
A report on Feasibility Study
on Future HPC Infrastructure

"Study on exascale heterogeneous systems with accelerators"

PACS-G architecture　and system overview

Mitsuhisa Sato

Professor, Center for Computational Sciences, University of Tsukuba /
Team Leader of Programming Environment Research Team, AICS, Riken

LBL-CCS 2014	

2

Issues for exascale computing

n  Two important aspects of post-
petascale computing

n  Power limitation
n  < 20-30 MW

n  Strong-scaling
n  < 10^6 nodes, for FT
n  > 10TFlops/node
n  accelerator, many-cores

n  Solution: Accelerated Computing
n  by GPGPU
n  by Application-specific Accelerator
n  by ... future acceleration device ...

1 10 102 103 104 105 106

1GFlops
109

1TFlops
1012

1PFlops
1015

1EFlops
1018

#node

Peak
flops

limitation
of #node

Exaflops system

PACS-CS (14TF)

petaflops
by 100-1000nodes

NGS
> 10PF

T2K-tsukuba
(95TF)

the K computer	

simple projection of #nodes and peak flops 	

3

京コンピュータ　“The K computer"	

n  cabinet　864 	

n  chips 82,944 	

n  core 663,552	

n  performance Linpack n10.51PF (power 12.66MW) 	

 	

	

The SDHPC white paper and
Japanese “Feasibility Study" project	

n  WGs ware organized for drafting the white paper for Strategic Direction/
Development of HPC in JAPAN by young Japanese researchers with advisers
(seniors) in 2010-2011

n  Contents
n  Science roadmap until 2020 and List of application for 2020’s
n  Four types of hardware architectures identified and performance projection in 2018

estimated from the present technology trend
n  Necessity of further research and development to realize the science roadmap

n  For “Feasibility Study" project, 4 research teams were accepted
n  Application study team leaded by RIKEN AICS (Tomita)
n  System study team leaded by U Tokyo (Ishikawa)

n  Next-generation “General-Purpose” Supercomputer
n  System study team leaded by U Tsukuba (Sato)

n  Study on exascale heterogeneous systems with accelerators
n  System study team leaded by Tohoku U (Kobayashi)

n  "Memory Bandwidth-oriented" architecture.

n  Projects were started from July 2012 (1.5 year) …

4

Objectives of our HPCI-FS project	

n  Demand of computing power for advanced computational

sciences is increasing
n  Computational Science is a critical and cutting-edge methodology in

all of science and engineering disciplines including nano-tech, life
science, climate and weather prediction, disaster prevention and
mitigation

n  Space and power consumption limits the whole system performance
by increasing the number of nodes

n  On other hand, many applications such as MD simulation in life
science needs speedup for fixed size of problems in real-time
(Strong scaling)

n  example: ANTON, MDGRAPE-4

To enable new computational sciences by Significant Improvement
of power-performance efficiencyとSpeedup with strong scaling, we
carry out feasibility study on large scale parallel system with
accelerators
n  Among architectures identified in SDHPC white paper, our feasibility study

covers Reduce Memory (RM) and Compute Oriented (CO)

CB

GP

CO
RM

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3

R
eq

ui
re

m
en

t o
f

B
/F

Requirement of Memory Capacity (PB)

Mapping of Architectures

Memory
bandwidth

Memory
capacity

FLOPS

CB oriented

Compute
oriented

Reduced
Memory

General
purpose

Ø  Speedup with Strong Scaling will make MD applications
significantly faster in real-time.

Ø  Significant Improvement of power-performance efficiency
will make large-scale execution of reduced-memory type
of applications such as lattice QCD more efficiently with
smaller amount of energy.

