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Lattice QCD Activities at CCS  

　　　　　　 
　 
	


CCS at U. Tsukuba / RIKEN AICS 
 

Yoshinobu Kuramashi	




2 

Plan of Talk   
        
•  Machines in CCS 
•  Introduction to Lattice QCD   
•  Hadron Mass Calculation  
•  Two Approaches for Nuclei in Lattice QCD 
•  Other Primary Research Subjects 
•  Collaborations within CCS 
•  Summary  
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Machines in CCS	


Machine	
 2008	
 2009	
 2010	
 2011	
 2012	
 2013	
 2014	


PACS-CS (PC-cluster, 14TF) 

T2K-Tsukuba (PC-cluster, 95TF) 

HA-PACS (GPU-cluster, 0.8PF) 

COMA (MIC-cluster, 1PF) 

+364TF/TCA     
from fall of 2013 	


〜Feb. 2014	


Apr. 2014〜	

No Photo	


Jul. 2006〜	
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What is Elementary Particle Physics?	


　　　　　     Questions in history of mankind 
 

•  What is the smallest component of matter? 
•  What is the most fundamental interaction? 
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Elementary Particle Known to Date	


e µ	

 τ	



νe	

 νµ	

 ντ	



−e 

0 
 lepton	


u c t 

d s b 

+2/3e 

−1/3e 

quark 
（R,B,G）	


 Higgs particle 
 (LHC@CERN) 

electric  
charge 

Q	


electric  
charge 

Q	


Finally discovered!!	
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Fundamental Interactions	


What is strong interaction? 

force   relative strength   gauge boson quantum theory  

Strong　　　　  
EM 

Weak       
Gravity         

1 
0.01　　　　   

0.00001        
 10−40 

 　　　　　    

Gluon 
Photon 

Weak Boson 
Graviton 

QCD 
QED 

   Weinberg-Salam 
  Superstring(?) 
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Strong Interaction	


7 

quark	
 proton	
 neutron	

nucleus	


Carbon atom	
 diamond crystal structure 	


Strong interaction 

Chemical bond with EM interaction 

〜10−15m	


〜10−10m	


electron	


nucleon	
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Lattice QCD	
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QCD Lagrangian ＝ first principle 
 
 
 
Only coupling const. g and quark masses mq are free parameters 
 
 
 
 
 
 
 
 
Too strong to investigate with perturbative analysis  
⇒ nonperturbative analysis with numerical method based on first principle 
 
 
 
 
　                       

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

⟨O[Aµ, q, q̄]⟩ =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

⟨O[Aµ, q, q̄]⟩ =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

⟨Oh(t)O†
h(0)⟩ t≫0∼ exp (−mht) h = π, nucleon

1

short distance 
weaker interaction 
asymptotic freedom	


long distance 
strong attraction 
confinement 

Similar to spring	
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Numerical Method	


Path integral on discretized 4D （3D-space + 1D-time） lattice 
 
 
　　　 
Similar to partition function in stat. mechanics ⇒ Monte Carlo method　　 
 
　　 
 
 
Average over configs. gives expectation value  
 
                       

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

⟨O[Aµ, q, q̄]⟩ =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

⟨O[Aµ, q, q̄]⟩ =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

⟨Oh(t)O†
h(0)⟩ t≫0∼ exp (−mht) h = π, nucleon

1

Statistical error	


L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

L = −1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [iγµ(∂µ − igAµ) − mq] q

⟨O[Uµ, q, q̄]⟩ =
1

Z

∫
DUµDqDq̄ O[Uµ, q, q̄] exp

{
−

∫
d4xL[Uµ, q, q̄]

}

⟨O[Uµ, q, q̄]⟩ =
1

N

N∑

i=1
O[U (i)

µ , q(i), q̄(i)] + O
⎛

⎝
1√
N

⎞

⎠

⟨O[Aµ, q, q̄]⟩ =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)] + O
⎛

⎝
1√
N

⎞

⎠

U (i)
µ , q(i), q̄(i)

⟨Oh(t)O†
h(0)⟩ t≫0∼ C exp (−mht) h = π, nucleon

⟨O4He(t)O
†
4He(0)⟩ t≫0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

1

quark gluon	
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Physical Parameters	


Small number of parameters 
•   4D volume：  V=NX・NY・NZ・NT 
•   lattice spacing：  a (function of g) 
•   quark mass：  mu,md,ms,… 

 
 
 
　　                  

quark	
 gluon	


a	
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Various Hadrons	


Confinement : quark can never be retrieved by itself	


π, K, K＊, ρ, ω, η, φ, a, b, f, D, B, ...	


