HA-PACS/TCA
GPU Direct Communication

Taisuke Boku
Deputy Director, HPC Division
Center for Computational Sciences
University of Tsukuba
History of PAX (PACS) MPP series

- Launched in 1977 (Prof. Hoshino and Prof. Kawai)
- First machine was completed in 1979
- 6th generation machine CP-PACS was ranked #1 in TOP500 in Nov. 1996

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978年</td>
<td>PACS-9</td>
<td>7 KFLOPS</td>
</tr>
<tr>
<td>1980年</td>
<td>PACS-32</td>
<td>500 KFLOPS</td>
</tr>
<tr>
<td>1983年</td>
<td>PAX-128</td>
<td>4 MFLOPS</td>
</tr>
<tr>
<td>1984年</td>
<td>PAX-32J</td>
<td>3 MFLOPS</td>
</tr>
<tr>
<td>1989年</td>
<td>QCDPAX</td>
<td>14 GFLOPS</td>
</tr>
<tr>
<td>1996年</td>
<td>CP-PACS</td>
<td>614 GFLOPS</td>
</tr>
<tr>
<td>2006年</td>
<td>PACS-CS</td>
<td>14.3 TFLOPS</td>
</tr>
<tr>
<td>2012年</td>
<td>HA-PACS</td>
<td>802 TFLOPS</td>
</tr>
</tbody>
</table>

- High end supercomputer based on MPP architecture towards “practical machine” under collaboration with computational scientists and computer scientists
- Development in Application-driven
- Continuation of R & D by an organization
PAX (PACS) Series

- MPP system R&D continued at U. Tsukuba for more than 30 years
- Coupling of need from applications and seeds from the latest HPC technology, the machines have been developed and operated with the effort by application users on programming → a sort of application oriented machine (not for a single application)
- HA-PACS is the first system in the series to introduce accelerating devices (GPUs)
- CCS has been focusing on the accelerating devices for ultra high performance to provide to “high-end” users who require extreme computing facilities
Project plan of HA-PACS

- **HA-PACS** (Highly Accelerated Parallel Advanced system for Computational Sciences)
- Accelerating critical problems on various scientific fields in Center for Computational Sciences, University of Tsukuba
 - The target application fields will be partially limited
 - Especially interested targets: QCD, Astro, QM/MM (quantum mechanics / molecular mechanics, for life science), Climate

- **Two parts**
 - **HA-PACS base cluster:**
 - for development of GPU-accelerated code for target fields, and performing product-run of them
 - **HA-PACS/ TCA:** (TCA = Tightly Coupled Accelerators)
 - for elementary research on new technology for accelerated computing
 - Our original communication system based on PCI-Express named “PEARL”, and a prototype communication chip named “PEACH2”
GPU Computing: current trend of HPC

- Major GPU base systems in TOP500 on Nov. 2013
 - Titan, ORNL
 - Tienha-1A, NUDT
 - Nebulae, CSA
 - TSUBAME2.5

- Features
 - high peak performance / cost ratio
 - high peak performance / power ratio
 - large scale applications with GPU acceleration don’t run yet in production on GPU cluster

⇒ Our First target is to develop large scale applications accelerated by GPU in real computational sciences
Issues of GPU Cluster

- Problems of GPGPU for HPC
 - Data I/O performance limitation
 - Ex) GPGPU: PCIe gen2 x16
 - Peak Performance: 8GB/s (I/O) ⇔ 665 GFLOPS (NVIDIA M2090)
 - Memory size limitation
 - Ex) M2090: 6GByte vs CPU: 4 – 128 GByte
 - Communication between accelerators: no direct path (external)
 ⇒ communication latency via CPU becomes large
 - Ex) GPGPU:
 GPU mem ⇒ CPU mem ⇒ (MPI) ⇒ CPU mem ⇒ GPU mem

- Researches for direct communication between GPUs are required

 Our another target is developing a direct communication system between external GPUs for a feasibility study for future accelerated computing
HA-PACS base cluster (Feb. 2012)
HA-PACS base cluster

