

Berkeley Lab Computational Research Update

CCS - LBL Collaborative Workshop April 10, 2014

David L. Brown
Computational Research Division Director

Berkeley Lab at a Glance

Solve the most pressing and profound scientific problems facing humankind

- Basic science for a secure energy future
- Understand living systems to improve the environment and energy supply
- Understand matter and energy in the universe
- Build and safely operate world-class scientific facilities
- Train the next generation of scientists and engineers

We are working to enable new experimental science capabilities through advanced math and computing

CRT Location Supports Collaboration with University of California at Berkeley

NERSC at Berkeley Lab provides HPC Systems for Science

US DOE Office of Science Supercomputers at Oak Ridge, Argonne and Berkeley Labs

Titan:

- Peak performance of 27.1 Petaflops
- 18,688 Hybrid Compute Nodes
- 8.9 MW peak power

Mira:

- Peak performance of 10 Petaflops
- 49,152 Compute Nodes
- 4.8 MW peak power

Edison XC30:

- Peak performance 2.4PF
- 5,576 Compute Nodes
- 2.1 MW peak power

Computational Research Division

Computational Science

Applied Mathematics

Mathematical Models

Adaptive Mesh Refinement

Environment

Libraries and **Frameworks**

Linear Algebra

Interface Methods

Computer Science

Astrophysics

Performance & Autotuning

Cloud, grid & distributed computing

Visualization and Data Management

Computing Sciences Strategy Today

Extreme Computing

- Goal: Increase ops/Watt by 100x
- Hardware, software and algorithms

Extreme Data

- Goal: Answer facility data deluge
- Software, algorithms, and systems

Science Engagement

- Goal: Improve science capabilities
- Mathematics and software

Computing Fundamentals

 Goal: Advance foundations of computing and math relevant to DOE

Applied math: broad impact from basic algorithms to scientific discovery

- Adaptive Mesh Refinement
- High-order upwind schemes
- Advanced eigenvalue solvers
- Communication-avoiding algorithms

- Chombo, BoxLib, SuperLU, LAPACK ...

Broad scientific impact

- combustion
- chemistry and materials science
- cosmology
- astrophysics
- environmental modeling
- fusion

New numerical linear algebra techniques have impact on seismic inversion, accelerator design

hierarchical partition

SVD with nested bases

ASEIG faster, less memory than SIL when many eigenpairs are needed;

Hsolver: scalable HSS-embedded low-rank sparse solvers and preconditioners

- For dense, but data-sparse structured matrices with rank-deficient off-diagonal blocks
- Hierarchical partitioning
- Nearly linear complexity

Sherry Li, Artem Napov, Francois-Henry Rouet, Jianlin Xia

ASEIG: Algebraic sub-structuring eigensolver for $Kx = \lambda Mx$

- Graph partitioning divides matrix into submatrices
- Projection space based on eigenspectra subsets
- Compute approximate solution from projection space
- Advantages over Shift-Invert-Lanczos: no triangular solves, orthogonalization, less memory

Weiguo Gao, Sherry Li, Chao Yang, Zhaojun Bai

3D anisotropic Helmholtz for seismic imaging 16,000+ cores, 2x faster, 1/5 memory

ASEIG used in accelerator cavity design code for SLAC National Accelerator Lab

Our Strong CS Research Program at Berkeley Lab addresses the Challenge of Technology Disruption

Programming models and Languages

- Advanced programming environment addressing emerging technology challenges
- Enable productive programming of exascale systems
- UPC, Titanium, DEGAS

Auto-tuning and Performance Analysis

- Performance portability through automated runtime performance analysis and code transformations
- Roofline model, OSKI, X-Tune, SEJITS

Communication Libraries and Resilience

- Addressing advanced communication facilities, error detection and recovery for future system s/w architecture
- GASnet, Berkeley Linux Checkpoint Restart (BLCR), CD

Manycore Operating Systems and Runtimes

- Deconstructing the OS for manycore processors for performance isolation, error isolation, resource management
- K42, Tessellation, Speed Balancing

Hardware Architecture and CoDesign

- Compiler-based automated performance model extraction and hardware simulation/simulation for ExaCT and CAL
- Design: Green Flash/Green Wave, View from Berkeley
- Emulation: CAL, RAMP

Data in Bioinformatics Requires New Algorithms, Software, and Systems

Sequencing Cost Drops Again

Gene Context Analysis now >1000x faster using FastBit

A. Romosan, A. Shoshani, K.Wu, V. Markowitz, K. Mavrommatis

Human: 2B reads \rightarrow 20M contigs \rightarrow 16K scaffolds \rightarrow 23 chromosomes

