GPU-based acceleration of data mining algorithms

Toshiyuki Amagasa
Center for Computational Sciences
University of Tsukuba

Talk outline

- Database group at CCS
- Overview of research topics
- GPU-based acceleration of frequent itemset mining from uncertain databases
- GPU-based acceleration of canopy clustering
- GPU-based acceleration of uncertain time series search
- Future collaboration

Database group at CCS

Hiroyuki Kitagawa

Professor CCS & Dept. CS

- Database
- Data mining

Toshiyuki Amagasa

Assoc. Prof. CCS & Dept. CS

- Database
- Data mining

Dept. CS

Yasuhiro Hayase

Assistant Prof. Dept. CS

- Software engineering
- Repository mining

Chiemi Watanabe

Assistant Prof. Dept. CS

- Database
- Data privacy

Postdoc x2, D x5, M x17 (+6), B x7 Research student x4

Research topics 1

- Infrastructure for information integration
 - Data stream processing
 - Integration of data streams and heterogeneous information sources

- Data mining / social media mining
 - Outlier detection
 - Mining from Twitter

Research topics 2

- GPU-based acceleration of data mining
 - Frequent itemset mining
 - Time series search
 - Clustering
- Web information systems
 - XML databases
 - RDF/LOD databases
- Database applications in scientific domains
 - GPV/JMA archive
 - JLDG/ILDG
 - Biological database

GPU-based Frequent Itemset Mining over Uncertain Databases

Yusuke Kozawa, Toshiyuki Amagasa, Hiroyuki Kitagawa University of Tsukuba

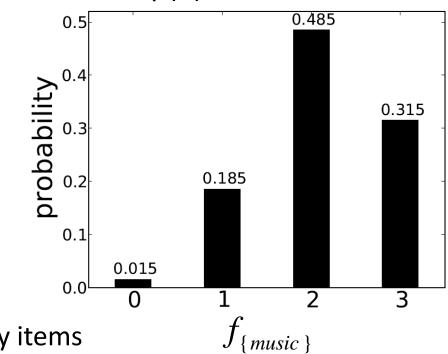
Uncertain Transaction Databases

- Transaction databases
 - Purchase records
 - Observation records
 - System logs
- Uncertainty

Each	transaction	hacan	ovictontial	nrohahility
— cacn	uansacuon	11a5 a11	existential	propability.

 The probability specifies the chance that the transaction exists.

ID	Itemset	Prob.
T1	{game, music}	0.5
T2	{music, video}	0.7
T3	{game}	0.8
T4	{music}	0.9


Frequent itemset mining

- Frequent itemset mining is to find frequently occurring patterns from a transaction database.
 - Find characteristic patterns from
 - Purchase / observation records
 - System logs
- To find frequent itemsets from uncertain databases, we need to care about the uncertainty.

Support Probability Mass Function

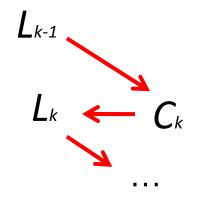
- Support Probability Mass Function (SPMF) f_X
 - The probability mass function of sup(X)

ID	Itemset	Prob.
T1	{game, music}	0.5
T2	{music, video}	0.7
T3	{game}	0.8
T4	{music}	0.9

→ More complicated when many items

Probabilistic Frequent Itemsets

Probabilistic Frequent Itemset (PFI) X

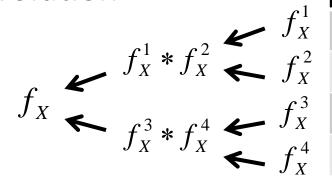

$$P(\sup(X) \ge minsup) \ge minprob$$

The probability that
$$X$$
 is a frequent itemset
$$= \sum_{k=minsup}^{n} f_X(k)$$

- Minsup and minprob are the support threshold and the probability threshold respectively
- The problem: probabilistic frequent itemset mining
 - Given an uncertain transaction databases, minsup, and minprob, return all PFIs

pApriori Algorithm [Sun et al., KDD '10]

- Inputs: uncertain transaction database, minsup, and minprob
- This algorithm consists of two procedures
 - 1. Generate size-k Candidate PFIs C_k from size-(k-1) PFIs L_{k-1}
 - 2. Extract size-k PFIs from the size-k Candidate PFIs C_k

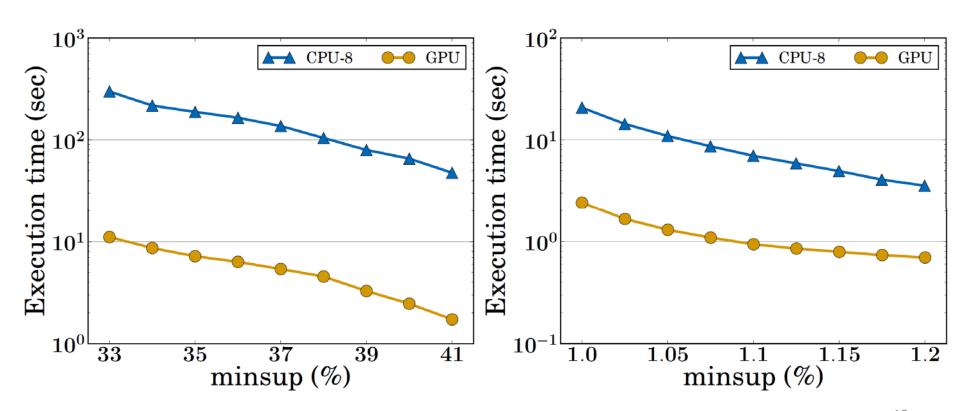

This needs to compute the SPMFs

Since this is the most computationally expensive step, it's important to efficiently compute the SPMFs

