence 

q  When  

§                                    independent of the total # of processors 

§                                                        
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The	  effect	  of	  interval	  size	  (MSIL)	  
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Implementation	  of	  multiple	  shift-‐invert	  Lanczos	  

q  Place the target shift in the middle of the interval 
q  Set k to be slight larger than the number of eigenvalues estimated to 

be in this interval 
q  Use the implicit restart to limit the size of the Krylov subspace 

(hence the cost of orthogonalization and Rayleigh-Ritz calculation) 
q  Set maximum number of restarts to limit the total cost for this 

interval 
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Implementation	  of	  contour	  integral	  projection	  method	  

q  Use the FEAST package (Polizzi) 
q  In most cases, 16 quadrature points (poles) are sufficient for 

constructing 
q  Apply the approximate spectral projector P to an orthonormal basis 

of a subspace S within a subspace iterative (2-3 iterations often 
sufficient) 

  P = (A − z
i
I)−1ω

ii∑

Pick an orthonormal basis V for S 
While no convergence 
•    
•    
•  Check convergence 

•  dim(S) = 1.5k 

 W ← PV

  V ← qr(W)
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MSIL: 

q  One factorization per interval 

q  Real arithmetic 

q  One solve at a time, a 
sequential process 

MICISPM: 

q  8-16 factorizations per interval 

q  Complex arithmetic 

q  Multiple right-hand sides.  
§  However, if the factor is 

distributed, the solves cannot 
be performed completely in 
parallel 

§  Some efficiency (2-3x) can be 
gained from blocking (BLAS3) 

MSIL	  vs	  MCISPM	  
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Why	  is	  MCIPM	  less	  efficient	  than	  MSIL	  on	  distributed-‐
memory	  systems?	  
q  Because MCISPM requires multiple complex factorizations, one would 

like to include as many eigenvalues as possible in an interval to 
amortize the factorization cost 
§  Ideally, the number of eigenvalues should be 8 or 16x those in an MSIL 

q  But having too many eigenvalues in an interval will increase the cost 
of triangular substitution 

q  The number of eigenvalues is also limited by Rayleigh-Ritz/
orthogonalization cost and convergence rate of the subspace 
iteration 

q  The conclusion may be different if each linear system is solved 
iteratively or if shared-memory parallelism is used 
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MSIL	  vs	  MCISPM	  

q  Use MUMPS for factorization and triangular solution 
q  FEAST for MCISPM 
q  PARPACK for MSIL 
q  Experiments performed on Hopper at NERSC.  Each node has two 12-

core AMD Magny Cours 2.1GHz processors, 32GB shared memory 
q  Convergence tolerance (for relative residual norm) set to 10-10 

problem n nev p tmsil tmcispm 

Graphene512 20,480 2,048 128 16 125 

Graphene2048 81,920 8,192 512 31 208 

C60 17,576 1,757 8,192 5.5 46 

SiO 33,401 3,340 2,048 27 98 

GaAsH6 61,349 6,134 16,384 50 198 
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Weak	  and	  strong	  scaling	  study	  

q  Matrices generated from DGDFT 
q  Use MUMPS for factorization and triangular solution 
q  FEAST for MCISPM 
q  PARPACK for MSIL 
q  Experiments performed on Hopper at NERSC.  Each node has two 12-

core AMD Magny Cours 2.1GHz processors, 32GB shared memory 
q  Convergence tolerance (for relative residual norm) set to 10-10 

Matrix name dimension nnz Lnnz 

Graphene128 5120 1M 3.1M 

Graphene512 20480 4.1M 43.2M 

Graphene2048 81920 16.4M 135.4M 

Graphene8192 327680 65.7M 727.5M 
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MSIL	  strong	  scaling	  
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MSIL	  weak	  scaling	  

q  The expected scaling factors are calculated from the cost model and 
the actual time measured for factorization and triangular solutions, 
and the assumption that   ηf

= η
s
= 0.5

problem p q x l k twall 

expect/
actual  
scaling 

Graphene512 512 20 x 25 82 16.4 

Graphene2048 2048 20 x 102 80 50.6 3.2/3.1 

Graphene8192 8192 20 x 108 96 353 5.2/7 

l = # intervals; q = # processors/interval 
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MCISPM	  Strong	  scaling	  

q  Graphene2048, n = 81,920, nev = 8,192 

 
q  Optimal choice of q x l 

p q x l k t f ts tother twall 

8,192 256 x 32 256 65 104 37 208 

16,384 256 x 64 128 65 52 18 137 

32,768 256 x 128 64 65 26 18 104 

65,536 256 x 256 32 65 12 27 89 

131,072 256 x 512 16 65 6 12 87 

262,144 256 x 1024 8 65 3.2 10 83 

p q x l k t f ts tother twall 

8,192 256 x 32 256 65 104 37 208 

16,384 512 x 32 256 33 68 30 131 

32,768 512 x 64 128 33 36 16 85 

131,072 512 x 256 32 33 9 5 47 

262,144 1024 x 256 16 24 9 4 38 
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MCISPM	  weak	  scaling	  

 
q  The expected scaling factors are calculated from the cost model and 

the actual time measured for factorization and triangular solutions, 
and the assumption that   ηf

= η
s
= 0.5

problem p q x l k t wall 
expect/actual  

scaling 

Graphene128 512 64 x 8 64 3.6 

Graphene512 2048 128 x 16 128 55 5.6/16 

Graphene2048 8192 256 x 32 256 208 5.6/3.8 

l = # intervals; q = # processors/interval 
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Conclusion	  

q  Spectrum slicing introduces additional levels of concurrency 
q  Optimal partition depends on the relative cost of factorization and 

triangular substitution in addition to several other constraints 

q  MSIL appears to be more efficient than MCISPM on distributed-
memory parallel machines when direct methods are used to factor 
the matrix and solve triangular systems 

q  It will be interesting to see how these methods perform when 
preconditioned iterative solvers are used to solve the linear systems 

q  Performance on nonsymmetric eigenvalue problems??? 


