

Recent Activities of Biological Function Group for HA-PACS Project

Yasuteru Shigeta

Center for Computational Sciences University of Tsukuba

<u>1. QM/MM studies on several Enzymes</u>

2. Large-scale MD Simulation with HA-PACS

3. Substrate Binding & Folding Analyses

<u>4. Toward Large-scale First-principles MD</u>

By Prof. Shigeta

5. Implementation of Fragment Molecular Orbital method for GPU based systems

By Dr. Umeda

Origin of Biomolecules, De Life Many Enzymatic Reactions Synthetase, Ligase, Hydrase Peptitase, Lyase, and so on

Enzyme-Substrate interaction Substrate and Environment selectivity, Signal transport

Proton transfer, Electron transfer, Ion transport, Molectransport, Protein transport, Stransport, Stransport

Entropy-driven effects (some cases), Dynamic order/disord transition,

Non-equilibrium phenomena

I to place and of any of improved and a low out his function

gen Evolving Complex in Photosystem II[4] Threonine Synthase [5]

eoretical study on a calculation

[1] M. Shoji et al, Mol. Phys. 112, 393(2013).[2] K. Hanaoka et al, J. Bio. Struct. & Dyn., accepted

Oxygen-evolving complex (OEC)

Chloroplast st

Thylakoid me

Thylakoid lur

• OEC reaction: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

 A 1.9Å resolution X-ray structure of PSII was sol
 [1]. - Clear OEC structure and surrounding water molecules were identified.

CaMn₄O₅(H Ser169-Asp Glu189-His Asp342-Ala His332-Glu Glu354

14H₂O Asp61 His337 Arg357

Tyr161 Glu165 Asn181 Phe182 Val185 Asn298 Lys317 Cl1679 Cl1680 +Min2

		00							02				
		QMMM		EXAFS*		QMMM		EXAFS *		QMMM		EXAFS	
		R	Ν	R	Ν	R	Ν	R	Ν	R	Ν	R	
Mn-O	shorter	1.86	9	1.91	9	1.83	9	1.86	7.8	_	_	1.84	
	longer	2.26	2	2.26	3	2.05	2	2.05	4.2	_	_	1.97	
Иn-Mn	shorter	2.72	1	2.68	1	2.68(2.72)	1(2)	2.71	2	2.83	3	2.74	
	longer	2.90	2	2.77	2	2.77(2.77)	2(1)	2.79	1				
	longest	3.18	1	3.30	1	3.22(3.20)	1	3.27	1	3.38	1	3.30	
Mn-Ca	shorter	3.45	3	3.36	3	3.45	3	3.36	3	3.58	3	3.36	
	longer	4.00	1	3.99	1	3.71	1	3.99	1	4.01	1	3.99	
									* ^ /				

* C. Gloeckner et al., JBC

motor domain of dynein consists of the linker, a shaped six ATPases called AAA+ modules (1-AAA6), the stalk with microtubule binding ain (MTBD) and the strut.

Funnel Hypothesis

_arge amplitude motion takes long time and folding occurs as a stochastic proce so it is difficult to accomplish with available MD simulations.

(Execut new for long time dynamics done by Devid Chevy with Anton)

But, speed up of MD for small systems is tough task for HPC

Homeodomain 327 us Protein G 1154 us

707 119

~3D

A-repressor 643 //s

Massively Parallel Density Functional Theory code

inite Difference Less FFTs

For 10⁵ atom Si Nano wire 3D grid is divided by several regions

CPU7

CPU4

CPU1

CPU

CPU2

Gordon Bell Prize in 2011

for parallel computation. 星式 (finite-difference eq.) $v^{2} + v_{HXC}[\rho](\mathbf{r}) + v_{Ion}(\mathbf{r}) \Rightarrow \phi_{n}(\mathbf{r}) = \varepsilon_{n}\phi_{n}(\mathbf{r})$ -order finite difference CPU3 $\Psi_n(x,y,z) \approx \sum_{i=1}^{6} C_m \Psi_n(x+m\Delta x,y,z)$ MPI_ISEND, MPI_IREC CPU0 (隣接通信)

ation

 $(\mathbf{r})\psi_n(\mathbf{r})d\mathbf{r}\approx\sum_{m=1}^{Mesh}\psi_m(\mathbf{r}_i)\psi_n(\mathbf{r}_i)\Delta x\Delta y\Delta z$ MPI ALLREDUCE

ext target is First**nciples Molecular** amics Simulation,

J. Iwala el a

Si Nano dot d=6.6nm (Si₇₀₅₅H

Troullier-Martins pseudopotetial

- LDA
- Mesh size = 0.847 (a.u.) (~14Ry)

Cut off 20Ry Hybrid parallelization at K-computer

	grid	grid/band
1024MPI-8192 core (sec)	4.43	3.50
512MPI-4096 cores (sec)	6.94	4.33
8MPI-64 core (sec)	175.41	175.41
64-8192 Performance(%)	30.9	39.2
64-4096		

```
ix=a1b/(ML1/np1); iy=a2b/(ML2/np2); iz=a3b/(ML3/np3);
icolor=iy+iz*np2
call mpi_comm_split(comm_grid,icolor, 0, comm_fftx, ierr)
icolor=iz+ix*nprocs;
call mpi_comm_split(comm_grid,icolor, 0, comm_ffty, ierr)
icolor=iy+ix*nprocs;
call mpi_comm_split(comm_grid,icolor, 0, comm_ffty, ierr)
```

call mpi_comm_split(comm_grid,icolor, 0, comm_fftz, ierr)

We split communicator into 3 parts (X,Y,Z) (setting)

```
do i1~i3=a1b~a3b, b1b~b3b
zwork1(i1,i2,i3)=zwork0(i1,i2,i3)
end do
call mpi_allreduce(zwork1,zwork2,ML1*(b2b-a2b+1)*(b3b-a3b+1),
mpi_complex16,mpi_sum,comm_fftx,ierr)
```

hrow processes for X direction and use only Y, Z directions (same process number as gr (FFTE is parallelized into 2 direction) Para

r = 120 Uy r w - Cr WID. 11.9 Sec (512 WIr - 4090 Cores)

	8192 cores	4096 cores	2048 cores
Hybrid 80MP	7.37	9.46	14.18
with FFTE	6.12	-	-

Molecular fluid 83.2Ry (128 molecules)

Cut off 20Ry Hybrid parallelization at K-computer

	grid	grid/band	
1024MPI-8192 core (sec)	4.43	2.55	c.f. 3
512MPI-4096 cores (sec)	6.94	4.33	
8MPI-64 core (sec)	175.41	175.41	
64-8192 Performance(%)	30.9	39.2	
64-4096			

1. QM/MM studies on several Enzymes

 Substrate binding and protein folding processes we simulated with newly developed MD algorithm

2. Large-scale MD Simulation with HA-PACS

 Large amplitude motion of Dynein upon ATP/ADP binding is extracted from brute force MD simulation.

3. Substrate Binding & Folding Analyses

 Substrate binding and protein folding processes were simulated with newly developed MD algorithm

4. Toward Large-scale First-principles MD

 Real-space density functional theory-based Car-Parrinello Molecular Dynamics (RS-CPMD)