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Contents of Lecture
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Performance Tuning @

« Everyone recognizes the importance of
performance in application programs.

« Performance tuning, however, tends to get put off
during the software development cycle, and it is
never considered in some cases.

* Factors that lead to this type of situation include

the following:

— Recognition that applications can be optimized with only
code generation tools and a compiler

— Unrealistic expectation that the mere use of the latest
processor will result in optimal performance while the

application is running
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Tuning

 |In the case of calculations whose runtime lasts for
several months or longer, optimization may result
in a reduction of runtime on the order of a month.

* As in the case of numeric libraries, if a program is

used by many people, tuning will have sufficient
value.

* If tuning results in a 30% improvement in
performance, for example, the net result is the
same as using a machine having 30% higher
performance.
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Optimization &4

* Optimization targets many things.
— Reduction of the amount of code
— Reduction of the amount of data
— Reduction of the amount of runtime

* Here, the act of overwriting a program to
reduce the runtime is called “optimization™.
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Benefits of Optimization (5

« Optimization reduces the runtime and has the following
benefits:
— More effective use of the computer
— Lower energy costs
— More calculations can be performed within the same time

* |n consideration of the time required to write and run a
program, the longer the runtime of a program, the greater
the benefit from optimization.

— If optimization results in a 30% improvement in performance, for
example, the net result is the same as using a machine having
30% higher performance.

* Optimizing a program that will only be run once and that
has a short runtime would be rather meaningless.
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Prior to Optimizing =

Is there a need to optimize?

Is the algorithm in use optimal?

There is no point in optimizing an inefficient

algorithm.

— A bubble sort program, even if optimized, will not be as
fast as a quick sort program.

The optimal algorithm depends largely on the

following:

— Properties of the problem to be solved

— Architecture, amount of memory, etc., of the computer

to be used
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Optimization Policy S

If available, use a vendor-supplied high-speed library as
much as possible.
— BLAS, LAPACK, etc.

The optimization capability of recent compilers is extremely
high.

Optimization that can be performed by the compiler must
not be performed on the user side.

— Requires extra effort

— Results in a program that is complicated and may contain bugs
Overestimates the optimizing capability of compilers

— Humans are dedicated to improving algorithms.

— Unless otherwise unavoidable, do not use an assembler.

2014/2/24 8



First Step in Optimizing (&5

* First, determine the computing performance of one’s own
program.

 FLOPS (Floating Operations Per Second) is used as a
measure of computing performance.

— Units indicating the number for floating-point operations that can be
performed per second

— MFLOPS (10%6), GFLOPS (109), TFLOPS (10*12)

 The FLOPS value is computed from the total (or partial)
program runtime and the number of operations, and is
compared to the theoretical peak performance of the
processor.

— In the case of an Intel Core 2, the FLOPS value is four times the
clock.

— In the case of the latest Intel Core i7, the FLOPS value is eight
times the clock.
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Time Measurement ™

= /

« Targets for time measurement are as follows:
— Elapsed time
— CPU time

* If the program to be measured has a short
runtime, the timer accuracy may be insufficient.
— Execute an external loop several times and measure.

* |n this case, note that the loop may not operate
properly as a result of the compiler optimization.

— Insert a dummy routine or make the measurement
target a subroutine and compile separately.
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Hot Spots <>

= /

The part of a program that accounts for the
majority of the computation time is called a “hot
spot”.

First, find out where hot spots exist.

The profiler is a convenient tool.
— With Linux, the gprof command can be used.

As with “gcc —pg foo.c”, by attaching the “-pg”
compiler option, special code that writes the profile
information used by gprof will be generated.

— By running a.out, and then specifying gprof a.out, hot
spots can be identified.
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gprof Output Example

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self
time seconds seconds calls s/call

48.90
32.38
14.17
4.55
0.00
0.00
0.00
0.00
0.00

2014/2/24

2.90
4.82
5.66
5.93
5.93
5.93
5.93
5.93
5.93

2.90
1.92
0.84
0.27
0.00
0.00
0.00
0.00
0.00

2
49152
16384

1
16384

4

3
2
1

self

1.45
0.00
0.00
0.27
0.00
0.00
0.00
0.00
0.00

total
s/call
2.83
0.00
0.00
5.93
0.00
0.00
1.89
0.00
0.00

JAPAN-KOREA HPC WINTER SCHOOL

name
zfft1d0 _
fft8b
fft8a__
MAIN_
fft235
factor _
zfft1d_
settbl
settbls

12



JAPAN-KOREA HPC WINTER SCHOOL

gprof Output Example S5

* As can be seen from the gprof results:

— There are three hot spots:
. Zfft1d0_
. fft8b
. fft8a

* These 3 hot spots consume more than 95% of
the total runtime.