Front view

Side view
HA-PACS base cluster

Rear view of one blade chassis with 4 blades

Front view of 3 blade chassis

Rear view of Infiniband switch and cables (yellow=fibre, black=copper)
HA-PACS: base cluster (computation node)

- 4 Channels
 - 1,600 MHz
 - 51.2 GB/sec

- AVX
 - (2.6GHz x 8flop/clock)

- Total: 3TFLOPS

- 20.8GFLOPSx16
 = 332.8GFLOPS

- 665GFLOPSx4
 = 2660GFLOPS

- (16GB, 12.8GB/s)x8
 = 128GB, 102.4GB/s

- (6GB, 177GB/s)x4
 = 24GB, 708GB/s
Computation node of base cluster
HA-PACS: TCA

- **TCA: Tightly Coupled Accelerator**
 - Direct connection between accelerators (GPUs)
 - Using PCIe as a communication device between accelerator
 - Most acceleration device and other I/O device are connected by PCIe as PCIe end-point (slave device)
 - An intelligent PCIe device logically enables an end-point device to directly communicate with other end-point devices

- **PEACH: PCI Express Adaptive Communication Hub**
 - We already developed such PCIe device on JST-CREST project “low power and dependable network for embedded system”
 - It enables direct connection between nodes by PCIe Gen2 x4 link

⇒ Improving PEACH for HPC to realize TCA
HA-PACS/TCA (Tightly Coupled Accelerator)

- **True GPU-direct**
 - current GPU clusters require 3-hop communication (3-5 times memory copy)
 - For strong scaling, Inter-GPU direct communication protocol is needed for lower latency and higher throughput

- **Enhanced version of PEACH**
 \[\Rightarrow PEACH2\]
 - x4 lanes -> x8 lanes
 - hardwired on main data path and PCIe interface fabric
Implementation of PEACH2: FPGA solution

- FPGA based implementation
 - today’s advanced FPGA allows to use PCIe hub with multiple ports
 - currently gen2 x 8 lanes x 4 ports are available
 ⇒ soon gen3 will be available (?)
 - easy modification and enhancement
 - fits to standard (full-size) PCIe board
 - internal multi-core general purpose CPU with programmability is available
 ⇒ easily split hardwired/firmware partitioning on certain level on control layer

- Controlling PEACH2 for GPU communication protocol
 - collaboration with NVIDIA for information sharing and discussion
 - based on CUDA4.0 device to device direct memory copy protocol and CUDA5.0 PCIe RDMA feature
Overview of PEACH2 chip

- Fully compatible with PCIe Gen2 spec.
- **Root and EndPoint must be paired** according to PCIe spec.
- **Port N**: connected to the host and GPUs
- **Port E and W**: form the ring topology
- **Port S**: connected to the other ring
 - Selectable between Root and Endpoint
- Write only except Port N
 - Instead, “Proxy write” on remote node realizes pseudo-read.
TCA node structure

- CPU can uniformly access to GPUs.
- PEACH2 can access every GPUs
 - Kepler architecture + CUDA 5.0 “GPUDirect Support for RDMA”
 - Performance over QPI is quite bad.
 => support only for two GPUs on the same socket
- Connect among 3 nodes

- This configuration is similar to HA-PACS base cluster except PEACH2.
 - All the PCIe lanes (80 lanes) embedded in CPUs are used.
Communication by PEACH2

- **PIO**
 - CPU can store the data to remote node directly using mmap.

- **DMA**
 - **Chaining mode**
 - DMA requests are prepared as the DMA descriptors chained in the host memory.
 - DMA transactions are operated automatically according to the DMA descriptors by hardware.
 - **Register mode**
 - DMA requests are registered into the PEACH2 by up to 16.
 - Lower overhead than chaining mode by omitting transfer for descriptors from host
 - **Block stride transfer function**
PEACH2 board

- PCI Express Gen2 x8 peripheral board
 - Compatible with PCIe Spec.
PEACH2 board

