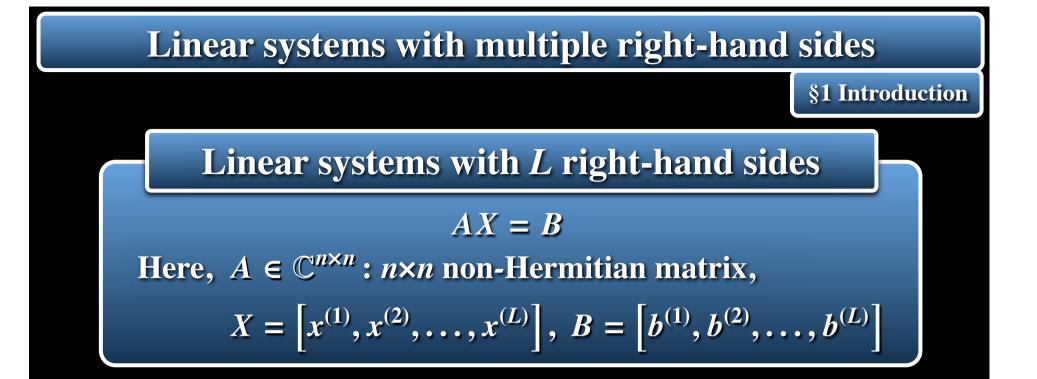
Development of Block Krylov subspace methods for computing high accuracy solutions and their applications

> Hiroto Tadano Center for Computational Sciences University of Tsukuba Japan-Korea HPC Winte School February 27, 2014

Outline

- §1 Introduction
- \$2 Development of a high accuracy linear solver
- **\$3** Stablization of Block BiCGGR
- **\$4** Numerical experiments
- 📹 §5 Summary

§1 Introduction



— This linear system appears in … — Eigensolver using contour integral (SS method)

Physical value calculation in Lattice QCD
 Linear system with 12 ~ 100 multiple right-hand sides need to be solved.

Japan-Korea HPC Winter School

February 27, 2014 - 3 -

Krylov subspace methods for solving AX = B

§1 Introduction

Block Krylov subspace methods

Block BiCG
Block GMRES
Block QMR
Block BiCGSTAB
Cluennouni (2003)

Linear system with multiple right-hand sides can be efficiently solved by using Block Krylov methods

Japan-Korea HPC Winter School

February 27, 2014 – 4 -

Property of Block Krylov subspace methods §1 Introduction What is "efficient?" **Residual norm of Block Krylov methods may converge** in smaller number of iterations than that of Krylov methods True relative residual norm 10^{1} True relative residual norm **Reduce the 10**⁻¹ Stagnate!! 10^{-2} **# of iterations!** 10^{-4} 10^{-5} **10**⁻⁷ **10⁻⁸** Good **10⁻¹⁰** 500 1000 1500 2000 2500 10⁻¹¹ **Iteration number**, k Good 10⁻¹⁴ 500 1000 1500 2000 2500 True relative residual : $||B - AX_k||_F / ||B||_F$ **Iteration number**, k Fig. 1. True relative residual norm histories of Block BiCGSTAB.

