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Agenda	

  Basic communication performance	
– Point-to-point communication	

– Collective communication	

  Profiling	

  Communication optimization technique	
– Communication reduction 
– Communication latency hiding	

– Communication blocking	

– Load balancing 
– Collective communication	



Basic Performance	

  Performance for basic communications 
should be understood to optimize 
communication	

– Understand performance in various 
communication patterns	

– Decide the block size of communication 
blocking	

–  Improve the performance communication 
library compared with the peak network 
performance	



PC Cluster Platform [P1]	
  4 cluster nodes	

–  2.6GHz Dualcore Opteron x 2 sockets (4 cores) 
–  4GB memory 
–  Linux 2.6.18-1.2798.fc6 
–  OpenMPI 1.1-7.fc6 

  Connected by Gigabit Ethernet	
–  Theoretical peak in TCP is 949 Mbps (= 113.1 MB/sec) 

Gigabit Ethernet Switch 

Dualcore Opteron x 2 
4GB memory 

Gigabit 
Ethernet 



PC Cluster Platform [P2]	

  T2K Tsukuba 4 nodes	

– 2.3GHz Quadcore Opteron x 4 sockets (16 
cores) 

– 32GB memory 
– MVAPICH2 

  Connected by 4xDDR Infiniband (multirail)	
– Theoretical peak is 8 GB/sec (= 64 Gbps) 

  No memory location optimization 



Performance of point-to-point 
communication	

MPI_Send 

MPI_Recv 

Process  1	 Process  2	

data	



PingPong Benchmark (1)	

MPI_Send 
MPI_Recv 
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MPI_Send 
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MPI_Wtime 
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time	
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Network bandwidth	 2ts [MByte/sec] 



PingPong Benchmark (2)	
for (s = 1; s <=P MAX_MSGSIZE; s <<= 1) { 
    t = MPI_Wtime(); 
    for (i = 0; i < ITER; ++i) 
        if (rank == 0) { 
            MPI_Send(BUF, s, MPI_BYTE, 1, TAG1, COMM); 
            MPI_Recv(BUF, s, MPI_BYTE, 1, TAG2, COMM, &status); 
        } else if (rank == 1) { 
            MPI_Recv(BUF, s, MPI_BYTE, 0, TAG1, COMM, &status); 
            MPI_Send(BUF, s, MPI_BYTE, 0, TAG2, COMM); 
        } 
    t = (MPI_Wtime() – t) / 2 / ITER; 
    if (rank == 0) 
        printf(“%d %g %g\n”, s, t, s / t); // size, time, bandwidth		
} 



PingPong
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[P１] PingPong Benchmark	

Protocol switch between 
32 KB and 64 KB	

Half of peak 
performance at 16 KB	

111.9 MB/sec 



Protocol of point-to-point 
communication	
  Eager protocol (1-way protocol) 

–  for relatively small size of messages 
–  A sender sends both the message header and the message 

body (data, payload) at the same time 
–  It can reduce the communication latency, but incurs copy 

overhead at the receiver 

  Rendezvous protocol (3-way protocol) 
–  for larger size of message 
–  A sender sends the message header, and waits for the 

acknowledgement 
–  The sender sends the message body 
–  It can achieve good communication bandwidth by reducing the 

copy overhead, but has longer latency than the eager protocol 
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  MPI selects one of several protocols according to the 
message size 

  It is visible if we carefully measure the performance with 
various message size 

  Most MPI allows for users to specify the threshold of the 
message size for the protocol switch to optimize the 
communication performance	
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Protocol of point-to-point 
communication (continued)	



[P1] Comparison with theoretical 
curve	
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[P1] PingPong Benchmark 
Summary	
  Larger data size gets better performance	

  Cf. theoretical peak is 113.1 MB/sec 
  More than half → 16 KB or larger	
  More than 90% of peak → 512 KB or larger	

  Performance follows the curve of 100µsec 
latency in short message, and follows the 
curve of 200µsec latency in long message 
– Although latency of 1-byte PingPong is 563 µsec	



[P2] PingPong Benchmark	
PingPong
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[P2] Comparison with theoretical 
curve	
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[P2] PingPong Benchmark 
Summary	
  Larger data size gets better performance	

  Performance follows the curve of around 20µs 
latency in both short and long messages	

#IB	 1 2 3 4 
BW[MB/s] 1366 2674 3256 3468 

Latency[µsec] 14.7 16.3 20.4 24.1 
Nhalf[KB] 20 42 68 86 



Intel® MPI Benchmark 
  Basic MPI Benchmark Kernel	
  MPI1 

–  PingPong 
–  PingPing 
–  Sendrecv 
–  Exchange* 
–  Bcast 
–  Allgather 
–  Allgatherv 
–  Alltoall* 
–  Alltoallv* 
–  Reduce 
–  Reduce_scatter 
–  Allreduce* 
–  Barrier 
–  Multiple version that executes 

above in parallel	

  EXT 
–  Window 
–  Unidir_Put 
–  Unidir_Get 
–  Bidir_Get 
–  Bidir_Put 
–  Accumulate 

