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Linear systems with multiple right-hand sides  

	
Eigensolver using contour integral（（SS method））	

	
	

	
Physical value calculation in Lattice QCD	

	
 	
Linear system with 12 ～～ 100 multiple right-hand	

	
 	
sides need to be solved.	


	

	
	


This linear system appears in ...	


Linear systems with L right-hand sides 

Here, 　　    　　　　   : n×n non-Hermitian matrix, 	

AX = B

A ∈ Cn×n

X =
[

x(1)
, x(2)
, . . . , x(L)

]

, B =
[

b(1)
, b(2)
, . . . , b(L)

]
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Krylov subspace methods for solving AX = B  

Block Krylov subspace methods	


・Block BiCG 	
O’Leary (1980)	

・Block GMRES 	
Vital (1990)	

・Block QMR 	
Freund (1997)	

・Block BiCGSTAB 	
El Guennouni (2003)	


Linear system with multiple right-hand sides can be 	

Krylov methods	
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Property of Block Krylov subspace methods  
	


Residual norm of Block Krylov methods may converge	

in smaller number of iterations than that of Krylov methods	
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Fig. 1. 	
True relative residual norm histories of Block BiCGSTAB. 
 ■■：：L = 1，，■■：：L = 2，，■■：：L = 4．．	


Reduce the 	

# of iterations!	


True relative residual :   ‖B − AXk‖F/‖B‖F

Good  
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Stagnate!!	


Good  
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Pros and cons of Block Krylov subspace methods  

  Linear system with L RHSs can be solved simultaneously.	


  The number of iterations of Block Krylov subspace methods 
may smaller than that of Krylov subspace methods.	


  The accuracy of the obtained approximate solution may 
	


  The relative residual norm may not converge due to the 

right-hand sides L is large.	


Pros  

Cons  
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Objectives of this research  

1. 	
We develop a Block Krylov subspace method	

	
for computing high accuracy solutions.	


	

2. 	
We improve the numerical instability of Block	

	
Krylov subspace methods when the number of	

	
right-hand sides is large.	


Objectives	
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linear solver	




§2 Development of a high accuracy linear solver  

--  9  --	
	
Japan-Korea HPC Winter School                                                   February 27, 2014  

  
Linear systems	


AX = B, A ∈ Cn×n
, X, B ∈ Cn×L Def. of an operation	
 ◦

Here,	


M j ∈ C
L×L
, V ∈ Cn×L

.

Mk(A) ◦ V ≡
k

∑
j=0

A jV M j

Mk(z) ≡
k

∑
j=0

z j M j,
The (k+1)th residual	


Rk+1 = B − AXk+1

≡ (Hk+1Rk+1)(A) ◦ R0

Recursions of polynomials	


Here,   

R0(z) = P0(z) = IL,

Rk+1(z) =Rk(z) − zPk(z)αk,

Pk+1(z) =Rk+1(z) + Pk(z)βk

H0(z) = 1,
Hk+1(z) = (1 − ζk z)Hk(z)

αk, βk ∈ C
L×L, ζk ∈ C.
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Derivation of recurrence formulas  

The (k+1)th residual 
Rk+1 = B − AXk+1

≡ (Hk+1Rk+1)(A) ◦ R0

Expand from  Hk+1

Block BiCGSTAB  

There are two ways of derivation of recurrence formulas	
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Algorithm of the Block BiCGSTAB method  

X0 ∈ C
n×L is an initial guess,

Compute R0 = B − AX0,
Set P0 = R0,
Choose R̃0 ∈ C

n×L,
For k = 0, 1, . . . , until ‖Rk‖F ≤ ε‖B‖F do:

Solve (R̃H
0

APk)αk = R̃H
0

Rk for αk,

Tk = Rk − APkαk,

ζk =
Tr[(ATk)HTk]

Tr[(ATk)H ATk]
,

Xk+1 = Xk + Pkαk + ζkTk,
Rk+1 = Tk − ζk ATk,
Solve (R̃H

0
Vk)βk = −R̃H

0
Zk for βk,

Pk+1 = Rk+1 + (Pk − ζkVk)βk,
End
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Relationship between the true residual and the recursive residual  

  Theoretically, the true residual B – AXk is equal to the 
recursive residual Rk.	


B − AXk = Rk

  If the recursive residual Rk becomes zero matrix, then 
the true residual B – AXk also becomes zero matrix.	


  Hence, Xk is the exact solution.  