Meson (quark and anti-quark)	


p, n, Δ, Λ, Σ, Σ＊, Ξ, Ξ＊, Ω, Λc, Ξc, Λc, ...  

Baryon (3 quarks)	


Hadron	


Combinations of 6 types od quarks (u,d,s,c,b,t)	
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Hadron Mass Calculation	


Fundamental quantities both in physical and technical senses 

Physical side 
   Physical input ⇒ mu,md,ms,… ⇒ Reproduce all the hadron spectrum?                            
   (ex. mπ, mK, mΩ)                           validity of QCD / determination of mq 

 
Technical side 
   Hadron correlators in terms of quark fields                              
    
                                                                       ⇒ Extract mh by fit                                                
   
                                                                                meson 
      Quark line diagrams 
   from Wick contractions                                         baryon 
                                                                                     

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

⟨O[Aµ, q, q̄]⟩ =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

⟨O[Aµ, q, q̄]⟩ =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

A(i)
µ , q(i), q̄(i)

⟨Oh(t)O†
h(0)⟩ t≫0∼ C exp (−mht) h = π, nucleon

⟨O4He(t)O
†
4He(0)⟩ t≫0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

exp (2iδ(k)) exp (ikL) = 1

tan δ(k) =
g2

ρππ

6π

k3

√
s(m2

ρ − s)
(2k)2 = s − (2mπ)2

1

0	
t	


t	
 0	
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Hadron Masses in 2+1 Flavor QCD	


Consistent within 2〜3% error bars 

input mπ, mK, mΩ  ⇒ mu=md, ms, a	

 

PACS-CS 09	


0.0

0.5

1.0

1.5

2.0

!
K

*
"

N

#
$

%
&

$
'
%
'
(

K

)

mass [GeV]Hadron Masses [GeV]	

1 GeV=1.78×10−27 kg	
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What’s Next?	


•  1+1+1 (mu≠md≠ms) flavor QCD+QED simulation at physical point   
         − Electromagnetic (EM) interactions 
         − u-d quark mass defference 
  
 
　 
 
•  Hadron-Hadron interactions 
                       
                    
            

1%	


K+(us) 

K0(ds) 
497.6MeV 

493.7MeV 

_ 

_	


0.490

0.491

0.492

0.493

0.494

0.495

0.496

0.497

0.498

0.499

0.500

Multi-physics toward precision measurement 

Multi-scale physics from quarks to nuclei 

quark	
 nucleus	
proton	
 neutron	


nucleon	
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1+1+1 Flavor QCD+QED	


0 5 10 15 20 25
t

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

K0 to K+ propagators

Isospin symmetry breaking 
     ・ EM interaction 
           Qu=+2/3e, Qd=Qs=−1/3e 
     ・ u-d quark mass difference 
           mu=md≠ms (2+1 flavor) ⇒ mu≠md≠ms (1+1+1 flavor) 

exp: 3.937(28) MeV 	


slope = mK+−mK0	


lattice size = 323×64 
a 〜 0.1 fm	


PACS-CS 12	


⟨O[U ](κ∗
u,κ

∗
d,κ

∗
s )⟩(κ∗u,κ∗d,κ∗s ) =

⟨O[U ](κ∗
ud,κ

∗
s )det[Wuds[U ]]⟩(κud,κs),qQED

⟨det[Wuds[U ]]⟩(κud,κs),qQED

det[Wuds[U ]] =

⎡

⎢⎣ lim
Nη→∞

1

Nη

Nη∑

i=1
e−|W−1

uds[U ]ηi|2+|ηi|2
⎤

⎥⎦

1
2

Wuds[U ] =
∏

q=u,d,s

D(ephQq,κ∗
q)

D(0,κq)

det[Wuds] = ⟨e−|W−1
udsη|

2+|η|2⟩η

det[Wuds] = det[W (1)
uds] × det[W (2)

uds] × · · ·× det[W (NB)
uds ]

〈
K0(t)K0(0)

〉

⟨K+(t)K+(0)⟩ ≃ Z (1 − (mK0 − mK+)t)

(mK0 − mK+)t ≪ 1

2

much smaller than 1	
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u, d, s Quark Masses	


