
Optimization 2: Communication
Optimization	

Osamu Tatebe	
tatebe@cs.tsukuba.ac.jp

Faculty of Engineering, Information and Systems /
Center for Computational Sciences,

University of Tsukuba	

Agenda	

  Basic communication performance	
– Point-to-point communication	

– Collective communication	

  Profiling	

  Communication optimization technique	
– Communication reduction
– Communication latency hiding	

– Communication blocking	

– Load balancing
– Collective communication	

Basic Performance	

  Performance for basic communications
should be understood to optimize
communication	

– Understand performance in various
communication patterns	

– Decide the block size of communication
blocking	

–  Improve the performance communication
library compared with the peak network
performance	

PC Cluster Platform [P1]	
  4 cluster nodes	

–  2.6GHz Dualcore Opteron x 2 sockets (4 cores)
–  4GB memory
–  Linux 2.6.18-1.2798.fc6
–  OpenMPI 1.1-7.fc6

  Connected by Gigabit Ethernet	
–  Theoretical peak in TCP is 949 Mbps (= 113.1 MB/sec)

Gigabit Ethernet Switch

Dualcore Opteron x 2
4GB memory

Gigabit
Ethernet

PC Cluster Platform [P2]	

  T2K Tsukuba 4 nodes	

– 2.3GHz Quadcore Opteron x 4 sockets (16
cores)

– 32GB memory
– MVAPICH2

  Connected by 4xDDR Infiniband (multirail)	
– Theoretical peak is 8 GB/sec (= 64 Gbps)

  No memory location optimization

Performance of point-to-point
communication	

MPI_Send

MPI_Recv

Process 1	 Process 2	

data	

PingPong Benchmark (1)	

MPI_Send
MPI_Recv

Process １	 Process ２	

Data size s [MB]

MPI_Send

MPI_Recv
MPI_Wtime

MPI_Wtime

Elapsed
time	
t [sec]

Network bandwidth	 2ts [MByte/sec]

PingPong Benchmark (2)	
for (s = 1; s <=P MAX_MSGSIZE; s <<= 1) {
 t = MPI_Wtime();
 for (i = 0; i < ITER; ++i)
 if (rank == 0) {
 MPI_Send(BUF, s, MPI_BYTE, 1, TAG1, COMM);
 MPI_Recv(BUF, s, MPI_BYTE, 1, TAG2, COMM, &status);
 } else if (rank == 1) {
 MPI_Recv(BUF, s, MPI_BYTE, 0, TAG1, COMM, &status);
 MPI_Send(BUF, s, MPI_BYTE, 0, TAG2, COMM);
 }
 t = (MPI_Wtime() – t) / 2 / ITER;
 if (rank == 0)
 printf(“%d %g %g\n”, s, t, s / t); // size, time, bandwidth		
}

PingPong

0

20

40

60

80

100

120

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	 size	 [B yte]

[M
B
/
se
c
]

[P１] PingPong Benchmark	

Protocol switch between
32 KB and 64 KB	

Half of peak
performance at 16 KB	

111.9 MB/sec

Protocol of point-to-point
communication	
  Eager protocol (1-way protocol)

–  for relatively small size of messages
–  A sender sends both the message header and the message

body (data, payload) at the same time
–  It can reduce the communication latency, but incurs copy

overhead at the receiver

  Rendezvous protocol (3-way protocol)
–  for larger size of message
–  A sender sends the message header, and waits for the

acknowledgement
–  The sender sends the message body
–  It can achieve good communication bandwidth by reducing the

copy overhead, but has longer latency than the eager protocol

10

  MPI selects one of several protocols according to the
message size

  It is visible if we carefully measure the performance with
various message size

  Most MPI allows for users to specify the threshold of the
message size for the protocol switch to optimize the
communication performance	

11

Protocol of point-to-point
communication (continued)	

[P1] Comparison with theoretical
curve	

100 µsec of latency, 113.1 MB/s of BW

200 µsec of latency
113.1 MB/s of BW

Theoretical curve	 ()BsLs +
latency	 bandwidth	L BBLNhalf =

[P1] PingPong Benchmark
Summary	
  Larger data size gets better performance	

  Cf. theoretical peak is 113.1 MB/sec
  More than half → 16 KB or larger	
  More than 90% of peak → 512 KB or larger	