$$L = 1, \quad L = 2, \quad L = 4.$$

Japan-Korea HPC Winter School

Pros and cons of Block Krylov subspace methods

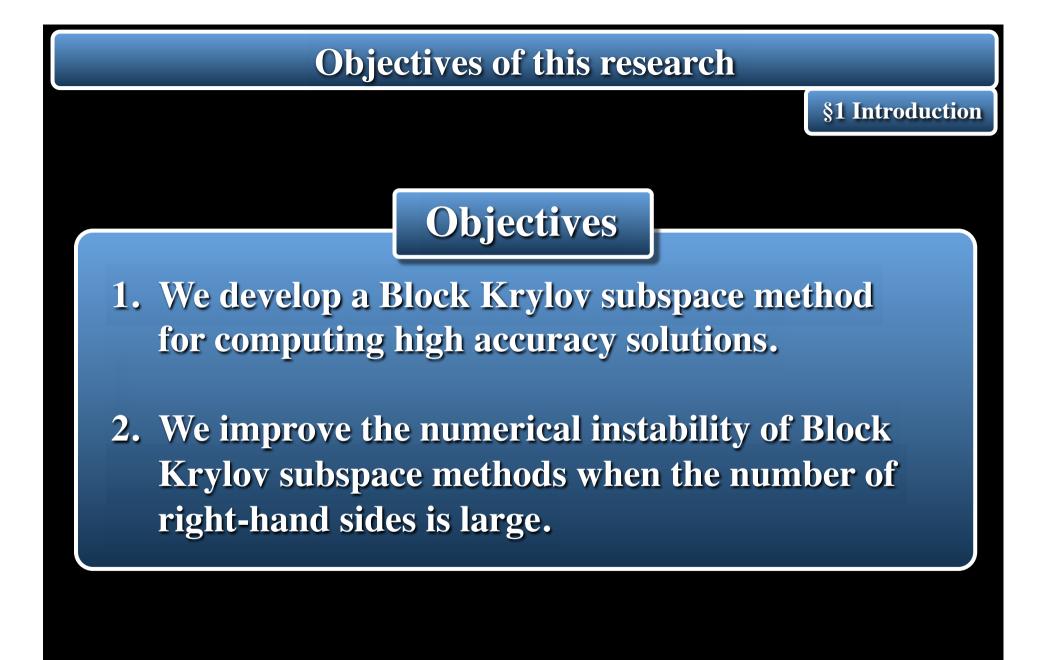
§1 Introduction

- Pros

- Linear system with *L* RHSs can be solved simultaneously.
- The number of iterations of Block Krylov subspace methods may smaller than that of Krylov subspace methods.

– Cons

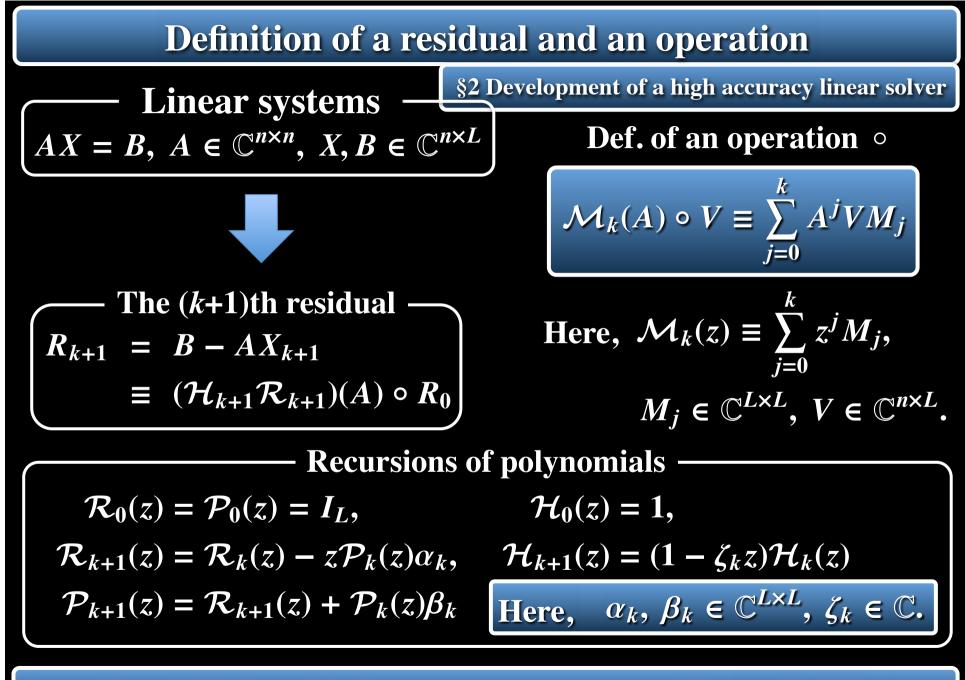
- The accuracy of the obtained approximate solution may not good if the stopping condition is satisfied!
- The relative residual norm may not converge due to the influence of numerical instability when the number of right-hand sides *L* is large.