  IO 
–  S_{Write,Read}_{indv,expl} 
–  P_{Write,Read}

_{indv,expl,shared,priv} 
–  C_{Write,Read}

_{indv,expl,shared} 

Single 
Transfer 
Parallel 
Transfer 

Collective 



Exchange Pattern	
  Communication pattern to exchange 
border elements	

*From Intel MPI Benchmarks Users Guide and Methodology Description	
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[P1] Exchange (4 nodes) 
Summary	

  Basically larger data size gets better 
performance except around 32 KB	

  Cf. Theoretical peak is 2*113.1 = 226.2 
MB/sec 
  More than half → 16KB and 128 KB or 
larger	
– Less than half at 32 KB and 64 KB	

  Unstable at 512 KB or larger	



[P2] Exchange (4 nodes)	
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[P2] Exchange Summary	

  Larger data size gets better performance	

  Multirail is beneficial at 32 KB or larger	
  4 rails do not show good performance	

  Performance is stable 
–  Infiniband does not drop packets	



Allreduce 
  Do specified operation (sum, max, logical 
and/or, …) among arrays of each process, 
and store the result in all processes	

  Example of MPI_SUM	

Array of 
process １	

Array of 
process ２	

Array of 
process 3	

Array of 
process 4	

＋	 ＋	 ＋	 ＝	

∑ =
=+++

4

14321 i ixxxxx

All processes have 
the result	



[P1] Allreduce (4 nodes) 
[data size / time] 
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[P1] Allreduce Summary	

  Basically larger data size gets better 
performance except around 32 KB	

  Good performance is achieved at 8 KB 
and 64 KB or larger 



[P2] Allreduce (4 nodes) 
[data size / time] 
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[P2] Allreduce Summary	

  Larger data size gets better performance 
until 1 MB	

– Performance deteriorates when data size is 
larger than 1 MB	

  Multirail is beneficial at 64 KB or larger	
  4 rails do not show good performance	



Alltoall 

  Collective communication in matrix 
transpose pattern	

Process １	

Process ２	

Process ３	

Process ４	



[P1] Alltoall [data size / time] 
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[P1] Alltoallv [data size / time] 
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[P1] Alltoall(v) Summary	

  Alltoall basically performs better as data 
size is larger except between 16 KB an 32 
KB 
– Performs good at 8 KB and 64 KB or larger 
– Same behavior as allreduce 

  Alltoallv shows quite bad performance at 
16 KB  or larger	
– Excessive memory copy?	

– Not enough optimized?	



[P2] Alltoall [data size / time] 
Alltoall	 (4	 nodes)
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[P2] Alltoallv [data size / 
time] 

Alltoallv	 (4	 nodes)
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[P2] Alltoall(v) Summary	

  Both Alltoall and Alltoallv perform better as 
data size is larger	
– Alltoall performance drops at 16KB	

  Multirail is beneficial at 32KB or larger	



Multirail solution	
  Multi-rail (or “binding”) solution theoretically improves the 

performance in bandwidth, but the latency is not improved 
  For large size of messages, it works in most of cases 
  When the number of bound links increases, the efficiency typically 

goes down 
  Several use cases of multirail.  If you have four links bound: 

–  Use them as a single channel logically 
–  Use them as two sets of 2-rail binding 
–  Use them as four sets of single channel 

  Most MPI libraries that support multirail provide the feature to 
control “how many links are bound” by user 

  There is no generic best usage, and it depends on the 
behavior of application	



Profiling	

  Understand the behavior of programs	
–  Frequently called functions	
–  Time-consumed functions	
–  Call tree	
–  Memory usage of functions, …	

  Understand the most time-consumed code	
  Understand synchronization and load imbalance in 

parallel programs	

Profiler is required not to change the behavior of 
parallel program so much	



Communication profiling by 
users	
  Users insert an instrumenting code at the point of interest by 

themself 
  Put “wall clock measuring” (ex. MPI_Wtime, gettimeofday()) before 

and after to measure time of a certain block 
–  for each MPI function 
–  for some important blocks 

  The accuracy of measuring “ticks” depends on the system 
 
 
 
 
 
 

  It is easy, but there are more sophisticated tools	

double t1, t;

t1 = MPI_Wtime();
MPI_Allgather(....);
t = MPI_Wtime() – t1;



tlog – time log 
  Light-weight profiling library by Prof. Sato at University of 

Tsukuba	
–  16 B of memory space for each event	

  9 kinds of single events and 9 kinds of interval events	
–  It can be extended since event number field is 8 bit	

