
2014/2/24 1

Japan-Korea HPC Winter School 
Optimization 1:

 Computation Optimization	

Daisuke Takahashi
daisuke@cs.tsukuba.ac.jp

Center for Computational Sciences
University of Tsukuba	

2014/2/24 2

Contents of Lecture	

  What is performance tuning?	

  Program optimization methods	

– Register blocking	

– Cache blocking	

– Use of streaming SIMD instructions	

  Performance evaluation	

– Examples of benchmark programs	

2014/2/24 3

Performance Tuning	

  Everyone recognizes the importance of
performance in application programs.
  Performance tuning, however, tends to get put off

during the software development cycle, and it is
never considered in some cases.
  Factors that lead to this type of situation include

the following:
–  Recognition that applications can be optimized with only

code generation tools and a compiler
–  Unrealistic expectation that the mere use of the latest

processor will result in optimal performance while the
application is running

2014/2/24 4

Significance of Performance
Tuning	

  In the case of calculations whose runtime lasts for
several months or longer, optimization may result
in a reduction of runtime on the order of a month.
  As in the case of numeric libraries, if a program is

used by many people, tuning will have sufficient
value.
  If tuning results in a 30% improvement in

performance, for example, the net result is the
same as using a machine having 30% higher
performance.

2014/2/24 5

Optimization	

  Optimization targets many things.
– Reduction of the amount of code
– Reduction of the amount of data
– Reduction of the amount of runtime

  Here, the act of overwriting a program to
reduce the runtime is called “optimization”.	

2014/2/24 6

Benefits of Optimization	

  Optimization reduces the runtime and has the following
benefits:
–  More effective use of the computer
–  Lower energy costs
–  More calculations can be performed within the same time

  In consideration of the time required to write and run a
program, the longer the runtime of a program, the greater
the benefit from optimization.
–  If optimization results in a 30% improvement in performance, for

example, the net result is the same as using a machine having
30% higher performance.

  Optimizing a program that will only be run once and that
has a short runtime would be rather meaningless.

2014/2/24 7

Prior to Optimizing	

  Is there a need to optimize?
  Is the algorithm in use optimal?
  There is no point in optimizing an inefficient

algorithm.
–  A bubble sort program, even if optimized, will not be as

fast as a quick sort program.
  The optimal algorithm depends largely on the

following:
–  Properties of the problem to be solved
–  Architecture, amount of memory, etc., of the computer

to be used

2014/2/24 8

Optimization Policy	

  If available, use a vendor-supplied high-speed library as

much as possible.
–  BLAS, LAPACK, etc.

  The optimization capability of recent compilers is extremely
high.

  Optimization that can be performed by the compiler must
not be performed on the user side.
–  Requires extra effort
–  Results in a program that is complicated and may contain bugs

  Overestimates the optimizing capability of compilers
–  Humans are dedicated to improving algorithms.

–  Unless otherwise unavoidable, do not use an assembler.

2014/2/24 9

First Step in Optimizing	

  First, determine the computing performance of one’s own

program.
  FLOPS (Floating Operations Per Second) is used as a

measure of computing performance.
–  Units indicating the number for floating-point operations that can be

performed per second
–  MFLOPS (10^6), GFLOPS (10^9), TFLOPS (10^12)

  The FLOPS value is computed from the total (or partial)
program runtime and the number of operations, and is
compared to the theoretical peak performance of the
processor.
–  In the case of an Intel Core 2, the FLOPS value is four times the

clock.
–  In the case of the latest Intel Core i7, the FLOPS value is eight

times the clock.

2014/2/24 10

Time Measurement	

  Targets for time measurement are as follows:

–  Elapsed time
–  CPU time

  If the program to be measured has a short
runtime, the timer accuracy may be insufficient.
–  Execute an external loop several times and measure.

  In this case, note that the loop may not operate
properly as a result of the compiler optimization.
–  Insert a dummy routine or make the measurement

target a subroutine and compile separately.