- Main board + sub board
- FPGA (Altera Stratix IV 530GX)
- Most part operates at 250 MHz (PCIe Gen2 logic runs at 250MHz)
- PCI Express x8 card edge
- Power supply for various voltage
- PCIe x16 cable connector
- PCIe x8 cable connector
- DDR3-SDRAM
HA-PACS Total System

- InfiniBand QDR 40port x 2ch between base cluster and TCA

HA-PACS
Base Cluster
268 nodes

Lustre
Filesystem

HA-PACS /
TCA
64 nodes

InfiniBand QDR
324port sw

40

40

InfiniBand QDR
108 port sw

InfiniBand QDR
324port sw

InfiniBand QDR
108 port sw
HA-PACS/TCA (computation node)

4 Channels
1,866 MHz
59.7 GB/sec

AVX
(2.8 GHz x 8 flop/clock)

22.4 GFlops x20
= 448.0 GFlops

Total: 5.688 TFlops

1.31 TFlops x 4
= 5.24 TFlops

4 x NVIDIA K20X
(6 GB, 250 GB/s) x 4
= 24 GB, 1 TB/s

4 Channels
1,866 MHz
59.7 GB/sec

(16 GB, 14.9 GB/s) x 8
= 128 GB, 119.4 GB/s

Legacy Devices

PEACH2 board
(TCA interconnect)
HA-PACS Base Cluster + TCA
(TCA part starts operation on Nov. 1st 2013)

- HA-PACS Base Cluster = 2.99 TFlops x 268 node = 802 TFlops
- HA-PACS/TCA = 5.69 TFlops x 64 node = 364 TFlops
- TOTAL: 1.166 PFlops
HA-PACS/TCA computation node inside
PEACH2 boards are installed with PCI-e external cables

front view
(8 node/rack)
3U height

rear view
TOP500 and Green500

- **TOP500 (HPL) on Base Cluster**
 - 421.6 TFLOPS (ranked #41 in TOP500, June 2012)
 - #7 as GPU cluster
 - Computing efficiency: 54.2% of theoretical peak

- **Green500 on Base Cluster**
 - 1151.91 MFLOPS/W (ranked #24 in Green500, June 2012)
 - #3 as GPU cluster
 - #1 as “large scale” (within TOP50) GPU cluster

- **Green500 on TCA Part (without TCA feature)**
 - 3518 MFLOPS/W (ranked #3 in Green500, November 2013)
 - 76% of HPL efficiency: quite high as GPU cluster
 - ranked #134 (277 TFLOPS) in TOP500 Nov. 2013
Ping-pong Latency

Minimum Latency
(nearest neighbor comm.)

- PIO: CPU to CPU: 0.8 us
- DMA: CPU to CPU: 1.8 us
 GPU to GPU: 2.3 us

cf. MV2-GDR 2.0b: 6.5 us (w/ GDR), 17 us (w/o GDR)
Ping-pong Bandwidth

- Max. 3.5 GByte/sec
 - 95% of theoretical peak
 - Converge to the same peak if hop count increases

Max Payload Size = 256byte
Theoretical peak (detailed):
4GB/sec \times 256 / (256 + 24) = 3.66 GB/s

- GPU - GPU DMA performance is up to 2.6 GByte/sec.
 - better than MV2GDR under < 1MB
 - Over QPI: limited to 360MB/s
 - SB(SandyBridge): limited to 880MB/s due to PCIe sw perf.
Ping-pong Latency

Minimum Latency
(nearest neighbor comm.)
- PIO: CPU to CPU: 0.8 us
- DMA: CPU to CPU: 1.8 us
 GPU to GPU: 2.3 us

Forwarding overhead
- 200-300 nsec
- BW converges to the same peak with various hop counts

![Ping-pong Latency Chart](image)
Programming for TCA cluster

- Data transfer to remote GPU within TCA can be treated like multi-GPU in a node.
- In particular, suitable for stencil computation
 - Good performance at nearest neighbor communication due to direct network
 - Chaining DMA can bundle data transfers for every “Halo” planes
 - XY-plane: contiguous array
 - XZ-plane: block stride
 - YZ-plane: stride
 - In each iteration, DMA descriptors can be reused and only a DMA kick operation is needed

=> Improve strong scaling with small data size
Current activities

- **Develop API for user programming**
 - similar to CudaMemcpy API. It enables use GPUs in a sub cluster seamlessly as same as Multi-GPUs in a node using CudaMemcpy API.

