>

reeococoee| |

Towards an Exascale SDK

Costin lancu
Lawrence Berkeley National Laboratory

e [AWRENCE BERKELEY NATIONAL LABORATORY =t

Berkeley Lab Initiative in Extreme Data Science

XDSF: Extreme Data Science Facility concept

Other
data-
producing
sources

Extreme Data
Science

FaC|I|ty

PR

XDSF: Will bring scientists together with data researchers
and software engineers

Network
services services

Storage &
analytics
systems

S

=2 Building the Exascale Ecosystem

< Multidisciplinary science at Exascale requires novel
functionality in the software development environment

<+ Large system scale (DEGAS)

Programming environment that adapts to system variability in
performance and availability

<+ Composed execution models (Corvette)

Automated techniques to reason about program behavior
(correctness, performance, precision)

<+ “Data” pipelines (Hobbes)
New system level support for application composition
(resources, data)

LAWRENCE BERKELEY NATIONAL LABORATORY =i

DEGAS:
Dynamic Exascale Global Address Space

Katherine Yelick, LBNL PI
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢c & Armando Fox, UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Surendra Byna, Paul Hargrove, Steven Hofmeyr, Costin lancu, Khaled
Ibrahim, Leonid Oliker, Eric Roman, John Shalf, David Skinner, Erich
Strohmaier, Samuel Williams, Yili Zheng, LBNL

DEGAS Mission

Mission Statement: To ensure the broad success of
Exascale systems through a unified programming
model that is productive, scalable, portable, and
interoperable, and meets the unique Exascale
demands of energy efficiency and resilience

Energy / Performance
Feedback

é)

Hierarchical Programming
L Models y

Communication-Avoiding

___Libraries and Compilers
[Adaptive Interoperable |

[

\ Runtimes
Lightweight One-Sided
. Communication J

Resilience

DEGAS Overview

6

DEGAS Proposal: Goals and Objectives

Scalability:
— Billion-way concurrency; performance through hierarchicalllocality control
Programmability:

— Convenient programming through alglobal address spaceland high-level
abstractions and libraries

Performance Portability:

— Ensure applications can be moved across diverse machines with domain-
specific optimizations

Resilience:
— Integrated support for capturing state and recovering from faults
Energy Efficiency:

— | Avoid communication, jwhich will dominate energy costs, and adapt to
performance heterogeneity due to system-level energy management

Interoperability:

— Encourage use of languages and features through incremental adoption

DEGAS Overview 7

DEGAS: Dynamic Exascale Global Address Space

0 Hierarchical Programming
= Models
q0)
= e Communication-Avoiding @
u‘;’ @ | Libraries and Compilers)| &
& 2 Adaptive | ble || T
=8 Adaptive Interoperable Z
> Runtimes)| =
2 Lightweight One-Sided |

L Communication JAN)

UPC, Co-Array Fortran (CAF), Habanero-C, and libraries!

DEGAS Overview 8

What we love about UPC

* Convenience
— Build large shared structures (PGAS)

— Read and write data “anywhere, anytime” (global, asynchronous,
and one-sided); would like more than read/writes

* Locality and scalability (shared with MPI)
— Explicit control over data layout
* Thatit’s a language rather than library

— Syntactic elegance: *p =... vs shem_put(p,...)

— Optimizations from compilers
* Communication, pointers, etc.

— Correctness from compilers

* Race and deadlock analysis,...

Global address space

* More in Titanium, less in UPC

Hierarchical PGAS (HPGAS) hierarchical memory & control

Beyond (Single Program Multiple

Ja | -
T g |

applications (e.g., multiphysics)

* Option 1: Dynamic parallelism creation
— Recursively divide until... you run out of work (or hardware)

e Option 2: Hierarchical SPMD with “Mix-ins”

— Hardware threads can be grouped into units hierarchically
— Add dynamic parallelism with voluntary tasking on a group
— Add data parallelism with collectives on a group

Two approaches: collecting vs spreading threads

DEGAS Overview 10

UPC++ Programming System in DEGAS

PI’Oblem CICH Apps ‘ ‘ Asynchronous
. . UPC Apps UPC++ Event-driven
— Need H-PGAS support for C++ applications iy @<: Template task
— C++ complier is very complex e Files execution

Compiler C++ Compiler

Solution: “Compiler-Free” UPC++ 17 iy -
. UPC UPC++ 2 \Q task
— Template library approach reduces development | runtime Runtime @

. . t
and maintenance costs by leveraging C++ [casnet Communicaton Livary | = even
Standards and Compilers { Network Drivers and OS Libraries J