Efficient Computation of SPMFs using a GPU

Convolution

ID	Itemset	Prob.
T1	{game, music}	0.5
T2	{music, video}	0.7
T3	{game}	0.8
T4	{music}	0.9

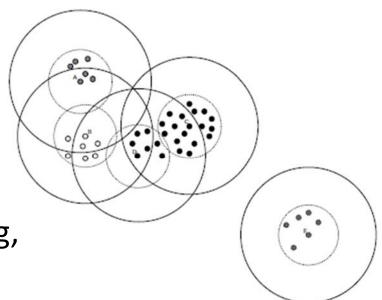

- Convolution can be efficiently computed with the Fast Fourier Transform (FFT) algorithm
- Parallelize FFT computation to improve the performance
- Pruning
 - cnt(X): the maximum possible value of sup(X)
 - esup(X): the expected support of X

Experimental results

CPU: Intel Xeon (2.40 GHz, 4 cores), 12 GB memory, OpenMP GPU: Tesla C2050 (1.15 GHz, 448 cores, 3 GB memory), CUDA

Accidents: 23x–27x

• T25I10D500K: 5.1x-8.6x

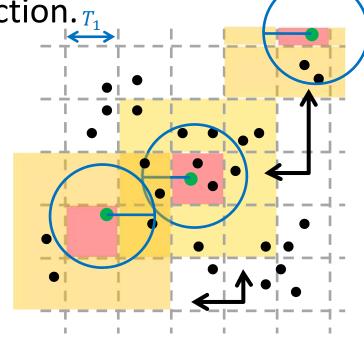


GPU-based Canopy Clustering

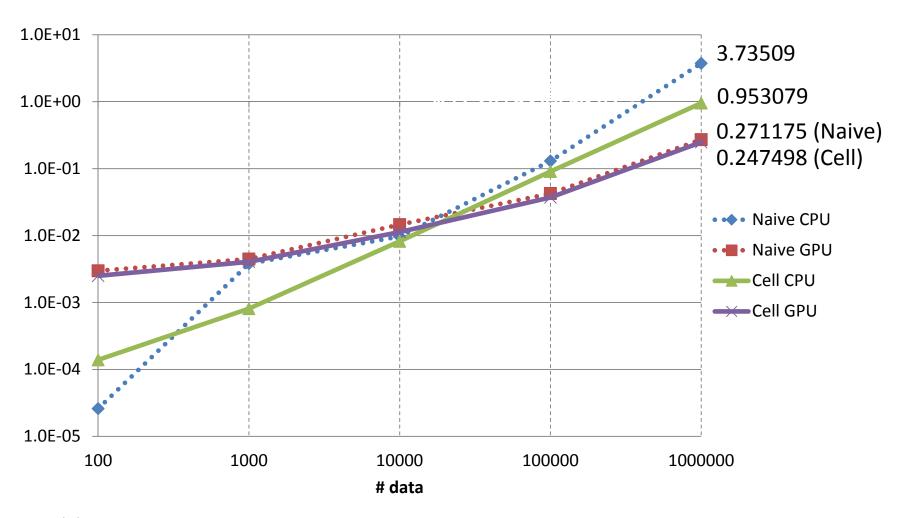
Fumitaka Hayashi, Yusuke Kozawa, Toshiyuki Amagasa, Hiroyuki Kitagawa University of Tsukuba

Canopy clustering

- Canopy represents a set of data points.
- Used to speed up clustering algorithms to deal with Big Data.
 - k-means, hierarchical clustering, etc.
 - Tuli De et al. successfully applied clustering to the spectrum of light from extragalactic objects with 700,000 x 1,500 size.



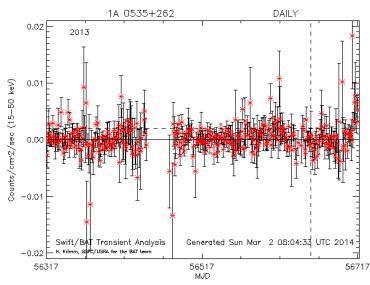
GPU-based canopy clustering Idea


- Parallelize distance computations
 - Each thread computes the distance between a data to the center, and compares with T1 and T2.

- Intensively use parallel reduction. T_1

- Further optimization
 - Cell-structure
 - Prune unnecessarydistance computation

Experimental results


2014/4/11

GPU-based Search of Uncertain Time Series

Jun Hwang, Yusuke Kozawa
Toshiyuki Amagasa, Hiroyuki Kitagawa
University of Tsukuba

Uncertain time series search

- Real-world time series often contain uncertainty.
 - e.g., light curve of an X-ray object
- Find similar time series over uncertain time series.
 - MUNICH [Aßfalg et al, 2009]
 - PROUD [Yeh et al, 2009)]
 - DUST [Sarangi et al, 2010]

GPU-based acceleration of uncertain time series search

• Idea

- Parallelize probability computation.
- DUST
 - Use Monte Carlo integration to compute probability.
 - The performance bottleneck.

Performance

About 230x faster than the naïve CPU-based implementation

Future collaboration

 Improve the performance of data mining over Big Data using GPU/Xeon Phi

- Scientific data management
 - Search over Big Scientific Data
 - Metadata management
 - Linked Open Data
 - XML

Thank you!