  Performance follows the curve of 100µsec
latency in short message, and follows the
curve of 200µsec latency in long message
– Although latency of 1-byte PingPong is 563 µsec	

[P2] PingPong Benchmark	
PingPong

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 10,000 1,000,000 100,000,00
0

Data	 size	 [Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Performance is around	
3500 MB/sec	

Half of peak
performance at 128 KB	

Multirail is beneficial when data
size is larger than 128 KB	

[P2] Comparison with theoretical
curve	

PingPong

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 10,000 1,000,00
0

100,000,
000

Data	 size	 [Byte]

[M
B
/
se
c
]

IBx1

IBx2

IBx3

IBx4

遅延14.7μs

遅延16.3μs

遅延20.4μs

遅延24.1μs

latency	
latency	
latency	
latency	

[P2] PingPong Benchmark
Summary	
  Larger data size gets better performance	

  Performance follows the curve of around 20µs
latency in both short and long messages	

#IB	 1 2 3 4
BW[MB/s] 1366 2674 3256 3468

Latency[µsec] 14.7 16.3 20.4 24.1
Nhalf[KB] 20 42 68 86

Intel® MPI Benchmark
  Basic MPI Benchmark Kernel	
  MPI1

–  PingPong
–  PingPing
–  Sendrecv
–  Exchange*
–  Bcast
–  Allgather
–  Allgatherv
–  Alltoall*
–  Alltoallv*
–  Reduce
–  Reduce_scatter
–  Allreduce*
–  Barrier
–  Multiple version that executes

above in parallel	

  EXT
–  Window
–  Unidir_Put
–  Unidir_Get
–  Bidir_Get
–  Bidir_Put
–  Accumulate

  IO
–  S_{Write,Read}_{indv,expl}
–  P_{Write,Read}

_{indv,expl,shared,priv}
–  C_{Write,Read}

_{indv,expl,shared}

Single
Transfer
Parallel
Transfer

Collective

Exchange Pattern	
  Communication pattern to exchange
border elements	

*From Intel MPI Benchmarks Users Guide and Methodology Description	

[P1] Exchange (4 nodes)
[3 trials]

Exchange	 (4nodes)

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1000000 10000000

D ata	 size	 [B yte]

[M
B
/
se
c
]

Local peak at 16 KB	

performance drop
at 32 KB	

Unstable at 512KB
or larger	

[P1] Exchange (4 nodes)
Summary	

  Basically larger data size gets better
performance except around 32 KB	

  Cf. Theoretical peak is 2*113.1 = 226.2
MB/sec
  More than half → 16KB and 128 KB or
larger	
– Less than half at 32 KB and 64 KB	

  Unstable at 512 KB or larger	

[P2] Exchange (4 nodes)	
Exchange	 (4	 nodes)

0

1000

2000

3000

4000

5000

6000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	 size	 [Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Multirail is beneficial at
32 KB or larger	

4 rails do not show good
performance	

[P2] Exchange Summary	

  Larger data size gets better performance	

  Multirail is beneficial at 32 KB or larger	
  4 rails do not show good performance	

  Performance is stable
–  Infiniband does not drop packets	

Allreduce
  Do specified operation (sum, max, logical
and/or, …) among arrays of each process,
and store the result in all processes	

  Example of MPI_SUM	

Array of
process １	

Array of
process ２	

Array of
process 3	

Array of
process 4	

＋	 ＋	 ＋	 ＝	

∑ =
=+++

4

14321 i ixxxxx

All processes have
the result	

[P1] Allreduce (4 nodes) 
[data size / time]

Allreduce	 (4nodes)

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	 size	 [B yte]

[M
B
/
se
c
]

Performance
drop at 32 KB	

Good performance at 8KB
and 64KB or later	

[P1] Allreduce Summary	

  Basically larger data size gets better
performance except around 32 KB	

  Good performance is achieved at 8 KB
and 64 KB or larger

[P2] Allreduce (4 nodes) 
[data size / time]