— Use SPMD+Aysnc execution model
— Combine popular features from existing PGAS " | e MPI LLESH Performance on Cray XC30
languages: async in Phalanx/X10, M-D domains L eided ';fmm e URCH
and arrays in Titanium/Chapel communication \ &
; provides better § 1.00E+06
— Interoperate with MPI, OpenMP, CUDA and etc. performance at :
| £
Recent Progress ae 5 1oowos
— Design of H-PGAS in the context of UPC++ 100E+0s
— UPC++ prototype development Stencil Performance on Cray XC30 Number of Cores

— |IPDPS14 paper with results on Cray XC30 and *%] —+—Titanium

@ 2048
IBM BG/Q R
§ 512 -
Impact : o without loes of
— Provided programming productivity similar to g performance
a 32

UPC and Titanium for C/C++ apps
— Demonstrated competitive performance

=
o

24 48 96 192 384 768 1536 3072 6144

Number of Cores

[ZKDSY] “UPC++ -- A PGAS Extension for C++,” IPDPS 2014.
[KY] “Hierarchical Computation in the SPMD Programming Model ,” LCPC 2013.
UPC++ software: https://bitbucket.org/upcxx/upcxx/

Extending Remote Access

 We can make the global address space more powerful
— Remote read and write
— Remote atomic invocation
— Active messages (small functions that execute at high priority)
— Remote function invocation
— Remote invocation with multiple dependences (DAG)
— Run anywhere in region (e.g., on-node task queue)
— Run anywhere (global task queue)
e Retain the SPMD model for locality: 1 main thread per core

* Key questions:
— How quickly do things run vs runtime aggregates communication
— Resource management: avoid timing-dependence deadlock

DEGAS Overview 12

Initial (highly subjective) Analysis of Base Languages

Python

Base Medium (likely to
performance improve)
Multicore OK

performance

Cross-language
support

Existing libraries

Extensibility Medium (cannot Medium
overload .)

Popularity / Medium

ecosystem

Language safety

Current focus of DEGAS for DOE DEGAS Proposed (cut) DEGAS Overview 13

DEGAS: Dynamic Exascale Global Address Space

. - . ()
0 [Hierarchical Programming J
= Models
q0)
= e Communication-Avoiding v
£ @ Libraries and Compilers 5
& 2 Adaptive | ble || T
=8 Adaptive Interoperable Z
> Runtimes)| =
chj Lightweight One-Sided
L Communication JAN)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 14

Generalizing Communication Lower Bounds and Optimal
Algorithms

* For serial matmul, we know #words_moved = Q (n3/M1/2),
attained by tile sizes M¥/2x M?*/2

— Where do all the ¥%2’s come from?

 Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any
program that “smells like” nested loops, accessing arrays
with subscripts that are linear functions of the loop indices,
#words_moved = Q (#iterations/Me), for some e we can
determine

 Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

DEGAS Overview 15

Communication Avoidance in DEGAS

 Problem 10000
— Communication dominates time and energy , 1000 /
— This will be worse in the Exascale era < 100 \ _28‘1";
- Solution 3 10\
— Optimize latency by overlapping with E 1 S @
computation and other communication & 2 &9 @5\"’ 0@0 g & \?§Q’
— Use faster one-sided communication «\"\& Qg})\ AR R
— Use new Communication-Avoiding Algorithms v o _
(provably Optlmal Communlcatlon) New Comm.unlcatlon (.)ptlmal “1.5D” N-
_ _ o Body Algorithm: Replicate and Reduce
— Automatic compiler optimizations
_ IMPACT 000000 000000
_ 2000000
— Dense linear algebra study shows 2X >0 0 0 0 @ O
speedups from both overlap and avoidance 0 00 0 O @

— New “HBL” theory generalizes optimality
to arbitrary loops with array expressions Speedup of New 1.5D Algorithm over Old

— First step in automating communication-
optimal compiler transformations

of cores

[GGSZTY] “Communication Avoiding and Overlapping for Numerical Linear Algebra,” SC12.
[DGKSY] "A Communication-Optimal N-Body Algorithm for Direct Interactions,” IPDPS 2013.
[CDKSY] “Communication Lower Bounds and Optimal Algorithms for Programs That Reference Arrays — Part 1”7, UCB TR 2013

DEGAS: Dynamic Exascale Global Address Space

(: : : \ (N
0 Hierarchical Programming
c Models)
q0)
= e Communication-Avoiding v
£ S Compilers JI 5
& B Adaptive Int bl z
> Runtimes o
2 [Lightweight One-Sided J

Communication 8)

LITHE, JUGGLE: adaptive and efficient runtime

DEGAS Overview 17

DEGAS Leverages THOR runtime work and UPC Library work

Management of critical resources is increasingly important:
* Memory and network bandwidth limited by cost and energy

e Capacity limited at many levels: network buffers at interfaces, internal
network congestion are real and growing problems