Japan-Korea HPC Winter School

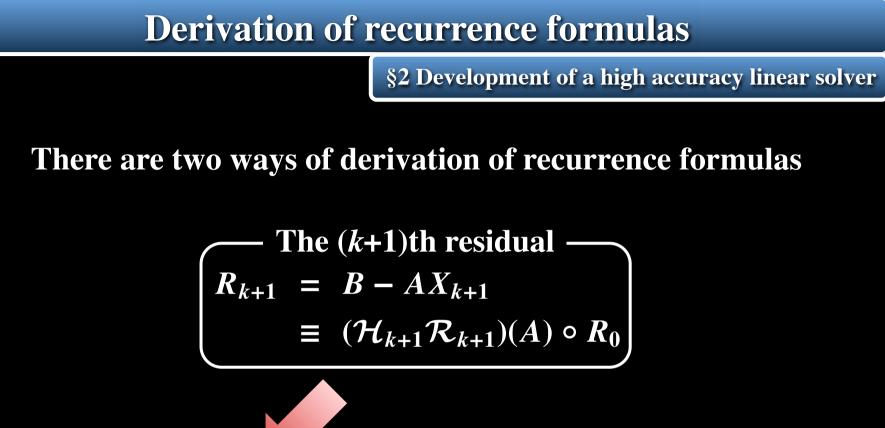
February 27, 2014 – 7

§2 Development of a high accuracy linear solver



Japan-Korea HPC Winter School

February 27, 2014 – 9 –



Expand from \mathcal{H}_{k+1}

Block BiCGSTAB

Japan-Korea HPC Winter School

February 27, 2014 – 10 –

Algorithm of the Block BiCGSTAB method

$$X_{0} \in \mathbb{C}^{n \times L} \text{ is an initial guess,}$$
Compute $R_{0} = B - AX_{0}$,
Set $P_{0} = R_{0}$,
Choose $\tilde{R}_{0} \in \mathbb{C}^{n \times L}$,
For $k = 0, 1, \dots$, until $||R_{k}||_{F} \leq \varepsilon ||B||_{F}$ does
Solve $(\tilde{R}_{0}^{H}AP_{k})\alpha_{k} = \tilde{R}_{0}^{H}R_{k}$ for α_{k} ,
 $T_{k} = R_{k} - AP_{k}\alpha_{k}$,
 $\zeta_{k} = \frac{\text{Tr}[(AT_{k})^{H}T_{k}]}{\text{Tr}[(AT_{k})^{H}AT_{k}]}$,
 $X_{k+1} = X_{k} + P_{k}\alpha_{k} + \zeta_{k}T_{k}$,
 $R_{k+1} = T_{k} - \zeta_{k}AT_{k}$,
Solve $(\tilde{R}_{0}^{H}V_{k})\beta_{k} = -\tilde{R}_{0}^{H}Z_{k}$ for β_{k} ,
 $P_{k+1} = R_{k+1} + (P_{k} - \zeta_{k}V_{k})\beta_{k}$,
End

Japan-Korea HPC Winter School

February 27, 2014 - 11 -

Relationship between the true residual and the recursive residual

§2 Development of a high accuracy linear solver

• Theoretically, the true residual $B - AX_k$ is equal to the recursive residual R_k .

$$B - AX_k = R_k$$

- If the recursive residual R_k becomes zero matrix, then the true residual $B - AX_k$ also becomes zero matrix.
- Hence, X_k is the exact solution.

However, the equation $B - AX_k = R_k$ is not satisfied in the numerical computation.