（From SDHPC white paper）	

PACS-G Architecture: Overview　（１）	

n  Master processor may be conventional letency-core. PE is controlled
as extended instructions in the master processor.

n  We estimate the number of PEs 2048～4096 per chip.
n  We assume external "global memory" (GM) to the chip.

n  High-Bandwidth Memory (HBM, TSV, 2.5 Stacking) or HMC
(Hybrid <emory Cube)

n  DDR/DIM cannot be used.
n  Only block data transfer between PE to GM. No random

access may be supported.
n  On-chip network may support neighbor communication of PEs upto

4-demension mesh topology (Note: Figure only shows 2D-mesh)
n  Support On-chip network and dedicated memory for reduction and

broadcast to PEs.

n  Target performance-power efficiency > 50GF/W (10nm)

Summary:
n  Our target types of applications are both Compute-oriented type (N-body, MD, dgemm) and Reduced-

memory type stencil computations.
n  The accelerator co-processor (PACS-G) consists of large number of PE(core), which is controlled in SIMD

manner ("extreme" SIMD architecture). This architecture enables significant improvement of FLOPS by
large number of PEs, simplification of controlling PEs, and significant reduction of energy for computation.

n  PE consists of arithmetic units, registers and local memory (LM). The instruction operates on LM. PEs are
connected by on-chip network.

n  The co-processor are connected via dedicated inter-chip network, which enables low latency
communication to realize efficient parallel execution with strong scaling.

n  We expect 10nm (FinFET) LSI technology available in year 2018-2020, chip-dai size: 20mm x 20m

Master
Proc.

Ho
st
	
 p
ro
ce
ss
or Data

cache
I

Cache

Comm Buffer

Comm Buffer

Co
m
m
Bu

ffe
r

Reduction	

Network

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Co
m
m
Bu

ffe
r

In
te
r-­‐
ac
ce
le
ra
to
r	

ne
tw

or
k

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

PACS-­‐G	
 processor

GM （Global Memory）

LM LM LM LM

LM LM LM LM

LM LM LM LM

LM LM LM LM

PACS-G Architecture: Overview　（２）	

ネットワーク

No
de

No
de

No
de

No
de ・・・

System	
 Network

Group

Accelerator
Network

GP
Processor

Memory

Acc
elerator

Acc
elerator ・・・

GP
Processor

Memory

Acc
elerator

Acc
elerator ・・・

・・・

Node Node

Group

Core

MemCo
nt
ro

lle
r Core

Mem

Core

Mem

Core

Mem

Core

MemCo
nt
ro

lle
r Core

Mem

Core

Mem

Core

Mem

Core

MemCo
nt
ro

lle
r Core

Mem

コア

Mem

Core

Mem

Core

MemCo
nt
ro

lle
r Core

Mem

Core

Mem

コア

Mem

X

X

X

X

X

X

X X

X

X

X

X

XX

X

X

Storage

To System network

Accelerator Chip (example)

System

Master
Proc.

Ho
st
	
 p
ro
ce
ss
or Data

cache
I

Cache

Comm Buffer

Comm Buffer

Co
m
m
Bu

ffe
r

Reduction	

Network

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Co
m
m
Bu

ffe
r

In
te
r-­‐
ac
ce
le
ra
to
r	

ne
tw

or
k

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

PACS-­‐G	
 processor

GM （Global Memory）

LM LM LM LM

LM LM LM LM

LM LM LM LM

LM LM LM LM

n  Each node consists of general purpose processor with a few accelerator co-processor (PACS-G)
n  Each node are connected via system network.
n  Co-processor are connected via PCI-e

n  I/O Interface to Host: PCI Express Gen 4 x16 (32GB/s) (not enough!!!)

n  A group of 2048～4096 chips are connected via accelerator network (inter-chip network)
n  Inter-chip network may support neighbor communication upto 4D topology
 and reduction operation of scalar value

n  Current plan: 4D-trous + Reduction network (< a few usec latency)

PACS-G architecture: Pros and Cons for exascale	

n  Low power (target > 40-50GF/W) & Strong scaling
n  "extreme" SIMD, less power, and easy to synchronize with out overhead
n  Local memory for each PE.
n  block transfer from GM to LM.
n  ... But, less flexibility and difficult to program ...
n  direct network between processors for shorter latency.

n  Comparing to GPU
n  power efficiency < 30GF/w ...
n  no direct network
n  ..., but many software is getting matured.

n  Comparing to manycore
n  power efficiency < 20GF/W
n  Huge overhead to synchronize million of threads.
n  ..., but many software already exists!!!