— Optimization should be performed focusing on these
hot spots.

— When writing the program, pay attention so that the
hot spots are concentrated.

— If there are many hotspots, much effort will be
required to improve the code.
« Sometimes it is better to rewrite the code from scratch.
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Compile Options -

» Performance will vary significantly according to
the way in which compile options are specified.

« Use the compiler manual as a reference and try
various compile options.
— “-fast”, “-03", “-02", etc.
— With an Intel Compiler, “-xAVX" (for latest Core i7)

« Setting a high level of optimization does not
necessarily produce faster code.
— The compiler may optimize excessively.

— Note that the calculated results may be inconsistent in

SOme cases.
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Compiler Directives S

Compiler directives communicate the intent of the
programmer to the compiler and support optimization.

— Different from compile options, compiler directives allow
optimization to be controlled for individual loops.

Examples of directives

— When performing vectorization, inform the compiler that there is no
loop dependency.

— Suppress vectorization.

Often coded in C language as “#pragma’, in Fortran as “Idir
$” or “cpgi$l”, etc.

(Note that the coding may differ according to the compiler.)
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ZAXPY written in Fortran (@}

subroutine zaxpy(n,a,X,y)

complex*16 a,x(*),y(*)
Idir$ vector aligned

do i=1,n

y(i)=y(i)+a™x(i)

end do

return

end
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Perfommance of ZAXPY

S
Keon 2.8GHz, 1CPU, Intel Fortran ) \&=Z
25m *_ — '03 -xP
g 2000 A -03
i 1500 7Z _%—‘\ -02
2 1000 [/ T .|| -o1
500 -00
o ] 1 | I | | I | L1 | I | | I | 1 ]

y % @‘90 &t.n)’ﬁ.’ﬁi.

Vector Length
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Considerations When Writing

Programs

* Preserve C or Fortran syntax precisely.
— With some compilers, only warnings may be output, but
these often lead to bugs.
« Compiler-dependent extensions, with the exception
of unavoidable circumstances (in the case of a
directive, for example), should not be used.

— Automatic array assignment in g/7

« Case such as real*8 a(n), where a(n) is not a dummy argument
and n is a variable

— Program portability deteriorates.
— Cause of unexpected errors

« To the extent possible, avoid using functions and
features that are (thought to be) seldom used.

— Compiler bugs may not have been removed.
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Loop Unrolling (1/2) @
* Loop unrolling expands a loop in order to do t

following:
— Reduce loop overhead
— Perform register blocking

JAPAN-KOREA HPC WINTER SCHOOL

* If expanded too much, register shortages or
instruction cache misses may occur, and so care

IS needed. double A[N], B[N], C;
for (i=0;i<N;i+=4){
double A[N], B[N], C; Al += B[I] C:
for (i =0;i < N;ji++) { j> Ali+1] += B[i+1] * C:
Alll +=BlI * C; A:i+2: += B[i+2] * C;
J A[i+3] += B[i+3] * C:

}

2014/2/24
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double A[N][N], B[N][N@

double A[N][N], B[N][N], C[N][N], s0, s1;

C[N][N], s; for(j=0;j<N; k+=2)

for (j =0; ) <N; k++) { for (i=0;i<N;i++){

for(i=0;i<N;j++){ s0 =0.0; s1=0.0;
s =0.0; for (k =0; k< N; k++) {

for (k = 0; k < N; k++) 1:> sO += A[j][k] * B[j][K];
s += Ali][k] * B[][K]; s1 += A[j+1][k] * B[j][k];

} }
Cllli] = s; ClIlif = s0;
} Ch+1](i] = s7;
} Matrix multiplication Optimized matrix multiplication
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Loop Interchange =

= /

» Loop interchange is a technique mainly for reducing the
adverse effects of large-stride memory accesses.

* |In some cases, the compiler judges the necessity and
performs loop interchanges.

double A[N][N], B[N][N], C: double A[N][N], B[N][N], C:
for(j=0;]<N;j++){ for (k =0; k <N; k++) {
for (k= 0; k < N; k++){ [2) for (j=0;]<N;j++){
ALK][j] += BIK][] * C; ALK][j] += BIK][j] * C;
! !
! !