Japan-Korea HPC Winter School

February 27, 2014 - 12 -

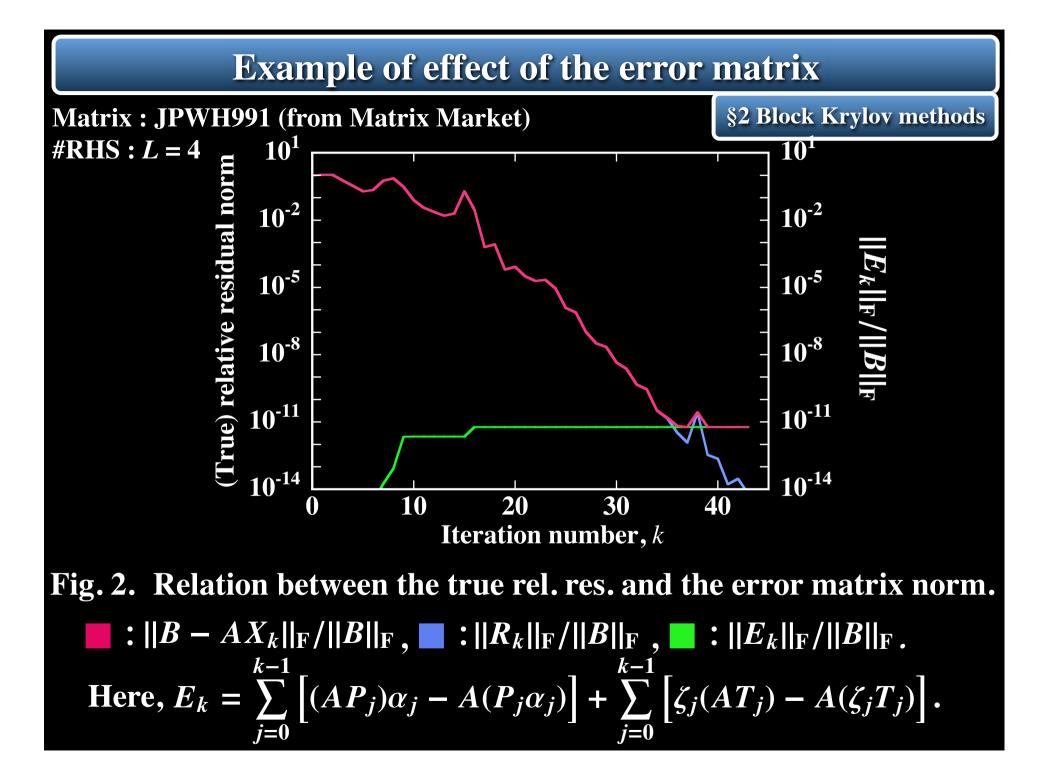
The error matrix in Block BiCGSTAB

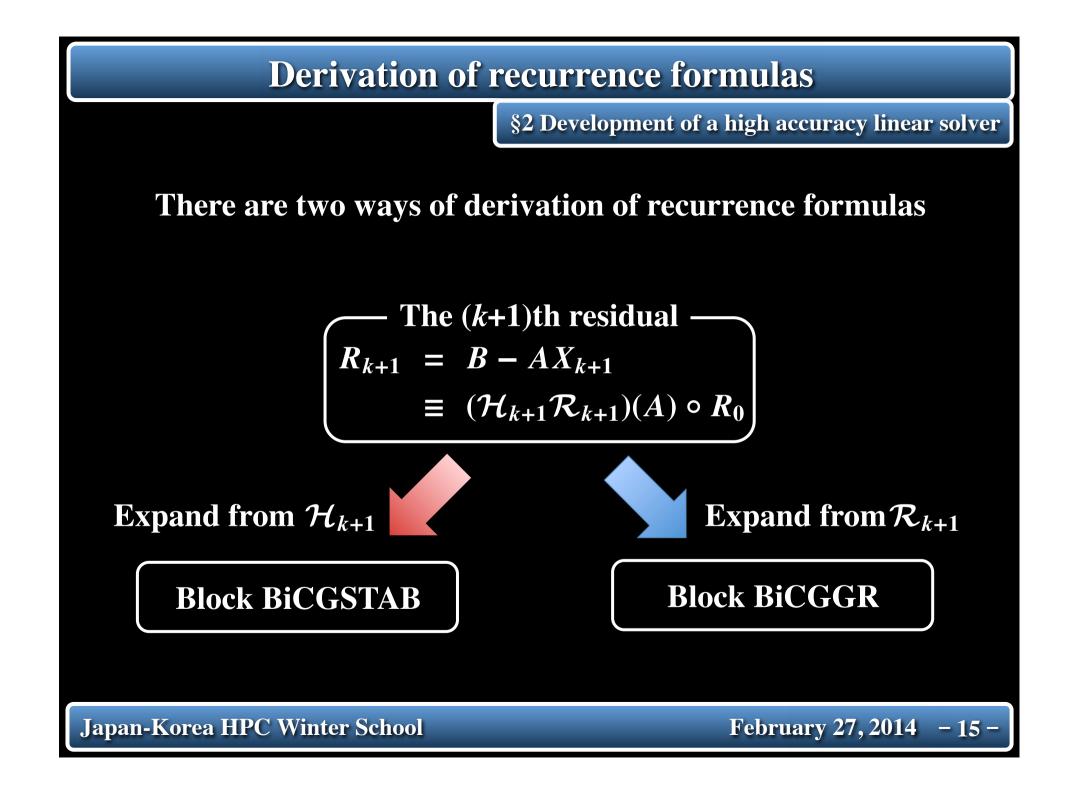
§2 Development of a high accuracy linear solver

Recursions of
$$X_{k+1}$$
 and R_{k+1}
 $X_{k+1} = X_k + P_k \alpha_k + \zeta_k T_k$
 $R_{k+1} = R_k - AP_k \alpha_k - \zeta_k AT_k$
Here,
 $X_k, R_k, P_k, T_k \in \mathbb{C}^{n \times L}$,
 $\alpha_k \in \mathbb{C}^{L \times L}$, $\zeta_k \in \mathbb{C}$.
The relationship between the true res. and the recursive res.
 $B - AX_{k+1} = R_{k+1} + \sum_{j=0}^{k} [(AP_j)\alpha_j - A(P_j\alpha_j)] + \sum_{j=0}^{k} [\zeta_j(AT_j) - A(\zeta_jT_j)]$