PACS-CS 12	

Physical input: 
     mπ+(ud)=139.7(15.5) [MeV]                    exp: 139.6 [MeV] 
     mK0(ds)=497.6(8.1) [MeV]                      exp: 497.6 [MeV]  
     mK+(us)=492.4(8.1) [MeV]                      exp: 493.7 [MeV]                        
     mΩ(sss) is fixed at exp. value       　　　　exp: 1672.5 [MeV]  
 
Quark masses (MSbar scheme at µ=2 GeV): 
     mu=2.57(26)(07) [MeV]  
     md=3.68(29)(10) [MeV]  
     ms=83.60(58)(2.23) [MeV] 
 
1+1+1 flavor QCD+QED allows individual determination of mu,md,ms 
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Two Approaches for Nuclei in Lattice QCD	


•  Direct construction of nuclei 
     Measure correlation of nucleus operators ⇔ same as hadron masses 
     ex. 4He case 
　 
 
 
 
•  Potential approach 
     Measure wave-function of two nucleons Φ(r) ⇒ extract potential VC(r) 
                    
            

 binding energy	


of the NN scattering phase shift [3], the Schrödinger
equation with a certain parametrization of VNN is solved
and compared with the data. On the other hand, if we can
calculate !! ~r" directly from lattice simulations for various
E, Eq. (1) can be used to define the nonlocal potential
U!~r; ~r0" directly without recourse to the experimental in-
puts except for quark masses and the QCD scale parameter.
In this Letter, instead of finding U by varying E, we take
only the leading term in the derivative expansion at low
energies and extract the central potential VC!r" at fixed E
through

 VC!r" # E$ 1

2"

~r2!!r"
!!r" : (2)

On the lattice, !! ~r" with zero angular momentum (‘ #
0) is defined from the equal-time BS amplitude as

 !! ~r" % 1

24

X

R2O

1

L3

X

~x

P#ijP
$
%&h0jNi

%!R& ~r' $ ~x"Nj
&! ~x"jNNi;

(3)

where we choose the local interpolating operator for the
nucleon: Ni

% # 'abc!tqaC(5#2qb"qi;c% with a, b, and c the
color indices, % and & the Dirac indices, i and j the isospin
indices, and C % (4(2 the charge conjugation. ~r describes
the spatial separation between the nucleons. Since we
consider the NN scattering at low energies, we take only
the upper components of Ni

%. The summation over the
vector ~x projects out the state with zero total momentum.
The summation over discrete rotation R of the cubic group
O projects out the A$1 representation which contains ‘ # 0
state and ‘ ( 4 states. The former can be singled out by
selecting the lowest energy state with the procedure given
in Eq. (4). The spin (isospin) projection is carried out by
the operator P$ (P#); for example, P$%& # !$2"%&!# )%&"
in the spin-singlet (spin-triplet) channel. The renormaliza-
tion factor Z, which relates the BS amplitude on the lattice
and that in the continuum, cancels out in VC!r".

The !!~r # ~y) ~x" in Eq. (3) is nothing but the proba-
bility amplitude to find ‘‘nucleonlike’’ three quarks located
at point ~x and another ‘‘nucleonlike’’ three quarks located
at point ~y. In terms of the physical states,!! ~r" contains not
only the elastic amplitude NN ! NN but also the inelastic
amplitudes such asNN ! *NN. However, at low energies
below threshold, the inelastic part is spatially localized and
does not affect the asymptotic form of !! ~r". Note also that
a different choice of the nucleon interpolating-operator
modifies the relative weight of the elastic and inelastic
amplitudes and thus leads to a different NN potential.
Nevertheless, they give the same scattering phase shift
since the asymptotic form of !!~r" is independent of the
interpolating operators. It is an open question at the mo-
ment how the short distant structure of VNN to be shown
below is affected by the change of the interpolating opera-
tor. For more details on these points, see [10].

In the actual simulations, Eq. (3) is obtained through the
four point nucleon correlator,

 FNN! ~x; ~y; t; t0" % h0jNi
%! ~x; t"Nj

&! ~y; t"J NN!t0"j0i

#
X
n
Anh0jNi

%! ~x"Nj
&! ~y"jnie)En!t)t0": (4)

Here J NN!t0" is a source term located at t# t0, which pro-
duces the nucleons with zero total momentum. To enhance
the ground state contribution of the NN system, we adopt
the wall source, J NN!t0" # P#ijP

$
%&N

i
%!t0"N j

&!t0", where
N is obtained from N by replacing q by Q!t0" #P

~xq! ~x; t0". En is the energy of the two-nucleon state jni
and An!t0" % hnjJ NN!t0"j0i. Because of the finite lattice
volume L3, the energy E takes discrete value and has a
finite shift from the noninteracting case !E # O!1=L3" to
be determined from the simulations [11].