Before loop interchange  After loop interchange

2014/2/24 21



JAPAN-KOREA HPC WINTER SCHOOL

Padding @s"
« Effective in cases where multiple arrays have been m

to the same cache location and thrashing occurs
— Especially in the case of an array having a size that is a power of two

 Itis recommended to change the defined sizes of two-
dimensional arrays.

* In some instances, this can be handled by specifying the
compile options.

double A[N][N], B[N][N]; double A[N][N+1], B[N][N+1];
for (k = 0; k< N; k++) { for (k = 0; k < N; k++) {
for (j = 0;j < N; j++){ j> for j =0; ) <N;j++){
A[lk] = BIK]DT; A[lIk] = BIKILL;
} }
} }
Before padding After padding
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Blocking (1/2)

 Effective method for optimizing memory accesses
« Cache misses are reduced as much as possible.

double A[N][N], B[N][N], C;

double A[N][N], B[N][N], C; for (i=0;i<N:i+=4){
for (i=0;i<N;i++){ for j=0;j<N;j+=4){
for (=0, j<N;j#+){ [y for(ii =i;ii <i+ 4 ii++){
Ali]i] += B[jli] * C; for(j=5li<j+4;jj++){
} Alii][jj] += B[] * C;
} }
}
}
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Blocking (2/2) @

L e L Y s L s

| |
| |
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Memory access pattern  Memory access pattern
without blocking with blocking
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Instructions
* To process floating-point operations at faster
speeds, recent processors are often equipped
with what is called streaming SIMD instructions.
— Intel’'s SSE/SSE2/SSE3/SSE4/AVX instruction sets
— AMD Athlon’s 3DNow! instruction set
— Motorola PowerPC’s AltiVec instruction set

« With Intel’s recent Sandy Bridge, the use of
AV X instructions enables the floating-point
operation performance to be made 8 times as
large.
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How to Use the SIMD

Instruction Set
« The SIMD instruction set may be used in the

following ways.

(1) Vectorization by compiler

(2) Using SIMD intrinsic functions

(3) Using an inline assembler

(4) Directly writing a “.s” file with an assembler

* |In order from (1) to (4), the coding increases in
complexity, but there are advantages from the

perspective of performance.

26
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Example of calculating product-sum of o
double-precision complex numbers <2
(a + b + ¢) with an SSE3 intrinsic function

#include <pmmintrin.h>  /* Header file for SSE3 instruction */

=/

static __inline _ m128d ZMULADD(__m128d a,  m128d b, m128d c)
{

__m128d br, bi; [* 128bit data type */

br=_mm_movedup_ pd(b); [* br =[b.r b.r] real part */

br=_mm_mul_pd(br, c); [* br = [b.rfc.r b.r*c.i] */

a=_mm_add_pd(a, br); [* a=[a.rtb.rc.r a.i+b.r*c.i] */

bi = _mm_unpackhi_pd(b, b); [* bi = [b.i b.i] imaginary part */

c = _mm_shuffle_pd(c, c, 1); [* ¢ =[c.i c.r] replace real part and
imaginary part */

bi = _mm_mul_pd(bi, c); [* bi = [-b.i*c.i b.i*c.r] */

return _mm_addsub_pd(a, bi); [* [a.r+b.r*c.r-b.i*c.i a.i+b.r*c.i+b.i*c.r] */

}
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ZAXPY written in C language (@}

typedef struct { double r, I; } doublecomplex;

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)

{

int i;
if (a.r ==0.0 && a.i == 0.0) return;

#pragma unroll(8)
#pragma vector aligned
for (i=0;i<n;i++){
yli].r += a.r * x[i].r — a.i * x][i].i,
yli].i +=a.r * x[i].i + a.i * X][i].r;
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Function S

#include <pmmintrin.h>
typedef struct { double r, i; } doublecomplex;
__m128d ZMULADD(__m128da, _ m128d b, m128d c);

void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y)
{

int i;

__m128d a0;

if (a.r ==0.0 && a.i == 0.0) return;
a0 = _mm_loadu_ pd(&a);
#pragma unroll(8)
for (i=0;i<n;i++)
_mm_store_pd(&y[i], ZMULADD(_mm_load_ pd(&y]i]), a0, _mm_load pd(&x]i])));
}
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Perfommance of ZAXPY =S
fhtel Xeon 3.4GHz, 1CPU) =z

3000 A - SSE3 (C
2500 | \ /*,\\ intrinsic)
2 5000 // - f’(‘ \\ SSE3 (F77

3 1500 | vector)
™ /) SSE3 (F77
= 1000 [7 e scalar)
500 -= Jntel MKL
o I/I | I N N N FN NN AN A NN N N N N N N N 7.2

ML

Vector Length
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Objective of Performance A.
Evaluation (1/3) @

« Upon actually using a computer system, have you ever had
the following type of experience?