Japan-Korea HPC Winter School

February 27, 2014 – 13 –





Algorithm of the Block BiCGGR method

 $X_0 \in \mathbb{C}^{n \times L}$ is an initial guess, Compute $R_0 = B - AX_0$, Set $P_0 = R_0$, Choose $\tilde{R}_0 \in \mathbb{C}^{n \times L}$, For $k = 0, 1, \ldots$, until $||R||_F \le \varepsilon ||B||_F$ do: Solve $(\tilde{R}_{0}^{H}AP_{k})\alpha_{k} = \tilde{R}_{0}^{H}R_{k}$ for α_{k} , $\zeta_k = \frac{\operatorname{tr}[(AR_k)^{\mathrm{H}}\check{R}_k]}{\operatorname{tr}[(AR_k)^{\mathrm{H}}AR_k]},$ $\overline{U_k} = (P_k - \overline{\zeta_k A P_k}) \alpha_k,$ $X_{k+1} = X_k + \zeta_k R_k + U_k,$ $R_{k+1} = R_k - \zeta_k A R_k - A U_k,$ Solve $(\tilde{R}_{0}^{\mathrm{H}}R_{k})\gamma_{k} = \tilde{R}_{0}^{\mathrm{H}}R_{k+1}/\zeta_{k}$ for γ_{k} , $P_{k+1} = R_{k+1} + U_k \gamma_k,$ $AP_{k+1} = AR_{k+1} + AU_k\gamma_k,$ **End For**

Japan-Korea HPC Winter School

February 27, 2014 – 16 –

The error matrix in Block BiCGGR

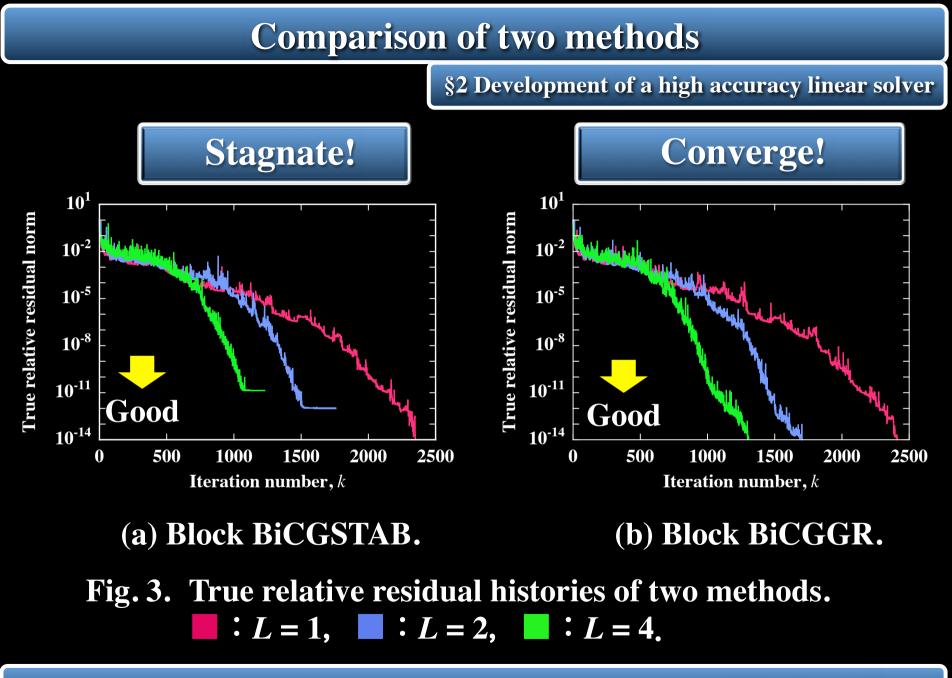
§2 Development of a high accuracy linear solver

Recursions of
$$X_{k+1}$$
 and R_{k+1}
 $X_{k+1} = X_k + \zeta_k R_k + U_k$
 $R_{k+1} = R_k - \zeta_k A R_k - A U_k$
Here,
 $X_k, R_k, U_k \in \mathbb{C}^{n \times L}, \ \zeta_k \in \mathbb{C}.$
Expansion of recursions
 $X_{k+1} = X_0 + \sum_{j=0}^k \zeta_j R_j + \sum_{j=0}^k U_j$
 $R_{k+1} = R_0 - \sum_{j=0}^k \zeta_j (A R_j) - \sum_{j=0}^k A U_j$

- The relation between the true res. and the recursive residual $B - AX_{k+1} = R_{k+1} + \sum_{j=0}^{k} \left[\zeta_j (AR_j) - A(\zeta_j R_j) \right]$