2014/2/24 11

Hot Spots	

  The part of a program that accounts for the
majority of the computation time is called a “hot
spot”.
  First, find out where hot spots exist.
  The profiler is a convenient tool.

–  With Linux, the gprof command can be used.

  As with “gcc –pg foo.c”, by attaching the “-pg”
compiler option, special code that writes the profile
information used by gprof will be generated.
–  By running a.out, and then specifying gprof a.out, hot

spots can be identified.

2014/2/24 12

gprof Output Example	

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 48.90 2.90 2.90 2 1.45 2.83 zfft1d0_
 32.38 4.82 1.92 49152 0.00 0.00 fft8b_
 14.17 5.66 0.84 16384 0.00 0.00 fft8a_
 4.55 5.93 0.27 1 0.27 5.93 MAIN__
 0.00 5.93 0.00 16384 0.00 0.00 fft235_
 0.00 5.93 0.00 4 0.00 0.00 factor_
 0.00 5.93 0.00 3 0.00 1.89 zfft1d_
 0.00 5.93 0.00 2 0.00 0.00 settbl_
 0.00 5.93 0.00 1 0.00 0.00 settbls_

2014/2/24 13

gprof Output Example	

  As can be seen from the gprof results:

–  There are three hot spots:
  zfft1d0_
  fft8b_
  fft8a_

  These 3 hot spots consume more than 95% of
the total runtime.
–  Optimization should be performed focusing on these

hot spots.
–  When writing the program, pay attention so that the

hot spots are concentrated.
–  If there are many hotspots, much effort will be

required to improve the code.
  Sometimes it is better to rewrite the code from scratch.

2014/2/24 14

Compile Options	

  Performance will vary significantly according to
the way in which compile options are specified.
  Use the compiler manual as a reference and try

various compile options.
–  “-fast”, “-O3”, “-O2”, etc.
–  With an Intel Compiler, “-xAVX” (for latest Core i7)

  Setting a high level of optimization does not
necessarily produce faster code.
–  The compiler may optimize excessively.
–  Note that the calculated results may be inconsistent in

some cases.

2014/2/24 15

Compiler Directives	

  Compiler directives communicate the intent of the
programmer to the compiler and support optimization.
–  Different from compile options, compiler directives allow

optimization to be controlled for individual loops.

  Examples of directives
–  When performing vectorization, inform the compiler that there is no

loop dependency.
–  Suppress vectorization.

  Often coded in C language as “#pragma”, in Fortran as “!dir
$” or “cpgi$l”, etc.
(Note that the coding may differ according to the compiler.)

2014/2/24 16

ZAXPY written in Fortran
 subroutine zaxpy(n,a,x,y)
 complex*16 a,x(*),y(*)
!dir$ vector aligned
 do i=1,n
 y(i)=y(i)+a*x(i)
 end do
 return
 end

2014/2/24 17

Performance of ZAXPY
（Xeon 2.8GHz, 1CPU, Intel Fortran)

0
500

1000
1500
2000
2500
3000

1 8 64 51
2 4K 32

K
25
6K

Vector Length

M
FL

O
PS

-‐‑‒O3 -‐‑‒xP

-‐‑‒O3

-‐‑‒O2

-‐‑‒O1

-‐‑‒O0

2014/2/24 18

Considerations When Writing
Programs	

  Preserve C or Fortran syntax precisely.
–  With some compilers, only warnings may be output, but

these often lead to bugs.
  Compiler-dependent extensions, with the exception

of unavoidable circumstances (in the case of a
directive, for example), should not be used.
–  Automatic array assignment in g77

  Case such as real*8 a(n), where a(n) is not a dummy argument
and n is a variable

–  Program portability deteriorates.
–  Cause of unexpected errors

  To the extent possible, avoid using functions and
features that are (thought to be) seldom used.
–  Compiler bugs may not have been removed.