In this Letter, we focus on the spin-singlet and spin-
triplet channels with zero orbital angular momentum. In
the standard notation, the former (latter) corresponds to the
2s$1‘J # 1S0 (# 3S1) channel, where s, ‘, and J denote the
total spin, orbital angular momentum, and the total angular
momentum of the two nucleons. The 1S0 is the simplest
channel where only the central potential VC!r" contributes.
On the other hand, there arises a mixing between the 3S1
and 3D1 channels because of the tensor force VT!r". In this
case, one may define an effective central potential Veff

C !r"
which consists of the bare central potential and the induced
central potential by the 3D1 admixture [2]. The definition
in Eq. (2) with !! ~r" being projected onto 1S0 (3S1) cor-
responds to the central potential (the effective central
potential).

To calculate !!~r", we have carried out simulations on a
324 lattice in the quenched approximation. We employ the
plaquette gauge action with the gauge coupling & # 5:7
and the Wilson quark action. The lattice spacing deter-
mined from the + meson mass in the chiral limit is a)1 #
1:44!2" GeV (a ’ 0:137 fm) [12], which leads to the lat-
tice size !4:4 fm"4. The hopping parameter is chosen to be
, # 0:1665, which corresponds to m* ’ 0:53 GeV, m+ ’
0:89 GeV, and mN ’ 1:34 GeV. We use the global heat-
bath algorithm with overrelaxations to generate the gauge
configurations. After skipping 3000 sweeps for thermal-
ization, 500 gauge configurations are collected with the
interval of 200 sweeps. Results for lighter and heavier
quark masses with higher statistics will be reported in
[10]. The Dirichlet (periodic) boundary condition for
quarks is imposed in the temporal (spatial) direction. To
avoid the boundary effect, the wall source is placed at t #
t0 # 5 at which the Coulomb gauge fixing is made. The
ground state saturation for t) t0 ( 6 is checked by the
effective mass of the two-nucleon system.

Figure 2 shows the lattice QCD result of the wave
function at the time slice t) t0 # 6. They are normalized
at the spatial boundary ~r # !32=2 # 16; 0; 0". All the data
including the off-axis ones are plotted for r & 0:7 fm,

PRL 99, 022001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JULY 2007

022001-2

 Solve Schrödinger eq. with VC(r) as input	


Fukugita et al. 95 

Ishii-Aoki-Hatsuda 07 

⟨Oh(t)O†
h(0)⟩ t≫0∼ C exp (−mht) h = π, nucleon

⟨O4He(t)O
†
4He(0)⟩ t≫0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

8

⟨Oh(t)O†
h(0)⟩ t≫0∼ C exp (−mht) h = π, nucleon

⟨O4He(t)O
†
4He(0)⟩ t≫0∼ C exp (−m4Het) ∆E4He = m4He − 4mN

8
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Direct Construction of A≤4 Nuclei	


2+1 flavor QCD, mπ＝0.5 GeV (0.14 GeV in nature), mN=1.32 GeV 

Yamazaki-YK-Ukawa 12	


4He	
 3He	
 NN(3S1)	
 NN(1S0)	


Binding energy [MeV]	
 43(12)(8)	
 20.3(4.0)(2.0)	
 11.5(1.1)(0.6)	
 7.4(1.3)(0.6)	


Exp. value [MeV]	
 28.3	
 7.72	
 2.22	
 0	


•  Successful construction of light nuclei (4He, 3He, NN(3S1)) 
•  Larger binding energies than exp. values 
•  1S0 channel is also bound   Heavy quark effects? 	


Physical point simulation is necessary	
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NN Potential	

HAL QCD@Lattice 2013	


2+1 flavor QCD, mπ＝0.70, 0.57, 0.41 GeV (0.14 GeV in nature) 

ScaMering$phase$(1S0)� ���

#  QualitaBvely(reasonable(behavior.((
But(the(strength(is(significantly(weak.(
(

#  A\racBon(shrinks(gradually(as(mpion(decreases(
in(this(quark(mass(region(mpion(=(411?700(MeV.(
Reason:(
The(repulsive(core(grows(more(rapidly(than(
the(a\racBon(grows.(
(