Strong Scaling of Meraculous Assembler in UPC

Probabilistic counting, Bloom filters, Distributed hash

New ~Linear Time Bubble Clustering algorithm

A. Buluc, V. Strnadova. J. Gilbert, E. Georganas, J. Chapmanz, D. Rokhsar, L. Oliker, and K. Yelick,, multiple papers to be submitted

Expansion of Computational Science at Berkeley Lab driven by challenges of data-intensive experiments and observations

- We have a strong record of innovation in computational science, mostly modeling and simulation
 - Major SciDAC role including climate, astrophysics
 - Outstanding applied math
 - Visionary computer science
 - Lead DOE's data intensive computing center SDAV
 - NERSC and ESnet are major DOE computational facilities
- But our science facilities are largely experimental in nature – data analysis has not been an HPC problem*
- Exploding data intensive analysis demands means opportunity for significant growth in computing for science at LBNL
 - Beamline data
 - Materials discovery database approaches
 - Bio-image analysis
 - Genomics data JGI
 - Modeling and Simulation to help understand observations e.g. cosmology

^{*} Possibly excluding JGI

Data Growth is Outpacing Computing Growth

Data-driven scientific discovery requires integration of modeling, simulation, analysis, data management

Example: 21st Century Astrophysics:

- Tight collaboration between astrophysicists and computational scientists to develop new technologies for cosmological data analysis
- Analysis & simulation of 100s of TeraBytes of data from ground- and space-based observations

 Modeling & simulation of supernovae and large-scale structure formation

Palomar Transient Factory data-analysis sky-coverage map for the first 3 years of the project

Advanced analytic techniques needed to identify interesting events in climate data

- New data mining, image processing, and topological analysis techniques
- Detect extreme events, e.g., hurricanes
- 10s-100s of TB of data from a single simulation
 - (The Library of Congress contains about 254 TB.)
- TECA Toolkit
 - Automatic detection of cyclones, atmospheric rivers, and more
 - Analysis time years to minutes

High-resolution atmospheric simulation

Detected cyclones

CAMERA leverages state-of-the-art mathematics to transform experimental data into understanding

CENTER FOR APPLIED MATHEMATICS FOR ENERGY RESEARCH APPLICATIONS

X-ray scattering data analysis

HipGISAXS 400-1500x faster analysis for X-ray scattering data

Now: Nonlinear optimization, genetic algorithms, pattern recognition w/ noise

J. Sethian

Micro-CT Sample Analysis

Quant-CT provides automated quantitative analysis

Now: 3D image segmentation; pattern recognition; classification; PDE-and graph-based analysis

X-ray Nano-Crystallographic Reconstruction

Indexing ambiguity resolved [PNAS13]

Now: Image orientation, find crystal shape/size; address orientation ambiguities; data variance reduction

Designing New Materials

Designed recordbreaking highsurface area materials

Now: 3D porous polymer model assembly; Zeo++ porosity characterization; Optimal material designs

LDRD-seeded, now ASCR-supported

Robust software infrastructure for modern scientific discovery

- ATLAS (CERN): LBNL responsible for core software and infrastructure (since 1999) – 8 FTE effort
- Daya Bay: LBNL architected software for anti-neutrino mixing angle experiment (2012)

SPOT Suite: New Usage Model for Light Sources

- Light source data solution:
 - Data management and storage
 - Analysis and simulation
- Inter-disciplinary team:
 - Computer scientists
 - light source scientists
 - materials scientists
 - ESNet & NERSC
- In-situ, time-resolved experiments,
- Real-time analysis, algorithms,
- Data sharing & collaboration

Since March 2013: 40 experiments; 1,356 datasets; 16 TB of raw data; 346,371 NERSC jobs delivered in real time to BL 8.3.2 Micro-Tomography Beamline.

Tigres provides programming templates for developing

scientific workflow pipelines

• Science targets:

- Image processing
- Light source experiments
- cosmology
- DNA assembly
- UQ pipelines

Design Goals:

- Easy composition
- Scalability
- Lightweight execution

Templates:

- Sequence
- Parallel
- Split
- Merge

Office of L. Ramakrishnan, V. Hendrix, D. Gunter, G.Pastorello, Science R. Rodriguez, A. Essari , D. Agarwal

Create and

We hope to identify collaboration opportunities between Berkeley Lab and CCS during this meeting

- Michael Wehner: Simulating Hurricanes and Typhoons in a Global Climate Model
- Esmond Ng: Large-scale Eigenvalue Calculations in Scientific Applications
- Costin Iancu: Dynamic Exascale Global Address Space (DEGAS) Programming Environments
- Casey Stark: The Lyman-alpha Forest in Cosmological Hydrodynamic Simulations
- Khalid Ibrahim: Analysis and Optimization of Gyrokinetic Toroidal Simulation on Emerging Architectures