InfiniBand - 8 byte Msg Throughput
35
30 =®=Proc —¥—Hyb Pth
) Processes (BUPC) A
)
225 //\
<= 20 2X
5 3X
s 15)
- Hybrid \ /4
'§ 10 - ; e—
5 Pthreads Vv 5X *
0 l T T T T T T)
4 8 12 16 20 24 28 32
Cores Active

Having more than 4 submitting processes can negatively impact performance by up to 4x

DEGAS Overview 18

DEGAS: Dynamic Exascale Global Address Space

a : : : N)
3 Hierarchical Programming
c L Models)
s | — —
£ x Communication-Avoiding O
@ .
= I Compilers J 5
& 2 Adapt ple)| @
(Vs
- & Adaptive In’Feropera e k3
& I\ Runtimes)
| -
o Lightweight One-Sided
L . .
Communication | ‘

Next Generation GASNet

DEGAS Overview 19

DEGAS: Lightweight Communication (GASNet-EX)

GASNet-EX plans:
* Congestion management: for 1-sided communication with ARTS
e Hierarchical: communication management for H-PGAS

* Resilience: globally consist states and fine-grained fault recovery
* Progress: new models for scalability and [P]

interoperability ﬁ

Leverage GASNet (redesigned)

e Major changes for on-chip interconnects-
e Each network has unique opportunities

* Interface under design: “Speak now or....”

— https://sites.google.com/a/lbl.gov/gasnet-ex-collaboration/.

DEGAS Overview 20

DEGAS: Dynamic Exascale Global Address Space

0 Hierarchical Programming
c Models)
q0)
= e Communication-Avoiding @
£ S Compilers Jl 5
P o : NN =
-2 Adaptive Interoperable &
> Runtimes)| =
L?cj Lightweight One-Sided

L Communication)

Containment Domains and BLCR (Berkeley Lab
Checkpoint Restart)

DEGAS Overview 21

Resilience Approaches

* Containment Domains (CDs) for trees Root CD
— Flexible resilience techniques (mechanism not policy)

— Each CD provides own recovery mechanism
— Analytical model: 90%+ efficiency at 2 EF

vs. 0% for conventional checkpointing

* Berkeley Lab Checkpoint Restart

— BLCR is a system-level Checkpoint/Restart - &
reserve Sepemmmmm Al .
* Job state written to filesystem or memory; works on : ; |

Domain

most HPC apps Body

Detect

— Checkpoint/Restart can be used for roll-back
recovery

...........

Recover

. . Child CD
* acourse-grained approach to resilience

* BLCR also enables use for job migration among * Preserve data on. domain start
compute nodes * Compute (domain body)

e Detect faults before commit

— Requires support from the MPl implementation | , Recover from detected errors

— Impact: part of standard Linux release

22 DEGAS Overview

DEGAS Software Stack

PyGAS Habanero-UPC H-CAF

ROSE Berkele

Energy / Performance Feedback - /PM,Roofline

Resilience Support - Containment Domains + BLCR

i Unfunded activity

DEGAS Overview 23

PGAS Applications (Ongoing)

Meraculous (Evangelos Georganas)

Convergent Matrix (Scott French)
https://github.com/swfrench/convergent-matrix)
Communication-Avoiding Matrix (Penporn Koanantakool)
Embree graphics (Michael Driscoll)
https://github.com/mbdriscoll/embree/tree/upcxx

NPB CG, MG and FT (Amir Kamil)

Fan-both Sparse Cholesky (Mathias Jacquelin)

mini-GMG (Hongzhang Shan)

MILC (Hongzhang Shan)

Global Arrays and NWChem (Eric Hoffman, Hongzhang Shan)

Planned:

Stochastic Gradient

DEGAS Overview 24

>

reeococoee| |

Corectness, Verification and Testing
of Exascale Applications (Corvette)

Koushik Sen (Pl)
James Demmel
UC Berkeley

Costin lancu
Lawrence Berkeley National Laboratory

meesssssssssssssss [AWRENCE BERKELEY NATIONAL LABORATORY =i

>

frreeeer ﬂ

Develop correctness tools for different programming
models: PGAS, MPI, dynamic parallelism

l. Testing and Verification
|dentify sources of non-determinism in executions

Data races, atomicity violations, non-reproducible floating point
results

Explore state-of-the-art techniques that use dynamic analysis
Develop precise and scalable tools: < 2X overhead

Il. Debugging
Use minimal amount of concurrency to reproduce bug
Support two-level debugging of high-level abstractions

Detect causes of floating-point anomalies and determine the
minimum precision needed to fix them

26
L B N L

PRECIMONIOUS: Tuning Assistant for
Floating-Point Precision

Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen,

James Demmel, William Kahan, Koushik Sen
University of California, Berkeley

David H. Bailey, Costin lancu
Lawrence Berkeley National Laboratory

David Hough

Oracle

SC'13

< Floating-point arithmetic used in wide variety of domains

< Reasoning about these programs is difficult
» [arge variety of numerical problems