#  It(is(important(to(go(to(smaller(quark(mass(region.(

�����������

ScaMering$phase$(1S0)� ���

#  QualitaBvely(reasonable(behavior.((
But(the(strength(is(significantly(weak.(
(

#  A\racBon(shrinks(gradually(as(mpion(decreases(
in(this(quark(mass(region(mpion(=(411?700(MeV.(
Reason:(
The(repulsive(core(grows(more(rapidly(than(
the(a\racBon(grows.(
(

#  It(is(important(to(go(to(smaller(quark(mass(region.(

�����������ScaMering$phase$(1S0)� ���

#  QualitaBvely(reasonable(behavior.((
But(the(strength(is(significantly(weak.(
(

#  A\racBon(shrinks(gradually(as(mpion(decreases(
in(this(quark(mass(region(mpion(=(411?700(MeV.(
Reason:(
The(repulsive(core(grows(more(rapidly(than(
the(a\racBon(grows.(
(

#  It(is(important(to(go(to(smaller(quark(mass(region.(

�����������

Attractive phase shift, though the magnitude is just 10% of exp. value 
No bound state (He, NN) ⇔ inconsistency against the direct method 
Phase shift becomes smaller, as quark mass decreases  
⇒ reproduce exp. values at the physical point ?  
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Ongoing Project	


HPCI Strategic Field Program (FY2011〜FY2015) 
•  2+1 flavor QCD ⇒ 1+1+1 flavor QCD+QED  
•  Direct construction of light nuclei 
•  Determination of baryon-baryon potentials 
 
 
 
　　 
　	


 
                       

K computer	


RIKEN AICS at Kobe	


PACS-CS/T2K-Tsukuba ⇒ K computer 
Large scale simulation on 40 times larger lattice at the physical point	
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Other Primary Research Subjects	


•  Dynamical properties of hadrons such as ρ→ππ resonance 
      − World’s first study of ρ→ππ decay width based on phase shift in 2007 
      − Extended from 2 flavor to 2+1 flavor QCD at mπ=0.30, 0.41 GeV 
 
l  Lattice QCD at finite temperature and density 
      − Phase structure 
      − Thermodynamic properties 
      − Use of Wilson-type quarks 
                  

Expected phase diagram	
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Collaborations within CCS	

 
l  Collaboration with applied mathematicians and computer scientists in 

Division of High performance Computing Systems 
      − mixed precision nested BiCGStab algorithm for PACS-CS 
                    ⇒ Double the performance 
      − block Krylov subspace algorithms with multiple right-hand sides 
                    ⇒ Make 1+1+1 flavor QCD+QED simulation possible 
 
                  

Nakamura et al. 12	

36 Y. Nakamura et al. / Computer Physics Communications 183 (2012) 34–37

Algorithm 2.2. Memory Saving Version(A, M, B,ϵ).

1 initial guess X ∈ CN×L

2 R = B − A X
3 P = R
4 choose R̃ ∈ CN×L

while maxi(|r(i)|/|b(i)|) ! ϵ

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.1 QR decomposition P = Q γ , P ← Q
4.2 U = M P
4.3 V = AU
4.4 solve(R̃ H V )α = R̃ H R for α
4.5 R ← R − V α
4.6 X ← X + Uα
4.7 S = M R
4.8 Z = A S
4.9 ζ = Tr(Z H

k Rk)/Tr(Z H
k Zk)

4.10 X ← X + ζ S
4.11 R ← R − ζ Z
4.12 solve(R̃ H V )β = −R̃ H Z for β
4.13 P ← R + (P − ζ V )β

5 return (X)

LEE is the forward hopping term and UEE is the backward one. We
perform SAP preconditioning in the single precision for effective
use of memory bandwidth and network bandwidth between nodes.

It is known that “sloppy” precision can be used in right precon-
ditioning, but not in left one [12]. Suppose calculation of S = MT
at line 4.6 in Algorithm 2.1 is performed with “sloppy” precision
in k-th iteration. Numerical errors for Sk , Zk , ζk and Xk+1 may be
expressed as

Sk → S ′
k = Sk + δSk, (11)

Zk → Z ′
k = A S ′

k, (12)

ζk → ζ ′
k = ζk + δζk, (13)

Xk+1 → X ′
k+1 = Xk + Ukαk + ζ ′

k S ′
k. (14)

These yield

R ′
k+1 = Rk − Vkαk − ζ ′

k Z ′
k

= Rk − AUkαk − ζ ′
k A S ′

k

= B − A Xk − A
(
Ukαk + ζ ′

k S ′
k

)