Issues of software for PACS-G	

n  The size of LM（PE's local memory） is small
n  "extreme" SIMD (all PE execute the same instruction)
n  No random access to GM, only block transfer

n  can be overlapped with computation in PE

n  support for porting existing software
n  directive-based extension

n  Message passing model may be used between processors
n  MIMD

 Programming models for PACS-G	

n  PACS-G C extension for low-level programing
n  low-level constructs to program PE, and assembly

level program by Intrinsic's

n  XcalableMP (subset/extension) + OpenACC
for directive based programming for stencil
apps.

n  to make it easy to port existing codes (stencil
codes)

n  Domain-Specific Language (DSL) and app.
framework for more optimized code.

n  ex. DSL for stencil or/and particle simulation

n  Programing support to describe offloaded
code from host by directives

n  Compiled to low-level host interface

n  For inter-chip network, MPI or proprietary
communication lib will be supported.	

PACS-G architecture	

PACS-G C
extension	

XcalableMP
+

OpenACC
(OpenMP)	

DSL
&

app.
Framework	

PACS-G C extension	

n  C extended for low-level programming of PACS-G SIMD
architecture

n  extended storage class to specify memory
n  global_memory: allocate data in global (module) memory

n  __do_all__ statement
n  specify code fragments to be executed in PE

n  function qualifiers:
n  __global__ : to allocate frame in PE
n  __all__ : functions executed in PE

n  Intrinsic functions: compiled into instructions.
n  template: index space over PEs

n  __for_all__ : parallel loop on template

n  Host interface library

Template	

n  template: (virtual) index space over PEs

n  idea introduced in HPF and other data parallel lang (also in XMP)
n  __for_all__: parallel loop over PEs

__for_all_ (template; lb1:ub1; lb2:ub2; ...) statement
n  register variables (ix, iy, ... gx, gy,...) gives local/global indices

n  also used to describe data transfer between PE and global memory
1024

512

(p_x, p_y)

l_a

l_ldim

g_a

g_ldim

dx

dy

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

void pg_memCopyG2P_W_2D(int g_a, int g_ldim,
int dx , int dy, __template__ t_id, int p_x, int p_y,
 int l_a, int l_ldim);

iy	

ix	
gx	

gy	

XcalableMP+OpenACC (or OpenMP)	

n  Optimization using LM（PE's local memory） explicitly by
controlling and allocating data in LM ⇒　XcalableMP PACS-G
extension
n  When all data fits in the size of LM
n  Reflect operation to communicate shadow data between PE's explicitly.

n  Using LM as temporary memory for data in GM
n  In case that all data cannot fit in LM
n  Compiler must generate code to overlap computations and data transfer

GM⇒LM, LM⇒GM
n  User may indicate parallel loop by directive/pragma (like OpenMP)

XcalableMP(XMP) http://www.xcalablemp.org	

n  What’s XcalableMP (XMP for short)?
n  A PGAS programming model and language for

distributed memory , proposed by XMP Spec WG
n  XMP Spec WG is a special interest group to design

and draft the specification of XcalableMP language.
It is now organized under PC Cluster
Consortium, Japan. Mainly active in Japan, but
open for everybody.

n  Project status (as of Nov. 2013)
n  XMP Spec Version 1.2 is available at XMP site.

new features: mixed OpenMP and OpenACC ,
libraries for collective communications.

n  Reference implementation by U. Tsukuba and Riken
AICS: Version 0.7 (C and Fortran90) is available
for PC clusters, Cray XT and K computer. Source-
to- Source compiler to code with the runtime on top
of MPI and GasNet.

14

Po
ss

ib
lit

y
of

 P
er

fo
rm

an
ce

 t
un

in
g

Programming cost

MPI

Automatic
parallelization

PGAS

HPF

chapel

XcalableMPXcalableMP

n  Language Features
n  Directive-based language extensions for Fortran

and C for PGAS model
n  Global view programming with global-view

distributed data structures for data parallelism
n  SPMD execution model as MPI
n  pragmas for data distribution of global array.
n  Work mapping constructs to map works and

iteration with affinity to data explicitly.
n  Rich communication and sync directives such as

“gmove” and “shadow”.
n  Many concepts are inherited from HPF

n  Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C).