= Most programmers not experts in floating point or numerical
analysis

< Common practice
» Use the highest available floating-point precision

= Disadvantages: more expensive in terms of running time,
storage, and energy consumption

< Goal: develop automated technique to assist in tuning
floating-point precision

SC'13 28

Example (D.H. Bailey)

% Consider the problem of finding the arc length of the function

g(x) =x + Z 2~ sin(2x)

0<k<5

% Summing for xx € (0, 7) into n subintervals

Z\/h2 g(xpy1) —g(xr))? with h=n/n and xp = kh

Precision Slowdown Result

double-double 20X 5.795776322412856 | vV
e double 1X 5.795776322413031 | %
e Summation variable is < 2X 5.795776322412856 | v

double-double

SC'13 29

Example (D.H. Bailey)

long double fun(long double x) { double fun(double x) {
int k, n = 5; int k, n = 5;
long double t1 = x; double t1 = x;
long double dl1 = 1.0L; float dl = 1.0f;
for(k = 1; k <= n; k++) { for(k = 1; k <= n; k++) {
} }
return til; return ti;
} }
int main() { int main() {
int i, n = 1000000; int i, n = 1000000;
long double h, t1, t2, dppi; double h, t1, t2, dppi;
long double s1; long double s1;
for(i = 1; i <= n; i++) { for(i = 1; i <= n; i++) {
t2 = fun(i * h); t2 = fun(i * h);
sl = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1)); sl = s1 + sgrtf(h*h + (t2 - t1)*(t2 - t1));
t1 = t2; t1l = t2;
} }
// final answer stored in variable sl // final answer stored in variable sl
return 9; return 0;
} }

Original Program Tuned Program »

Challenges for Precision Tuning

< Searching efficiently over variable types and
function implementations
= Naive approach — exponential time
e 19,683 configurations for arc length program (3°)
e 11 hours 5 minutes

. . H ! >_
= Global minimum vs. a local minimum Automated

< Evaluating type configurations

= |ess precision does not always result in
performance improvement

= Run time, memory usage, energy consumption, etc.

—_

—_

< Determining accuracy constraints
= How accurate must the final result be? - .
Specified by

= \What error threshold to use? the user
SC'13 - 31

Speedup for Various Error Thresholds

45 41%

40

35 -
¥ 30 -
S
2 29 =t=10/-4
O . -
O 20 «=10"-6
@ 15 - we=10"-8

“#=107-10

SC'13 32

>

reeococoee| |

Hobbes: OS and Runtime Support
for Application Composition

Ron Brightwell (PI)
Sandia National Laboratory

Costin lancu (Programming Models)
LBNL

meesssssssssssssss [AWRENCE BERKELEY NATIONAL LABORATORY i@

COMPOSITION

® |[nternode composition

Minimally intrusive App
*= need to connect outputs to inputs Node
Potential for inefficient resource usage
= |[ntranode composition Apl .
Separate enclaves

Node

= Minimally intrusive
= Connections could be made using shared memory

Unified Runtime

= |[ntegration
I/0 operation invokes visualization
Minimal overhead

= Can we use a single description to support all of these
implementations?

Mapping logical structures onto physical resources through virtualization

Policies to manage
the VMs on a single
node. AKA PCT

VM Management Module

Hobbes Node Architecture

Independent Operating and Runtime Systems

HAL (Hardware Virtualization)

Additional mechanisms needed to
manage multiple VMs. Run in
kernel mode to take advantage of
VM support in modern processors.
AKA Palacios

Basic mechanisms needed to
virtualize hardware resources like
address spaces. AKA Kitten

§ On Node VMs can share
c JENEREIRL the resources via
.g time sharing or
g space sharing.
= EOS EOS S - This is managed
qg 1 5 Appll;:-atlon Appll;atlon by the GOS
©
S RT 1 RT 2
— NOS 1 NOS 2 User

Kernel

S

cecee)) OS Support for Adaptive Runtimes

< Yardstick for success — application performance and ease

of development

» Performance metrics — time, energy
» Software engineering metrics — “composability”, “tunability”

<+ Interact with Co-Design centers for experiments

<+ ldentify separation of concerns between adaptive runtime
and OS support
= Distinguish between mechanisms and policies
» Resource management: core, memory, network, energy
= Enable user level implementations and policies
» |dentify the protection and isolation requirements

% MANTRA: Check first if it can be done at the user level
< Approach:

= Top-down — examine runtime APIls, determine lacking OS support
= Bottom-up — propose novel OS APls, examine runtime implementation
L B N L 36

>

A
frreeeer ‘m

BERKELEY LAB

THANK YOU!

meeessssssssssssss [AWRENCE BERKELEY NATIONAL LABORATORY @i