2014/2/24 19

Loop Unrolling (1/2)	

  Loop unrolling expands a loop in order to do the

following:
–  Reduce loop overhead
–  Perform register blocking

  If expanded too much, register shortages or
instruction cache misses may occur, and so care
is needed.

double A[N], B[N], C;
for (i = 0; i < N; i++) {
 A[i] += B[i] * C;
}

double A[N], B[N], C;
for (i = 0; i < N; i += 4) {
 A[i] += B[i] * C;
 A[i+1] += B[i+1] * C;
 A[i+2] += B[i+2] * C;
 A[i+3] += B[i+3] * C;
}

2014/2/24 20

Loop Unrolling (2/2)	

double A[N][N], B[N][N],
 C[N][N], s;
for (j = 0; j < N; k++) {
 for (i = 0; i < N; j++) {
 s = 0.0;
 for (k = 0; k < N; k++) {
 s += A[i][k] * B[j][k];
 }
 C[j][i] = s;
 }
}

double A[N][N], B[N][N],
 C[N][N], s0, s1;

for (j = 0; j < N; k += 2)
 for (i = 0; i < N; i++) {
 s0 = 0.0; s1 = 0.0;
 for (k = 0; k < N; k++) {
 s0 += A[j][k] * B[j][k];
 s1 += A[j+1][k] * B[j][k];
 }
 C[j][i] = s0;
 C[j+1][i] = s1;
 }

Matrix multiplication	
 Optimized matrix multiplication	

2014/2/24 21

Loop Interchange	

  Loop interchange is a technique mainly for reducing the
adverse effects of large-stride memory accesses.

  In some cases, the compiler judges the necessity and
performs loop interchanges.	

double A[N][N], B[N][N], C;
for (j = 0; j < N; j++) {
 for (k = 0; k < N; k++) {
 A[k][j] += B[k][j] * C;
 }
}

Before loop interchange	

double A[N][N], B[N][N], C;
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[k][j] += B[k][j] * C;
 }
}

After loop interchange	

2014/2/24 22

Padding	

  Effective in cases where multiple arrays have been mapped

to the same cache location and thrashing occurs
–  Especially in the case of an array having a size that is a power of two

  It is recommended to change the defined sizes of two-
dimensional arrays.

  In some instances, this can be handled by specifying the
compile options.

double A[N][N], B[N][N];
for (k = 0; k< N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

Before padding	

double A[N][N+1], B[N][N+1];
for (k = 0; k < N; k++) {
 for (j = 0; j < N; j++) {
 A[j][k] = B[k][j];
 }
}

After padding	

2014/2/24 23

Blocking (1/2)	

  Effective method for optimizing memory accesses
  Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;
for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 A[i][j] += B[j][i] * C;
 }
}

double A[N][N], B[N][N], C;
for (i = 0; i < N; i += 4) {
 for (j = 0; j < N; j += 4) {
 for (ii = i; ii < i + 4; ii++) {
 for (jj = j; jj < j + 4; jj++) {
 A[ii][jj] += B[jj][i] * C;
 }
 }
 }
}

2014/2/24 24

Blocking (2/2)	

Memory access pattern
without blocking	

Memory access pattern
with blocking	

2014/2/24 25

Use of Streaming SIMD
Instructions	

  To process floating-point operations at faster
speeds, recent processors are often equipped
with what is called streaming SIMD instructions.
–  Intel’s SSE/SSE2/SSE3/SSE4/AVX instruction sets
–  AMD Athlon’s 3DNow! instruction set
–  Motorola PowerPC’s AltiVec instruction set

  With Intel’s recent Sandy Bridge, the use of
AVX instructions enables the floating-point
operation performance to be made 8 times as
large.

2014/2/24 26

How to Use the SIMD
Instruction Set	

  The SIMD instruction set may be used in the
following ways.

 (1) Vectorization by compiler
 (2) Using SIMD intrinsic functions
 (3) Using an inline assembler
 (4) Directly writing a “.s” file with an assembler

  In order from (1) to (4), the coding increases in
complexity, but there are advantages from the
perspective of performance.