XMP provides a global
view for data parallel

program in PGAS model	

An example of XMP/G Fortran (Laplace)	

 SUBROUTINE lap_main(xsize, ysize, u,uu)
 integer: xsize, ysize
 double dimension(0:xisze+1,0:ysize+1): u, uu
 integer: x,y,k

!$xpg template tmpl(0:XSIZE+1, 0:YSIZE+1)

!$xpg data copy(u, uu)
!$xpg align (i,j) with tmp(i,j) : u, uu
!$xpg shadow uu(1:1,1:1)
!$xpg paralllel
 do k = 0, NITER
!$xpg array
 　uu = u
!$xpg reflect(uu)
!$xpg loop on tmpl(i,j)
 do x = 1, xsize
 do y = 1, ysize
 u(x,y) = (uu(x+1,y)+uu(x-1,y)+
 uu(x,y+1)+uu(x,y-1))*0.25
 enddo
 enddo
 enddo
!$xpg end parallel
!$xpg end data

define template (index space
over PE) to align array and loop	

copy from GM to LM (OpenACC)	

Specify distribution on LM	

Define shadow area of data on LM	

Start parallel region to execute PE(OpenACC)	

parallel loop on template 	

Stencil Computation	

End of eecuteion on PE (OpenACC)	

Copy back from LM to GM (OpenACC)	

update shadow area	

Performance Study of PACS-G (1)	

n  We assume the following two types
of configurations for performance
estimation
n  Type A：　the number of PE 4096.

The size of LM is 64KB. To
improve power-efficiency and
meet the limitation of power, the
clock is 750MHz.

n  Type B: the number of PE is
2048 and the size of LM is
128KB. To increase
performance, the clock is 1GHz.

n  The number of processor in a group
is 4096.

n  Performance is estimated by picking
up the kernel and programming at
assembly level

n  High-level programming and
optimization is not ready yet.

 parameter	
 type A	
 type B	

PE/chip 4096	
 2048	

 clock (GHz)	
 0.75	
 1	

 #FLOP(double)/cycle/PE	
 4	
 4	

 Peak FLOPS/chip (TF)	
 12.3	
 8.2	

LM size(KB)	
 64	
 128	

 BW/PE (GB/s)	
 12	
 16	

 B/F	
 4	
 4	

On-chip network BW(GB/s)*1	
 6	
 8	

GM size （GB)	
 16	
 16	

 BW/chip　(GB/s)	
 1024	
 512	

 B/F	
 0.08	
 0.06	

Inter-chip network BW(GB/s) *2	
 20	
 20	

Chip/Group	
 4096	
 4096	

 Peak　Flops/group　(PF)	
 50.3	
 33.5	

 LM/group (PB)	
 1	
 1	

 GM/group (PB)	
 64	
 64	

１） bandwidth per link (upto 4-dimensional neighbor comm supproted)
２） one-direction bandwidth per link (bi-direction, 4D torus network)	

Performance Study of PACS-G　（２）	

app	
 typeA 	
 typeB 	
 Comment	

Modylas
（Molecular
Dynamics
Simulation
）
	

4.88TF/chip
(eff. 39.7%)
0.75ms/step	

3.36TF/chip
(eff. 41.0%)
1.02ms/step	

•  The size of molecules is 100M.
•  Only nearest neighbor force are calculated. Long-

distance force are computed in Host. (Offload-model)
•  Estimated by Assembly level programming for core-

kernel
•  Time for communication to host is 18ms/4step,
•  Currently, we are considering how to compute long-

distance forces in PACS-G	

Lattice
QCD
[CCS-
QCD]	

	

Single precision (per processor)	
 •  Offload BiCGStab Solver. Only this part is estimated.
•  Estimated by Assembly level programming for core-

kernel. The time of communication are also estimated.
•  Using 2048 processors for both of typeA, typeB
•  The time of single precision and double precision are

90% and 10% respectively. By this ratio, we estimate
the total performance.

•  The time of reduction between processors are estimated
3.5µsec	

5.9TF
(eff. 24.0%)

4.60TF
(eff. 28%) 	

Double precision (per processor)	

1.75TF
(eff. 14.2%)

0.98TF
(eff. 12.0%) 	

Total 5.32TF	
 total 3.55TF	

Seism3D
(Sesimic
Simlaute)	

Size 2048x2048x1536 (on LM) •  Typical Stencil code
•  Estimated by Assembly level programming for core-

kernel. The time of communication are also estimate
•  Using one group.
•  Need overlap of communication between computation

and data transfer to/from GM

18.2PF
(eff. 18.1%)
78.4µsec/step	

12.9PF
(eff. 19.2%),
115.5µsec/step	

Size 10240x10240x6144(on GM) 	