  Record the elapsed time in seconds from tlog_initialize	

–  Time difference among processes is measured in tlog_initialize	

–  Recorded time is “absolute” time in parallel processes relative to 
tlog_initialize	

  Temporal URL for download 
–  http://www.ccs.tsukuba.ac.jp/workshop/HPCseminar/2011/software/tlog-0.9.tar.gz 



tlog – major API 
void tlog_initialize(void) 

 initializes the tlog environment.  It should be called after 
MPI_Init	

void tlog_log(int event) 
 records a log of the specified event	

void tlog_finalize(void) 
 outputs the logs to trace.log.  It should be called before 
MPI_Finalize()	

tlog_initialize(); 
… 
tlog_log(TLOG_EVENT_1_IN); 
/* EVENT 1 */ 
tlog_log(TLOG_EVENT_1_OUT); 
… 
tlog_finalize(); 



Example - cpi.c 

  Test program that computes π	

MPI_Init(&argc, &argv); 
tlog_initialize(); 
tlog_log(TLOG_EVENT_1_IN); 
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_1_OUT); 
/* compute mypi (partial sum) */ 
tlog_log(TLOG_EVENT_2_IN); 
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_2_OUT); 
if (rank == 0) /* display the result */ 
tlog_log(TLOG_EVENT_1_IN); 
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
tlog_log(TLOG_EVENT_1_OUT); 
tlog_finalize(); 
MPI_Finalize(); 



Example – compilation of cpi	
  How to link tlog library	

  How to install tlog library and tlogview 

% mpicc -O -o cpi cpi.c -ltlog 

% ./configure 
% make 
% sudo make install 

Example to install in 
/usr/local	



Example – output of cpi	
$ mpiexec -hostfile hosts -n 4 cpi 
adjust i=1,t1=0.011781,t2=0.011886,t0=0.011769,diff=6.7e-05 
adjust i=2,t1=0.012911,t2=0.013015,t0=0.012877,diff=8.8e-05 
adjust i=3,t1=0.014441,t2=0.014548,t0=0.014392,diff=0.000115 
adjust i=1,t1=0.01623,t2=0.016335,t0=0.016285,diff=-2e-06 
adjust i=2,t1=0.017314,t2=0.017418,t0=0.017367,diff=-2e-06 
adjust i=3,t1=0.018401,t2=0.018504,t0=0.018454,diff=2.5e-06 
tlog on ... 
Process 0 on exp0.omni.hpcc.jp 
pi is approximately 3.1416009869231249, Error is 0.0000083333333318 
wall clock time = 0.000213 
tlog finalizing ... 
Process 3 on exp3.omni.hpcc.jp 
Process 1 on exp1.omni.hpcc.jp 
Process 2 on exp2.omni.hpcc.jp 
tlog dump done ... 
 

measurement of 
time difference 
among nodes 
(output in debug 
mode) 

output in debug 
mode	

output in debug 
mode	

Output of 
program	



Profiling result of cpi (1)	

  tlogview – visualization tool for tlog output	

  Profiling example when using 4 processes	

% tlogview trace.log 

Elapsed time from tlog_initialize in seconds 
(adjusted using the time difference among nodes)	

MPI_Bcast 

MPI_Reduce 



Profiling result of cpi (2)	
  Profile example when using 16 processes	

MPI_Bcast MPI_Reduce 



Communication optimization	

  Communication reduction*	

  Load balancing* 
  Communication blocking 

– Basically larger data size is better 
performance 

  Communication latency hiding for short 
message communication 
– Overlapping computation and communication 
– Pipeline execution 



Communication blocking	

  Data size is a major factor for 
communication performance	

  Communication blocking enlarges the data 
size by aggregating the communication 
data	

– Block distribution of data	

– Aggregation of multiple iterations	



Example of communication blocking 
– Jacobi method	
  Solving a sparse matrix that arises when discretizing 2D 

Poisson equation in 5 point stencil	

jacobi() { 
  while (!converge) { 
    for(i = 1; i < N - 1; ++i) 
      for(j = 1; j < N - 1; ++j) 
        b[i][j] = .25 * 
              (a[i - 1][j] + a[i][j - 1] 
               + a[i][j + 1] + a[i + 1][j]); 
    /* convergence test */ 
    /* copy b to a */ 
  } 
} 

a[i-1][j]

a[i+1][j]

a[i][j-1] a[i][j+1]

Data dependency	

*In fact, not to use Jacobi method but RB-SOR etc.	