However, the equation B – AXk = Rk
numerical computation.  
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The error matrix in Block BiCGSTAB  

Xk+1 = Xk + Pkαk + ζkTk

Rk+1 = Rk − APkαk − ζk ATk

Recursions of Xk+1 and Rk+1  

Xk+1 = X0 +
k

∑
j=0

P jα j +
k

∑
j=0
ζ jT j

Rk+1 = R0 −
k

∑
j=0

(AP j)α j −
k

∑
j=0
ζ j(AT j)

Expansion of recursions  

Here,   
Xk, Rk, Pk, Tk ∈ C

n×L,

αk ∈ C
L×L, ζk ∈ C.

B − AXk+1 = Rk+1 +
k

∑
j=0

[

(AP j)α j − A(P jα j)
]

+

k

∑
j=0

[

ζ j(AT j) − A(ζ jT j)
]

The relationship between the true res. and the recursive res.  
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Example of effect of the error matrix  

Fig. 2. 	
Relation between the true rel. res. and the error matrix norm. 
　　■■：：    　　　　　　　　　　　　       , ■■：：  　　　　　　　　      , ■■：：　　　　　　　　　　 .	


Matrix : JPWH991 (from Matrix Market)	

#RHS : L = 4	


Here,   

‖B − AXk‖F/‖B‖F ‖Rk‖F/‖B‖F

‖E
k ‖

F
/
‖B
‖

F

‖Ek‖F/‖B‖F

Ek =
k−1

∑
j=0

[

(AP j)α j − A(P jα j)
]

+

k−1

∑
j=0

[

ζ j(AT j) − A(ζ jT j)
]

.
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Derivation of recurrence formulas  

The (k+1)th residual 
Rk+1 = B − AXk+1

≡ (Hk+1Rk+1)(A) ◦ R0

Expand from  Hk+1

Block BiCGSTAB  

Expand from  Rk+1

Block BiCGGR  

There are two ways of derivation of recurrence formulas	
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Algorithm of the Block BiCGGR method  
X0 ∈ C

n×L is an initial guess,
Compute R0 = B − AX0,
Set P0 = R0,
Choose R̃0 ∈ C

n×L,
For k = 0, 1, . . . , until ‖R‖F ≤ ε‖B‖F do:

Solve (R̃H
0

APk)αk = R̃H
0

Rk for αk,

ζk =
tr[(ARk)HRk]

tr[(ARk)H ARk]
,

Uk = (Pk − ζk APk)αk,
Xk+1 = Xk + ζkRk + Uk,
Rk+1 = Rk − ζk ARk − AUk,

Solve (R̃H
0

Rk)γk = R̃H
0

Rk+1/ζk for γk,
Pk+1 = Rk+1 + Ukγk,

APk+1 = ARk+1 + AUkγk,
End For
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The error matrix in Block BiCGGR  

Xk+1 = Xk + ζkRk + Uk

Rk+1 = Rk − ζk ARk − AUk

Recursions of Xk+1 and Rk+1  

Xk+1 = X0 +
k

∑
j=0
ζ jR j +

k

∑
j=0

U j

Rk+1 = R0 −
k

∑
j=0
ζ j(AR j) −

k

∑
j=0

AU j

Expansion of recursions  

Xk, Rk,Uk ∈ C
n×L, ζk ∈ C.

Here,  

The relation between the true res. and the recursive residual  
B − AXk+1 = Rk+1 +

k

∑
j=0

[

ζ j(AR j) − A(ζ jR j)
]
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Comparison of two methods  
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Fig. 3. 	
True relative residual histories of two methods. 
 ■■：：L = 1，，■■：：L = 2，，■■：：L = 4．．	


(a) Block BiCGSTAB.  
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(b) Block BiCGGR.  

Stagnate!  Converge!  

Good  Good  
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Numerical instability when #RHSs is large  

，，■■：：L = 8，，■■：：L = 12．．	

Fig. 4. Relative residual histories of the Block BiCGGR method.	

■■：：L = 1，，■■：：L = 2，，■■：：L = 4.	


Divergence!!  
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Pros and cons of Block Krylov subspace methods  

  Linear system with L RHSs can be solved simultaneously.	


  The number of iterations of Block Krylov methods is may 
smaller than that of Krylov subspace methods.	


  The accuracy of the obtained approximate solution may 
	


  The relative residual norm may not converge due to the 

right-hand sides L is large.	