= B − A X ′
k+1, (15)

which satisfies the exact relation between approximate solutions
and residuals in (k+1)-th iteration. For the case that both U = M P
at line 4.2 and S = MT at line 4.6 are computed with “sloppy” pre-
cision one can also reproduce the above relation with the following
formulae:

Uk → U ′
k = Uk + δUk, (16)

Vk → V ′
k = AU ′

k, (17)

αk → α′
k = αk + δα, (18)

Tk → T ′
k = Rk − V ′

kα
′
k, (19)

Sk → S ′′
k = Sk + δS, (20)

Zk → Z ′′
k = A S ′′

k , (21)

ζk → ζ ′′
k = ζk + δζ, (22)

Xk+1 → X ′′
k+1 = Xk + U ′

kα
′
k + ζ ′′

k S ′′
k . (23)

Fig. 2. Representative case for residual norm as a function of number of iteration
with L = 1,2,3,4,6,12 on 323 × 64.

3. Numerical test

3.1. Choice of parameters

We test modified block BiCGSTAB employing a so-called “local
source”, B = [e1, . . . , eL], with L = 12 for color-spin components.
We use 2 sets of statistically independent 10 configurations gener-
ated at almost the physical point, (κud,κs) = (0.137785,0.136600)
on 323 × 64 [1] and (0.137785,0.136650) on 644, in 2 + 1 fla-
vor lattice QCD with the nonperturbatively O (a)-improved Wilson
quark action and the Iwasaki gauge action [13] at β = 1.9. We
choose the hopping parameter κ = 0.137785 for the Wilson–Dirac
equation and NSAP = 5 with 8 × 8 × 8 × 8 domain size for the SAP
preconditioning following Ref. [1]. Parameters for SSOR method are
also fixed with NSSOR = 1 and ω = 1.26. The stopping criterion is
set to be maxi(|r(i)|/|b(i)|) ! ϵ with ϵ = 10−14.

3.2. Test environment

Numerical test is performed on 16 nodes for smaller lattice
and on 128 nodes for larger lattice of a large-scale cluster sys-
tem called T2K-Tsukuba. The machine consists of 648 compute
nodes providing 95.4 Tflops of computing capability. Each node
consists of quad-socket, 2.3 GHz Quad-Core AMD Opteron Model
8356 processors whose on-chip cache sizes are 64 KBytes/core,
512 KBytes/core, 2 MB/chip for L1, L2, L3, respectively. Each proces-
sor has a direct connect memory interface to an 8 GBytes DDR2-
667 memory and three hypertransport links to connect other pro-
cessors. All the nodes in the system are connected through a
full-bisectional fat-tree network consisting of four interconnection
links of 8 GBytes/sec aggregate bandwidth with Infiniband. For
numerical test we modify the lattice QCD simulation program LD-
DHMC/ver1.04b12.31 developed by PACS-CS Collaboration [14].

3.3. Results

Fig. 2 shows a representative case for residual norm as a func-
tion of number of iterations for modified block BiCGSTAB. We ob-
serve one of important features of block Krylov subspace methods
that the number of iterations required for convergence decreases
as the block size L is increased.

The results are summarized in Tables 1 and 2. In both tables,
the second column is total time to solve the Wilson–Dirac equation
for all 12 color-spin components at one local source. In case of
L = 6, for example, 12 right-hand side vectors are divided into two

2+1 flavor QCD, 323×64 

#MVM(gain)=2.8 
 
 
 
 

Time(gain)=5.4	


Performance test on T2K-Tsukuba 
          Dx(i)=b(i) (i=1,…,12) 	


Thanks to effective  
use of cache	
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Summary	


Historical role of PACS-CS/T2K-Tsukuba 
　　− Achievement of physical point simulation 
     − Beginning of precision measurement with EM and u-d quark 

mass difference 

     − One-body study of hadron ⇒  Hadron-hadron interaction 
including Nuclei 

                    
Peak	
 Machine	
 Scientific Target	


<1TF class	
 CP-PACS	
 Development of 2+1 flavor QCD simulation	


10TFclass	
 PACS-CS	
 Physical point simulation	


100TFclass	
 T2K-
Tsukuba	


Development of 1+1+1flavor QCD+QED simulation 
Construction of Nuclei with heavy mud	


1PF class 
10PF class	


HA-PACS 
K computer	


Large scale simulation of 1+1+1 flavor QCD+QED 
Construction of Nuclei at the physical point	