Block distribution of data	

PE 2

PE 0 PE 1

PE 3

PE 0 PE 1 PE 2 PE 3

(A) (B)1D block distribution	 2D block distribution	

  Block distribution of data enlarges the 
communication data size	

–  In case of 1D	

–  In case of 2D	 pn /
n



Communication of shadow 
region (boundary region)	
  To update the 

boundary     , data of   
is required 

  To update the 
boundary     , data of  
is required 

1. Exchange 　　and 　　 
2. Update all data in each 

process 



Internal region 

Overlapping computation and 
communication	

  To update internal 
region, data of      
is not required 

1. Send data of 
2. Update internal 

region 
3. Receive data of 
4. Update boundary 

region 



Overlapping computation and 
communication (2)	
  MPI_Isend(      , …, &req[0]) 
  MPI_Irecv(      , …, &req[1]) 
  Calculation in internal region 
  MPI_Waitall(2, req, status) 
  Calculation on boundary region	



Communication aggregation of 
multiple iterations	
  Aggregation of 2 iterations of Jacobi 
method	

  The first iteration 
requires	

  Next iteration 
requires	

  Transferring     and 
  　enables calcula- 
tion of two iterations	
–  In 1D	

–  In 2D	 pn /2
n2



Hand-made collective 
communication	
  Usually, you should use collective communication on 

proprietary hardware system (such as MPP) 
  On some cluster systems with open source MPI libraries, 

it may provide better performance by performing a set of 
point-to-point communication instead of collective 
communication library 

  It depends on the application behavior, system hardware 
and library, so you need to examine it with practical data 
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Example: All-to-All (1) (repeating broadcast)	

  All nodes transfer the same size of message 
to all other nodes with each other 

  1-to-all broadcast can be performed with the 
binary-tree algorithm, which requires 
 
 
a: latency  b: throughput  s: message size  P: # of processors 
 

  If repeating 1-to-all broadcast P times, communication time is 
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T = P((a+ s / b)log2 P) = aP log2 P + (s / b)P log2 P

T = (a+ s / b)log2 P
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Example: All-to-All (2) (ring algorithm)	
  Making a “ring” of nodes, and each node sends a message to the 

neighbor while receiving a message from the other neighbor 
⇒ “bucket relay” manner, and time is 
 
 
⇒ it reduces the time to 1/log2P apprximately 

  Reason: all processors always send/receive something at any 
time 

 

T = (P −1)(a+ s / b) = (P −1)a+ (P −1)(s / b) ≈ Pa+P(s / b)



  More sophisticated algorithm for all-to-all 
–  Let consider the node address in binary number 
–  At first, all nodes exchange a message with nodes where the node 

address differs in the lowest significant bit (right most bit) changing 0⇔1 
    ex)  000⇔001   010⇔011  100⇔101   110⇔111 

–  After that, all nodes exchange a message currently hold in the node 
(including its own one and received so far) with nodes where the node 
address differs in the 2nd lowest significant bit changing 0⇔1 
    ex) 000⇔010   001⇔011   100⇔110   101⇔111 

–  Repeat them for log2P times, finally all nodes have all messages from all 
other nodes 

–  Total communication time is 
 
–  Here, the total data amount to send is the same with “bucket relay” 

algorithm, but the number of message is reduced 
⇒ larger average message size to enhance the sustained bandwidth	
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T = (a+ 2i s / b) = a log2 P + (P −1)(s / bi=0

log2 P−1∑ ) ≈ a log2 P +P(s / b)

Example: All-to-All (3) (pairwise exchange 
in butterfly algorithm)	



Pairwise exchange in butterfly 
network for all-to-all	
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000	 001	 010	 011	 100	 101	 110	 111	

  The amount of data 
transfer in total is the 
same as p-time 
broadcast algorithm 

  The number of 
messages is reduced 
⇒ average message 
size is increased 
⇒ more efficient 

  However, message 
transfer distance is 
more far 
⇒ not good for mesh/
torus network	

000	 001	 010	 011	 100	 101	 110	 111	000	 001	 010	 011	 100	 101	 110	 111	000	 001	 010	 011	 100	 101	 110	 111	



Collective communication library vs 
hand-made methods	

  The best way for collective communication depends on 
the algorithm and system configuration (network 
topology, hardware, system size, buffer size, etc.), then it 
is difficult to determine the best algorithm for all systems 

  An MPI library is equipped with one fixed algorithm 
(ordinarily), and it may not fit to the target system 

  While you try the collective communication routines 
provided by the system, you might find more efficient 
algorithm with peer-to-peer communication with system 
configuration aware ones 
⇒ not guaranteed to work well in any case	
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Summary	

  Basic communication performance	
– Point-to-point communication	

– Collective communication	

  profiling	

  Communication optimization	
– Communication reduction	

– Communication latency hiding	

– Communication blocking	

– Load balancing 
– Collective communication	