Allreduce	 (4	 nodes)

0

100

200

300

400

500

600

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	 size	 [Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Performance down
at 1MB or larger	

Multirail is beneficial
at 64 KB or larger	

[P2] Allreduce Summary	

  Larger data size gets better performance
until 1 MB	

– Performance deteriorates when data size is
larger than 1 MB	

  Multirail is beneficial at 64 KB or larger	
  4 rails do not show good performance	

Alltoall

  Collective communication in matrix
transpose pattern	

Process １	

Process ２	

Process ３	

Process ４	

[P1] Alltoall [data size / time]

Alltoall	 (4nodes)

0

5

10

15

20

25

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	 size	 [B yte]

[M
B
/
se
c
]

Performance drop
at 16KB and 32KB	

[P1] Alltoallv [data size / time]

Alltoallv	 (4nodes)

0

5

10

15

20

25

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

D ata	 size	 [B yte]

[M
B
/
se
c
]

Performance down
at 16 KB or larger	

[P1] Alltoall(v) Summary	

  Alltoall basically performs better as data
size is larger except between 16 KB an 32
KB
– Performs good at 8 KB and 64 KB or larger
– Same behavior as allreduce

  Alltoallv shows quite bad performance at
16 KB or larger	
– Excessive memory copy?	

– Not enough optimized?	

[P2] Alltoall [data size / time]
Alltoall	 (4	 nodes)

0

100

200

300

400

500

600

700

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	 size	 [Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

Performance
drop at 16 KB	

[P2] Alltoallv [data size /
time]

Alltoallv	 (4	 nodes)

0

100

200

300

400

500

600

700

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Data	 size	 [Byte]

[M
B
/
se
c
] IBx1

IBx2

IBx3

IBx4

[P2] Alltoall(v) Summary	

  Both Alltoall and Alltoallv perform better as
data size is larger	
– Alltoall performance drops at 16KB	

  Multirail is beneficial at 32KB or larger	

Multirail solution	
  Multi-rail (or “binding”) solution theoretically improves the

performance in bandwidth, but the latency is not improved
  For large size of messages, it works in most of cases
  When the number of bound links increases, the efficiency typically

goes down
  Several use cases of multirail. If you have four links bound:

–  Use them as a single channel logically
–  Use them as two sets of 2-rail binding
–  Use them as four sets of single channel

  Most MPI libraries that support multirail provide the feature to
control “how many links are bound” by user

  There is no generic best usage, and it depends on the
behavior of application	

Profiling	

  Understand the behavior of programs	
–  Frequently called functions	
–  Time-consumed functions	
–  Call tree	
–  Memory usage of functions, …	

  Understand the most time-consumed code	
  Understand synchronization and load imbalance in

parallel programs	

Profiler is required not to change the behavior of
parallel program so much	

Communication profiling by
users	
  Users insert an instrumenting code at the point of interest by

themself
  Put “wall clock measuring” (ex. MPI_Wtime, gettimeofday()) before

and after to measure time of a certain block
–  for each MPI function
–  for some important blocks

  The accuracy of measuring “ticks” depends on the system

  It is easy, but there are more sophisticated tools	

double t1, t;

t1 = MPI_Wtime();
MPI_Allgather(....);
t = MPI_Wtime() – t1;

tlog – time log
  Light-weight profiling library by Prof. Sato at University of

Tsukuba	
–  16 B of memory space for each event	

  9 kinds of single events and 9 kinds of interval events	
–  It can be extended since event number field is 8 bit	

  Record the elapsed time in seconds from tlog_initialize	

–  Time difference among processes is measured in tlog_initialize	

–  Recorded time is “absolute” time in parallel processes relative to
tlog_initialize	

  Temporal URL for download
–  http://www.ccs.tsukuba.ac.jp/workshop/HPCseminar/2011/software/tlog-0.9.tar.gz

tlog – major API
void tlog_initialize(void)

 initializes the tlog environment. It should be called after
MPI_Init	

void tlog_log(int event)
 records a log of the specified event	

void tlog_finalize(void)
 outputs the logs to trace.log. It should be called before
MPI_Finalize()	

tlog_initialize();
…
tlog_log(TLOG_EVENT_1_IN);
/* EVENT 1 */
tlog_log(TLOG_EVENT_1_OUT);
…
tlog_finalize();