- **XMP for TCA**
 - cooperating with RIKEN AICS, we develop XMP for TCA.

- **Function offloading on TCA**
 - a reduction mechanism between GPUs in a sub cluster will be offloaded on TCA cooperating with Keio-Univ. Amano lab. and astrophysics group in CCS

- **QUDA (QCD libraries for CUDA)**
 - TCA feature will be added to QUDA cooperating with NVIDIA.
COMA (PACS-IX)

- New supercomputer at CCS, starting operation on April 15th 2014
- A follow-up system after T2K-Tsukuba
- System configuration
 - Computation node: general CPU + many-core (MIC)
 - Node configuration
 - CPU x 2: Intel Xeon E5-2670v2
 - MIC x 2: Intel Xeon Phi 7110P
 - Memory: CPU=64GB MIC=16GB
 - Network: IB FDR Full-bisection b/w Fat Tree
 - # of nodes: 393
 - peak perf.: CPU=157.2 TFlops MIC=843.8 TFlops
 TOTAL: 1001 TFlops = \textbf{1.001 PFLOPS}
- System vendor: Cray Inc.
What is COMA?

- **Cluster of Many-core Architecture processor**
- **COMA**
 - A famous cluster of galaxies
 - galaxy = cluster of stars (= Many Core)
 - cluster of galaxies = cluster of many-core
- It is also the 9th generation machine of PACS/PAX series
 -> PACS-IX as project series number
Computation node of COMA

- CPU (2 sockets): Intel Xeon E5-2670v2 (Ivy Bridge)
 - 10 core/CPU, 2.5GHz
 - 200GFLOSP x 2 = 400GFLOPS
 - memory: 64GB
 DDR3 1866MHz x 4chan x 2CPU = 119.4 GB/s
- MIC (2 boards): Intel Xeon Phi 7110P
 - 61 core/MIC, 1.1GHz
 - 1.0736 TFLOPS x 2 = 2.1472 TFLOPS
 - memory: 8GB x 2 = 16GB
 GDR5 352GB/s x 2 = 704 GB/s
- Interconnection: InfiniBand FDR (on-board)
 - Mellanox Connect-X3
- Local HDD: 1TB x 2 (RAID-1)
COMA node block diagram
COMA system facts

- # of nodes: 393
 - Peak performance
 - CPU: 157.2 TFLOPS
 - MIC: 843.8 TFLOPS
 - TOTAL: 1001 TFLOPS = 1.001 PFLOPS
 - Memory capacity
 - CPU: 25.1 TB
 - MIC: 6.3 TB
- Interconnection: Fat-Tree full-bisection b/w
 - Bisection bandwidth: 2.75 TB/s
- Shared file system: Lustre
 - 1.5 PB of shared file system directly accessed by all nodes via InfiniBand FDR
 - Data Direct Network, Lustre, RAID-6
Software

- OS: Red Hat Enterprise Linux (login server)
- OS: CentOS (compute node)
- Cluster management: ACE
- Job scheduler: SLURM
- Programming environment:
 - Intel Cluster Studio XE2013 (Composer/XE)
 - Fortran95/C/C++
 - Intel MPI
Programming of MIC

- MIC (KNC) runs x86-based Linux on itself
- Three programming models
 - Native Mode: running program on Linux on MIC directly
 - OpenMP (,etc.) multi-threaded application
 - Up to 240 of threads on 60 of cores (up to 4 h/w threads / core)
 - No I/O, mounting host node’s HDD on NFS
 - Offload Mode: running partial code of host to offload on MIC
 - supported by Composer XE (Intel compiler for MIC)
 - “device” directive shows the part to be offload
 - also describe OpenMP on offload-part to utilize parallelism on each MIC
 - host code may be executed with MPI also
 - Symmetric Mode: flat-model to treat all cores on host and MIC as the same to run big MPI program, even over multiple nodes