Japan-Korea HPC Winter School

February 27, 2014 – 17 –



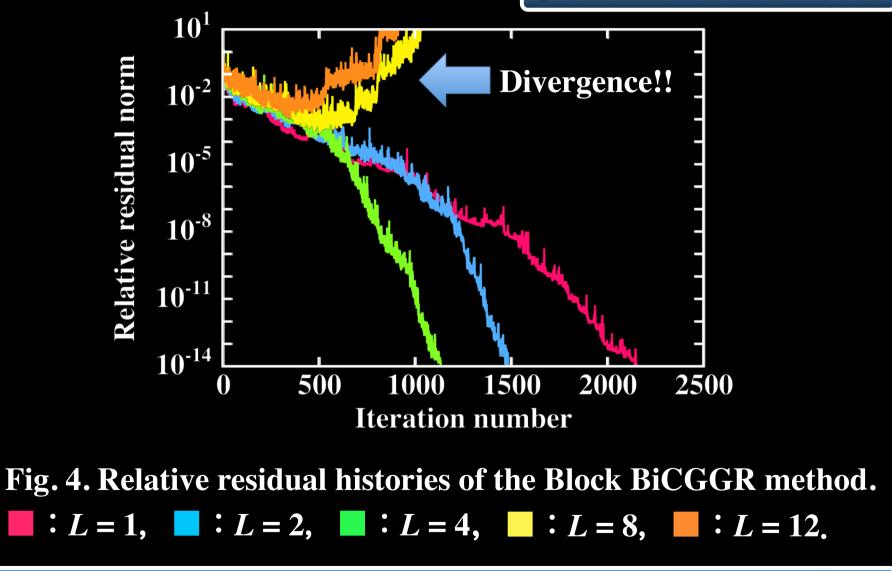
Japan-Korea HPC Winter School

February 27, 2014 – 18 –

§3 Stabilization of Block BiCGGR

Numerical instability when **#RHSs** is large

§3 Stabilization of Block BiCGGR



Japan-Korea HPC Winter School

Pros and cons of Block Krylov subspace methods

§3 Stabilization of Block BiCGGR

- Pros

- Linear system with *L* RHSs can be solved simultaneously.
- The number of iterations of Block Krylov methods is may smaller than that of Krylov subspace methods.

– Cons

- The accuracy of the obtained approximate solution may not good even if the stopping condition is satisfied!
- The relative residual norm may not converge due to the influence of numerical instability when the number of right-hand sides *L* is large.

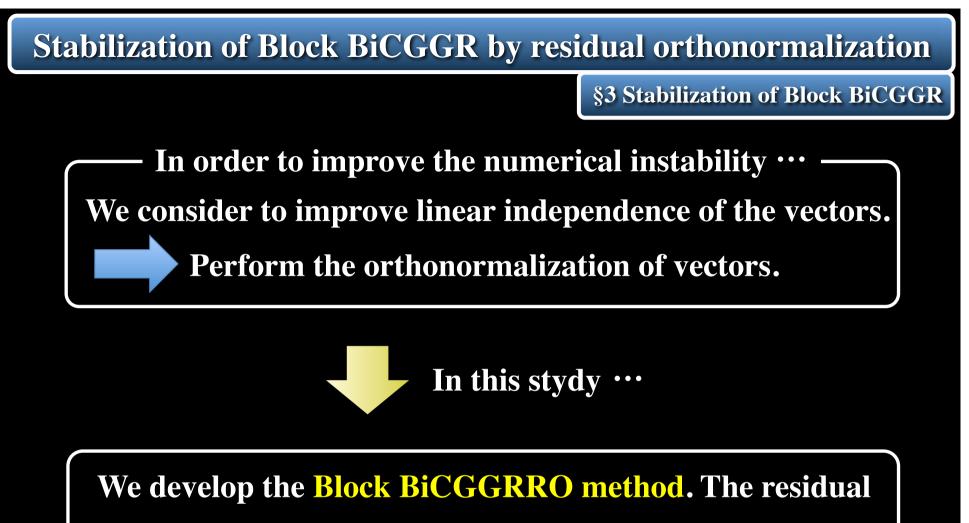
Cause of numerical instability of Block BiCGGR

 $X_0 \in \mathbb{C}^{n \times L}$ is an initial guess, Compute $R_0 = B - AX_0$, Set $P_0 = R_0$, Choose $\tilde{R}_0 \in \mathbb{C}^{n \times L}$, For $k = 0, 1, \ldots$, until $||R||_{\rm F} \leq \varepsilon ||B||_{\rm F}$ de Solve $(\tilde{R}_{0}^{H}AP_{k})\alpha_{k} = \tilde{R}_{0}^{H}R_{k}$ for α_{k} , $\zeta_k = \frac{\operatorname{tr}[(AR_k)^{\mathrm{H}} \tilde{R}_k]}{\operatorname{tr}[(AR_k)^{\mathrm{H}} AR_k]},$ $U_k = (P_k - \zeta_k A P_k) \alpha_k,$ $X_{k+1} = X_k + \zeta_k R_k + U_k,$ $R_{k+1} = R_k - \zeta_k A R_k - A U_k,$ Solve $(\tilde{R}_{0}^{H}R_{k})\gamma_{k} = \tilde{R}_{0}^{H}R_{k+1}/\zeta_{k}$ for γ_{k} , $P_{k+1} = R_{k+1} + U_k \gamma_k,$ $AP_{k+1} = AR_{k+1} + AU_k\gamma_k,$ **End For**

§3 Stabilization of Block BiCGGR

Small linear systems need to be solved to obtain $L \times L$ matrices α_k , γ_k .