Example - cpi.c

  Test program that computes π	

MPI_Init(&argc, &argv);
tlog_initialize();
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
/* compute mypi (partial sum) */
tlog_log(TLOG_EVENT_2_IN);
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_2_OUT);
if (rank == 0) /* display the result */
tlog_log(TLOG_EVENT_1_IN);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
tlog_log(TLOG_EVENT_1_OUT);
tlog_finalize();
MPI_Finalize();

Example – compilation of cpi	
  How to link tlog library	

  How to install tlog library and tlogview

% mpicc -O -o cpi cpi.c -ltlog

% ./configure
% make
% sudo make install

Example to install in
/usr/local	

Example – output of cpi	
$ mpiexec -hostfile hosts -n 4 cpi
adjust i=1,t1=0.011781,t2=0.011886,t0=0.011769,diff=6.7e-05
adjust i=2,t1=0.012911,t2=0.013015,t0=0.012877,diff=8.8e-05
adjust i=3,t1=0.014441,t2=0.014548,t0=0.014392,diff=0.000115
adjust i=1,t1=0.01623,t2=0.016335,t0=0.016285,diff=-2e-06
adjust i=2,t1=0.017314,t2=0.017418,t0=0.017367,diff=-2e-06
adjust i=3,t1=0.018401,t2=0.018504,t0=0.018454,diff=2.5e-06
tlog on ...
Process 0 on exp0.omni.hpcc.jp
pi is approximately 3.1416009869231249, Error is 0.0000083333333318
wall clock time = 0.000213
tlog finalizing ...
Process 3 on exp3.omni.hpcc.jp
Process 1 on exp1.omni.hpcc.jp
Process 2 on exp2.omni.hpcc.jp
tlog dump done ...

measurement of
time difference
among nodes
(output in debug
mode)

output in debug
mode	

output in debug
mode	

Output of
program	

Profiling result of cpi (1)	

  tlogview – visualization tool for tlog output	

  Profiling example when using 4 processes	

% tlogview trace.log

Elapsed time from tlog_initialize in seconds
(adjusted using the time difference among nodes)	

MPI_Bcast

MPI_Reduce

Profiling result of cpi (2)	
  Profile example when using 16 processes	

MPI_Bcast MPI_Reduce

Communication optimization	

  Communication reduction*	

  Load balancing*
  Communication blocking

– Basically larger data size is better
performance

  Communication latency hiding for short
message communication
– Overlapping computation and communication
– Pipeline execution

Communication blocking	

  Data size is a major factor for
communication performance	

  Communication blocking enlarges the data
size by aggregating the communication
data	

– Block distribution of data	

– Aggregation of multiple iterations	

Example of communication blocking
– Jacobi method	
  Solving a sparse matrix that arises when discretizing 2D

Poisson equation in 5 point stencil	

jacobi() {
 while (!converge) {
 for(i = 1; i < N - 1; ++i)
 for(j = 1; j < N - 1; ++j)
 b[i][j] = .25 *
 (a[i - 1][j] + a[i][j - 1]
 + a[i][j + 1] + a[i + 1][j]);
 /* convergence test */
 /* copy b to a */
 }
}

a[i-1][j]

a[i+1][j]

a[i][j-1] a[i][j+1]

Data dependency	

*In fact, not to use Jacobi method but RB-SOR etc.	