2014/2/24 27

Example of calculating product-sum of
double-precision complex numbers

(a + b + c) with an SSE3 intrinsic function	

#include <pmmintrin.h> /* Header file for SSE3 instruction */

static __inline __m128d ZMULADD(__m128d a, __m128d b, __m128d c)
{
 __m128d br, bi; /* 128bit data type */

 br = _mm_movedup_pd(b); /* br = [b.r b.r] real part */
 br = _mm_mul_pd(br, c); /* br = [b.r*c.r b.r*c.i] */
 a = _mm_add_pd(a, br); /* a = [a.r+b.r*c.r a.i+b.r*c.i] */
 bi = _mm_unpackhi_pd(b, b); /* bi = [b.i b.i] imaginary part */
 c = _mm_shuffle_pd(c, c, 1); /* c = [c.i c.r] replace real part and

 imaginary part */
 bi = _mm_mul_pd(bi, c); /* bi = [-b.i*c.i b.i*c.r] */

 return _mm_addsub_pd(a, bi); /* [a.r+b.r*c.r-b.i*c.i a.i+b.r*c.i+b.i*c.r] */
}

2014/2/24 28

ZAXPY written in C language
typedef struct { double r, I; } doublecomplex;

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)
{
 int i;

 if (a.r == 0.0 && a.i == 0.0) return;

#pragma unroll(8)
#pragma vector aligned
 for (i = 0; i < n; i++) {
 y[i].r += a.r * x[i].r – a.i * x[i].i,
 y[i].i += a.r * x[i].i + a.i * x[i].r;
}

2014/2/24 29

ZAXPY written in SSE3 Intrinsic
Function

#include <pmmintrin.h>

typedef struct { double r, i; } doublecomplex;
__m128d ZMULADD(__m128d a, __m128d b, __m128d c);

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)
{
 int i;
 __m128d a0;

 if (a.r == 0.0 && a.i == 0.0) return;
 a0 = _mm_loadu_pd(&a);
#pragma unroll(8)
 for (i = 0; i < n; i++)
 _mm_store_pd(&y[i], ZMULADD(_mm_load_pd(&y[i]), a0, _mm_load_pd(&x[i])));
}

2014/2/24 30

Performance of ZAXPY
（Intel Xeon 3.4GHz, 1CPU)

0
500
1000
1500
2000
2500
3000

1 8 64 51
2 4K 32

K
25
6K

Vector Length

M
FL
O
PS

SSE3 (C
intrinsic)
SSE3 (F77
vector)
SSE3 (F77
scalar)
Intel MKL
7.2

2014/2/24 31

Objective of Performance
Evaluation (1/3)	

  Upon actually using a computer system, have you ever had
the following type of experience?
–  “I thought this would be a high-performance system, but when I tried

using it, the actual performance was not as high as I had expected."

  There are two main reasons for this.
–  Although touted as “high performance,” the computer system was well

suited for a certain type of calculations that differed from the
calculations that the user attempted to execute.

–  Actually, the computer system concealed its high performance, and
the problem lies with the user’s method of usage, which did not elicit
high performance.

2014/2/24 32

Objective of Performance
Evaluation (2/3)	

  There is only one type of computer throughout the world,
and unless technical advances are realized in the future,
there will not be much need for “performance evaluations”.
–  However, the reality is that there is a proliferation of many different

types of processors and computer systems throughout the world.
  The user must determine which computer system will be

able to calculate efficiently the types of problems that he or
she desires to solve.

  Also, when improving hardware and software to enhance
computer performance, in order to “know thyself”, the
developers of the computer system must perform a
“performance evaluation” and use the results to improve the
performance.

2014/2/24 33

Objective of Performance
Evaluation (3/3)	

  By performing a performance evaluation:
–  A computer system’s level of performance and the type of

problems for which it is best suited for solving can be
ascertained.

–  Also, the time required for calculations of extra-large
problems that are extremely time-consuming can be
ascertained in advance.