Cause of numerical instability If the linear independence of R_k and P_k is lost, the small coefficient matrices become ill-condition.

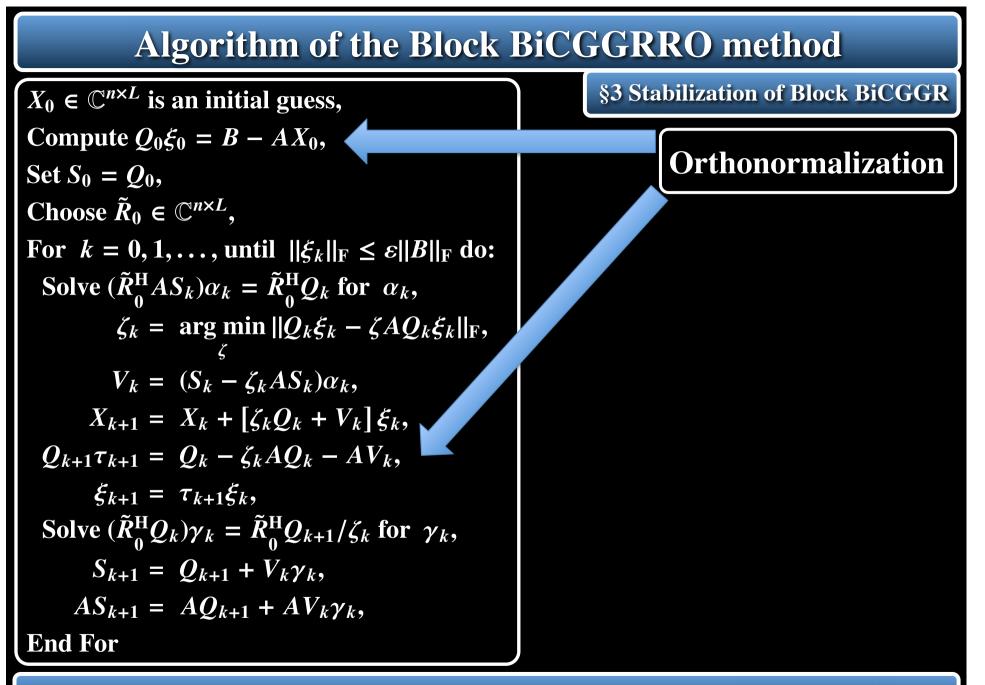


matrix R_k of this method is orthonormalized as follows.

$$R_k = Q_k \xi_k, \ Q_k^{\mathrm{H}} Q_k = I_L, \ \xi_k \in \mathbb{C}^{L \times L}$$