Block distribution of data	

PE 2

PE 0 PE 1

PE 3

PE 0 PE 1 PE 2 PE 3

(A) (B)1D block distribution	 2D block distribution	

  Block distribution of data enlarges the
communication data size	

–  In case of 1D	

–  In case of 2D	 pn /
n

Communication of shadow
region (boundary region)	
  To update the

boundary , data of
is required

  To update the
boundary , data of
is required

1. Exchange 　　and 　　
2. Update all data in each

process

Internal region

Overlapping computation and
communication	

  To update internal
region, data of
is not required

1. Send data of
2. Update internal

region
3. Receive data of
4. Update boundary

region

Overlapping computation and
communication (2)	
  MPI_Isend(, …, &req[0])
  MPI_Irecv(, …, &req[1])
  Calculation in internal region
  MPI_Waitall(2, req, status)
  Calculation on boundary region	

Communication aggregation of
multiple iterations	
  Aggregation of 2 iterations of Jacobi
method	

  The first iteration
requires	

  Next iteration
requires	

  Transferring and
 　enables calcula-
tion of two iterations	
–  In 1D	

–  In 2D	 pn /2
n2

Hand-made collective
communication	
  Usually, you should use collective communication on

proprietary hardware system (such as MPP)
  On some cluster systems with open source MPI libraries,

it may provide better performance by performing a set of
point-to-point communication instead of collective
communication library

  It depends on the application behavior, system hardware
and library, so you need to examine it with practical data

53

Example: All-to-All (1) (repeating broadcast)	

  All nodes transfer the same size of message
to all other nodes with each other

  1-to-all broadcast can be performed with the
binary-tree algorithm, which requires

a: latency b: throughput s: message size P: # of processors

  If repeating 1-to-all broadcast P times, communication time is

54

T = P((a+ s / b)log2 P) = aP log2 P + (s / b)P log2 P

T = (a+ s / b)log2 P

55

Example: All-to-All (2) (ring algorithm)	
  Making a “ring” of nodes, and each node sends a message to the

neighbor while receiving a message from the other neighbor
⇒ “bucket relay” manner, and time is

⇒ it reduces the time to 1/log2P apprximately

  Reason: all processors always send/receive something at any
time

T = (P −1)(a+ s / b) = (P −1)a+ (P −1)(s / b) ≈ Pa+P(s / b)

  More sophisticated algorithm for all-to-all
–  Let consider the node address in binary number
–  At first, all nodes exchange a message with nodes where the node

address differs in the lowest significant bit (right most bit) changing 0⇔1
 ex) 000⇔001 010⇔011 100⇔101 110⇔111

–  After that, all nodes exchange a message currently hold in the node
(including its own one and received so far) with nodes where the node
address differs in the 2nd lowest significant bit changing 0⇔1
 ex) 000⇔010 001⇔011 100⇔110 101⇔111

–  Repeat them for log2P times, finally all nodes have all messages from all
other nodes

–  Total communication time is

–  Here, the total data amount to send is the same with “bucket relay”

algorithm, but the number of message is reduced
⇒ larger average message size to enhance the sustained bandwidth	

56

T = (a+ 2i s / b) = a log2 P + (P −1)(s / bi=0

log2 P−1∑) ≈ a log2 P +P(s / b)

Example: All-to-All (3) (pairwise exchange
in butterfly algorithm)	

Pairwise exchange in butterfly
network for all-to-all	

57

000	 001	 010	 011	 100	 101	 110	 111	

  The amount of data
transfer in total is the
same as p-time
broadcast algorithm

  The number of
messages is reduced
⇒ average message
size is increased
⇒ more efficient

  However, message
transfer distance is
more far
⇒ not good for mesh/
torus network	

000	 001	 010	 011	 100	 101	 110	 111	000	 001	 010	 011	 100	 101	 110	 111	000	 001	 010	 011	 100	 101	 110	 111	

Collective communication library vs
hand-made methods	

  The best way for collective communication depends on
the algorithm and system configuration (network
topology, hardware, system size, buffer size, etc.), then it
is difficult to determine the best algorithm for all systems

  An MPI library is equipped with one fixed algorithm
(ordinarily), and it may not fit to the target system

  While you try the collective communication routines
provided by the system, you might find more efficient
algorithm with peer-to-peer communication with system
configuration aware ones
⇒ not guaranteed to work well in any case	

58

Summary	

  Basic communication performance	
– Point-to-point communication	

– Collective communication	

  profiling	

  Communication optimization	
– Communication reduction	

– Communication latency hiding	

– Communication blocking	

– Load balancing
– Collective communication	