4.87PF
(eff. 4..83%)	

 2.58PF
(eff. 3.84%)	

Summary of results	

n  Results of MD simulation "Modylas" shows that one time step of 100M molecules may
be performed in order of milli-second in real-time by strong scaling.

n  We hope it will accelerate researches of life science such as protein folding.
n  In current version of code, only near-distance interaction is computed by offloading to

accelerator. Currently, we are investigating a method to compute long-distance forces.

n  Results of latticed QCD shows that the computation can be significantly speedup by
using on-chip memory and network, and low-latency accelerator network.

n  Stencil computations, which is typical type of scientific applications, were evaluated.
n  If data fits in the size of LM, significant speedup may be obtained.
n  When data is stored in GM, the performance may be restricted by the bandwidth between

chip and GM. Even in this case, explicit data transfer may be better than cache, with
better power-performance efficiency.

n  Results of Seism3D shows that:
n  For small size problem （2048×2048×1536） which fits in LM, one step can be computed in

about 0.1msec. It means simulation of small area (e.g, Kanto area) can be done faster
than in real-time. It may also be useful to speedup ensemble simulations to execute many
cases.

n  For larger size which must be stored in GM, simulation of certain size (e.g. Japan) can be
done in a few hours.

Strawman of postK (Proposed by RIKEN)	

19	

Coprocessor
•  SIMD engines with latency core
•  Strong scale network

General purpose processor
•  Many cores with SIMD instructions
•  Tofu network

Execution Models
•  Separation
•  Cooperation	

•  Offload

2014/02
/27	

(Yutaka Ishikawa @ BDEC2014, Fukuoka)	

n  Other software components, low-level communication, MPI
implementation, and file I/O have been studied

n  This feasibility study is not directly taken over in Japan exascale project
being proposed, but a part of this study will be taken over in the project
n  Expected operation year is 2020

Current Status for "exascale" project	

2014/02/27	
 20	

http://www.mext.go.jp/component/
b_menu/other/__icsFiles/afieldfile/
2013/08/30/1339148_5.pdf	

(Yutaka Ishikawa @ BDEC2014, Fukuoka)	

Concluding remarks	

n  To realize "exascale" (≒exaflops), dedicated architecture of accelerator will be required

(Power-performance efficiency > 50GF/W, It may be difficult for general-purpose
processors)

n  For new computational science, we need architecture for strong scaling.

n  PACS-G architecture offers high performance and high power-performance efficiency by
"extreme SIMD" and on-chip memory/on-chip network, strong scaling by dedicated
accelerator network. and SIMD.

n  Applications: MD in life sciences, Lattice QCD in particle physics. ...
n  The point is what processors are possible using LSI technology of 2018-2020.

n  Agenda remains
n  detail architecture and instruction set design
n  more detail programming model and compiler optimization (communication between

PEs and GM)
n  Co-design and more accurate performance evaluation.
n  System software including communication library, IO, FT, McKernel, ...

n  ⇒　Extend To cover wider range of applications.

Concluding Remarks	

n  PACS-G: Low power (target > 40-50GF/W) & Strong scaling
n  "extreme" SIMD, less power, and easy to synchronize with out overhead
n  Local memory for each PE.
n  block transfer from GM to LM.
n  ... But, less flexibility and difficult to program ...
n  direct network between processors for shorter latency.

n  Comparing to GPU
n  power efficiency < 30GF/w ...
n  no direct network
n  ..., but many software is getting matured.

n  Comparing to manycore
n  power efficiency < 20GF/W
n  Huge overhead to synchronize million of threads.
n  ..., but many software already exists!!!

Option?	

n  Ideas for extension
n  Support for random communication between PEs (remote read/write)	

n  Support for random memory access between PE⇔GM
n  Muticore/manycore for master processor

In processor	
 Between procs	

Regular mem access &
regular comp. (e.g. stencil)	
 ○	
 ○	

Irregular mem access &
irregular comp (sparse
max)	

△（１）	
 ○（２）	

Unbalanced comp. &
different threads 	
 ×	
 △	

△（１）　by supporting random comm in PE and random memory access
○（２）　by message passing on conventional MPP networks	

Thank you for your attention!!!	