  In addition, the decision to perform a calculation
with a high cost-performance can be made by the
user in consideration of both the cost of using the
computer system and its performance.

2014/2/24 34

Indicator of Performance
Evaluation	

  MIPS (Million Instructions Per Second)
–  Expresses the number of millions of instructions that can be

executed per second by the CPU
–  MIPS is ultimately a measure of the number of instructions executed

and is not suitable for comparisons of performance among
computers having different architectures.

  FLOPS (Floating Operations Per Second)
–  Expresses the number of floating-point operations that can be

executed per second
–  MFLOPS, GFLOPS, TFLOPS

  SPEC (The Standard Performance Evaluation Corporation)
–  SPEC benchmark values include SPECint, which indicates the

integer processing performance, and SPECfp, which indicates the
floating-point processing performance.

2014/2/24 35

Examples of Benchmark
Programs	

  SPEC
  LINPACK
  NAS Parallel Benchmarks (NPB)
  HPC Challenge (HPCC) Benchmark

2014/2/24 36

Overview of Each Benchmark
(1/4)	

  SPEC (Standard Performance Evaluation
Corporation)
–  A non-profit organization funded by major vendors
–  Measurement results published at http://www.spec.org

  SPEC CPU2006: Comprehensive performance
evaluation of CPU, memory, and compiler
–  CINT2006 (SPECint): Evaluates integer processing

performance
–  CFP2006 (SPECfp): Evaluations floating-point

processing performance
  Additionally includes SPEC MPI2007, SPEC

OMP2001, etc.

2014/2/24 37

Overview of Each Benchmark
(2/4)	

  LINPACK
– Developed by Jack Dongarra of the University of

Tennessee.
– Benchmark test for evaluating floating-point

processing performance
– Uses Gaussian elimination method to estimate

the time required for solving simultaneous linear
equations

– Also used for the “TOP500 Supercomputer”
benchmark

2014/2/24 38

Overview of Each Benchmark
(3/4)	

  NAS Parallel Benchmarks
– The NAS Parallel Benchmarks (NPB) are a small

set of programs designed to help evaluate the
performance of parallel supercomputers

– The original eight benchmarks specified in NPB
1 mimic the computation and data movement in
CFD applications.

2014/2/24 39

NAS Parallel Benchmarks	

  Five kernels

–  IS: Integer Sort, random memory access
–  EP: Embarrassingly Parallel
–  CG: Conjugate Gradient, irregular memory access and

communication
–  MG: Multi-Grid on a sequence of meshes, long- and short-distance

communication, memory intensive
–  FT: discrete 3D fast Fourier Transform, all-to-all communication

  Three pseudo applications
–  BT: Block Tri-diagonal solver
–  SP: Scalar Penta-diagonal solver
–  LU: Lower-Upper Gauss-Seidel solver

2014/2/24 40

Overview of Each Benchmark
(4/4)	

  HPC Challenge (HPCC) Benchmark Suite
– HPC Challenge (HPCC) is a suite of tests that

examine the performance of HPC architectures
using kernels.

– The suite provides benchmarks that bound the
performance of many real applications as a
function of memory access characteristics, e.g.,
  Spatial locality
  Temporal locality

2014/2/24 41

HPC Challenge (HPCC)
Benchmark	

  The HPC Challenge benchmark consists at
this time of 7 performance tests:
– HPL (High Performance Linpack)
– DGEMM (matrix-matrix multiplication)
– STREAM (sustainable memory bandwidth)
– PTRANS (A=A+B^T, parallel matrix transpose)
– RandomAccess (integer updates to random

 memory locations)
– FFT (complex 1-D discrete Fourier transform)
– b_eff (MPI latency/bandwidth test)

2014/2/24 42

Summary	

  To reduce execution time, optimization is
important.
– However, a determination must be made as to

whether optimization is really necessary.
  The ability to perform optimization without
the memory bandwidth becoming rate-limited
is important for future processors.
  Performance evaluations are effective for
ascertaining the performance of a computer
prior to usage.