Pros  

Cons  
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Cause of numerical instability of Block BiCGGR  
X0 ∈ C

n×L is an initial guess,
Compute R0 = B − AX0,
Set P0 = R0,
Choose R̃0 ∈ C

n×L,
For k = 0, 1, . . . , until ‖R‖F ≤ ε‖B‖F do:

Solve (R̃H
0

APk)αk = R̃H
0

Rk for αk,

ζk =
tr[(ARk)HRk]

tr[(ARk)H ARk]
,

Uk = (Pk − ζk APk)αk,
Xk+1 = Xk + ζkRk + Uk,
Rk+1 = Rk − ζk ARk − AUk,

Solve (R̃H
0

Rk)γk = R̃H
0

Rk+1/ζk for γk,
Pk+1 = Rk+1 + Ukγk,

APk+1 = ARk+1 + AUkγk,
End For

If the linear independence of Rk	


and Pk 	

matrices become ill-condition.	


Cause of numerical instability	


Small linear systems need	

to be solved to obtain L×L	

matrices             .	
αk, γk
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Stabilization of Block BiCGGR by residual orthonormalization  

 We consider to improve linear independence of the vectors.	

              Perform the orthonormalization of vectors.	


In order to improve the numerical instability ……  

In this stydy  ……  

We develop the Block BiCGGRRO method. The residual	

matrix Rk of this method is orthonormalized as follows.	


Rk = Qkξk, QH
k

Qk = IL, ξk ∈ C
L×L
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Algorithm of the Block BiCGGRRO method  
X0 ∈ C

n×L is an initial guess,
Compute Q0ξ0 = B − AX0,

Set S0 = Q0,

Choose R̃0 ∈ C
n×L,

For k = 0, 1, . . . , until ‖ξk‖F ≤ ε‖B‖F do:
Solve (R̃H

0
ASk)αk = R̃H

0
Qk for αk,

ζk = arg min
ζ

‖Qkξk − ζAQkξk‖F,

Vk = (Sk − ζk ASk)αk,

Xk+1 = Xk +
[

ζkQk + Vk
]

ξk,

Qk+1τk+1 = Qk − ζk AQk − AVk,

ξk+1 = τk+1ξk,

Solve (R̃H
0

Qk)γk = R̃H
0

Qk+1/ζk for γk,

Sk+1 = Qk+1 + Vkγk,

ASk+1 = AQk+1 + AVkγk,

End For

Orthonormalization	
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Test problem  

Linear system with multiple right-hand	

sides derived from Lattice QCD.	


n = 1, 572, 864，，nnz(A) = 80, 216, 064，，  
the number of nnz(A) per row is 51.  

Fig. 5. Nonzero structure.  

Test problem  

AX = B
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Experimental environment and conditions  

Table 1. Experimental environment.  

Table 2. Experimental conditions.  

CPU AMD Opteron 6180 SE 2.5GHz × 4
Memory 256.0GBytes
Compiler PGI Fortran ver. 11.5

Compile option -O3 -tp=x64 -mp

Initial solution X0 [0, 0, . . . , 0]
Right hand side B [e1, e2, . . . , eL]
Shadow residual R̃0 Random number

Stopping criterion
‖Rk‖F/‖B‖F ≤ 1.0 × 10−14

or ‖Rk‖F/‖B‖F ≥ 1.0 × 106
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Comparison of Block BiCGGR and Block BiCGGRRO  

(a) Block BiCGGR.  (b) Block BiCGGRRO.  

Fig. 6. Relative residual histories of BiCGGR and BiCGGRRO.	

■■：：L = 1，，■■：：L = 2，，■■：：L = 4，，■■：：L = 8，，■■：：L = 12．．	
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Comparison of Block BiCGGR and Block BiCGGRRO  

L = 1 L = 2 L = 4 L = 8 L = 12
Iter. 2148 1481 1131
TRR 9.9 × 10−15 6.2 × 10−15 9.3 × 10−15 Divergence Divergence
Time 107.7 106.6 152.5

L = 1 L = 2 L = 4 L = 8 L = 12
Iter. 2139 1421 1006 894 800
TRR 8.2 × 10−15 8.9 × 10−15 1.1 × 10−14 1.1 × 10−14 1.2 × 10−14

Time 111.3 113.1 161.5 341.7 521.3

Table 3. Results of Block BiCGGR.	


Table 4. Results of Block BiCGGRRO.	


Block BiCGGRRO can also generate high accuracy solutions!	


Iter.：：Number of iterations，，TRR：：True relative residual norm，，
Time：：Computational time in seconds.	




1. 	
We developed the Block BiCGGR method. This method 	

	
can generate high accuracy solutions compared to the 	

	
conventional method.	


	

2. 	
We improved the numerical instability of the 	
Block 	

	
BiCGGR method by performing the residual	

	
orthonormalization when the number of right-hand sides	

	
is large.	


Summary	