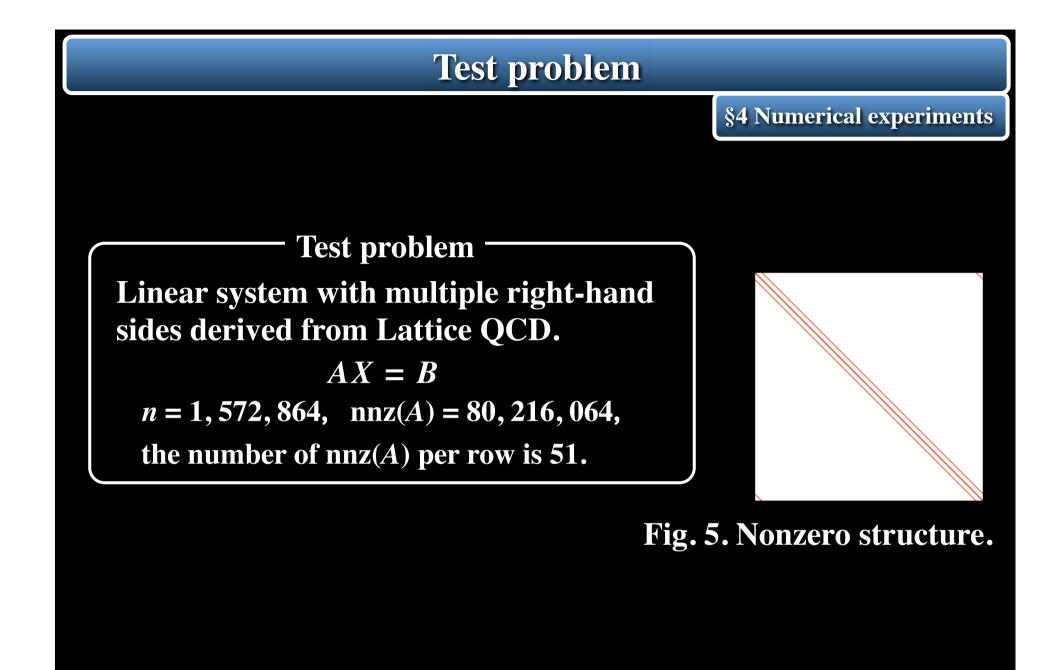
Japan-Korea HPC Winter School

February 27, 2014 – 23 –



Japan-Korea HPC Winter School

§4 Numerical Experiments



Experimental environment and conditions

§4 Numerical experiments

Table 1. Experimental environment.

CPU	AMD Opteron 6180 SE 2.5GHz × 4			
Memory	256.0GBytes			
Compiler	PGI Fortran ver. 11.5			
Compile option	-03 -tp=x64 -mp			

Table 2. Experimental conditions.

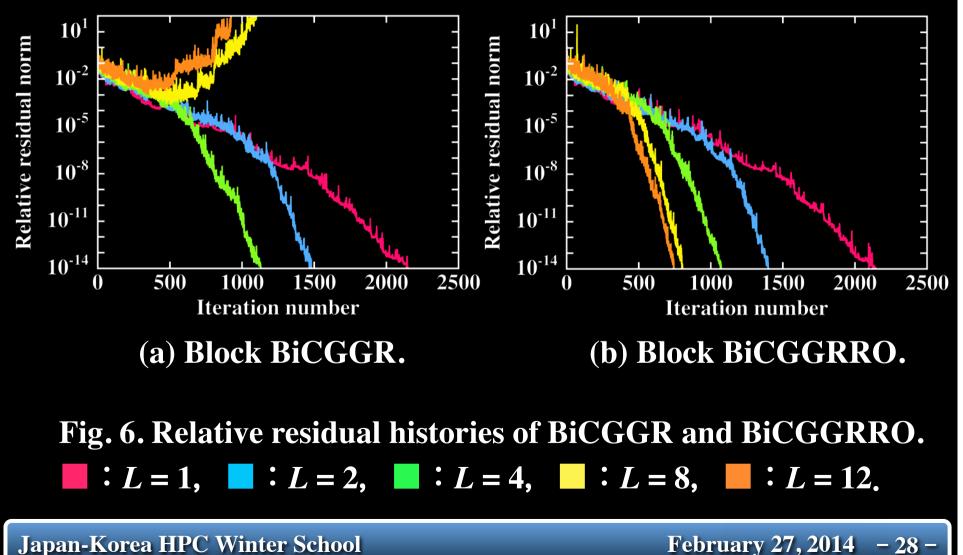
Initial solution X_0	$[0,0,\ldots,0]$		
Right hand side <i>B</i>	$[e_1, e_2, \ldots, e_L]$		
Shadow residual \tilde{R}_0	Random number		
Stopping criterion	$ R_k _{\rm F} / B _{\rm F} \le 1.0 \times 10^{-14}$		
	or $ R_k _{\rm F} / B _{\rm F} \ge 1.0 \times 10^6$		

Japan-Korea HPC Winter School

February 27, 2014 – 27 –

Comparison of Block BiCGGR and Block BiCGGRRO

§4 Numerical experiments



Japan-Korea HPC Winter School

Comparison of Block BiCGGR and Block BiCGGRRO

Table 3. Results of Block BiCGGR.

	L = 1	<i>L</i> = 2	L = 4	L = 8	<i>L</i> = 12
Iter.	2148	1481	1131		
TRR	9.9×10^{-15}	6.2×10^{-15}	9.3×10^{-15}	Divergence	Divergence
Time	107.7	106.6	152.5		

 Table 4. Results of Block BiCGGRRO.

	<i>L</i> = 1	<i>L</i> = 2	L = 4	L = 8	<i>L</i> = 12
Iter.	2139	1421	1006	894	800
TRR	8.2×10^{-15}	8.9×10^{-15}	1.1×10^{-14}	1.1×10^{-14}	1.2×10^{-14}
Time	111.3	113.1	161.5	341.7	521.3

Iter. : Number of iterations, TRR : True relative residual norm, Time : Computational time in seconds.

Block BiCGGRRO can also generate high accuracy solutions!

Japan-Korea HPC Winter School

February 27, 2014 - 29 -

Summary

1. We developed the Block BiCGGR method. This method can generate high accuracy solutions compared to the conventional method.

2. We improved the numerical instability of the Block BiCGGR method by performing the residual orthonormalization when the number of right-hand sides is large.