— “l thought this would be a high-performance system, but when | tried
using it, the actual performance was not as high as | had expected."

« There are two main reasons for this.

— Although touted as “high performance,” the computer system was well
suited for a certain type of calculations that differed from the
calculations that the user attempted to execute.

— Actually, the computer system concealed its high performance, and
the problem lies with the user’s method of usage, which did not elicit
high performance.
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Objective of Performance
Evaluation (2/3) @

* There is only one type of computer throughout the world,
and unless technical advances are realized in the future,
there will not be much need for “performance evaluations”.

— However, the reality is that there is a proliferation of many different
types of processors and computer systems throughout the world.

* The user must determine which computer system will be
able to calculate efficiently the types of problems that he or
she desires to solve.

* Also, when improving hardware and software to enhance
computer performance, in order to “know thyself”, the
developers of the computer system must perform a
“performance evaluation” and use the results to improve the
performance.
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Objective of Performance
Evaluation (3/3) @

* By performing a performance evaluation:

— A computer system’s level of performance and the type of
problems for which it is best suited for solving can be
ascertained.

— Also, the time required for calculations of extra-large
problems that are extremely time-consuming can be
ascertained in advance.

 |n addition, the decision to perform a calculation
with a high cost-performance can be made by the
user in consideration of both the cost of using the

computer system and its performance.
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Indicator of Performance

Evaluation
* MIPS (Million Instructions Per Second)

— Expresses the number of millions of instructions that can be
executed per second by the CPU

— MIPS is ultimately a measure of the number of instructions executed
and is not suitable for comparisons of performance among

computers having different architectures.
 FLOPS (Floating Operations Per Second)

— Expresses the number of floating-point operations that can be
executed per second

— MFLOPS, GFLOPS, TFLOPS

« SPEC (The Standard Performance Evaluation Corporation)

— SPEC benchmark values include SPECint, which indicates the
integer processing performance, and SPECfp, which indicates the

floating-point processing performance.
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Examples of Benchmark
Programs

SPEC

LINPACK

NAS Parallel Benchmarks (NPB)
HPC Challenge (HPCC) Benchmark
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Overview of Each Benchmark
(1/4)

 SPEC (Standard Performance Evaluation
Corporation)

— A non-profit organization funded by major vendors
— Measurement results published at http://www.spec.org

« SPEC CPU2006: Comprehensive performance
evaluation of CPU, memory, and compiler

— CINT2006 (SPECint): Evaluates integer processing
performance

— CFP2006 (SPECfp): Evaluations floating-point
processing performance
» Additionally includes SPEC MPI12007, SPEC
OMP2001, etc.
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Overview of Each Benchmark

(2/4)
 LINPACK
— Developed by Jack Dongarra of the University of
Tennessee.

— Benchmark test for evaluating floating-point
processing performance

— Uses Gaussian elimination method to estimate
the time required for solving simultaneous linear
equations

— Also used for the “TOP500 Supercomputer”
benchmark
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Overview of Each Benchmark
(3/4)

« NAS Parallel Benchmarks

— The NAS Parallel Benchmarks (NPB) are a small
set of programs designed to help evaluate the
performance of parallel supercomputers

— The original eight benchmarks specified in NPB
1 mimic the computation and data movement in
CFD applications.
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NAS Parallel Benchmarks (=

* Five kernels

IS: Integer Sort, random memory access
EP: Embarrassingly Parallel

CG: Conjugate Gradient, irregular memory access and
communication

MG: Multi-Grid on a sequence of meshes, long- and short-distance
communication, memory intensive

FT: discrete 3D fast Fourier Transform, all-to-all communication

* Three pseudo applications
— BT: Block Tri-diagonal solver

— SP: Scalar Penta-diagonal solver
— LU: Lower-Upper Gauss-Seidel solver
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Overview of Each Benchmark s
(414)

« HPC Challenge (HPCC) Benchmark Suite

— HPC Challenge (HPCC) is a suite of tests that
examine the performance of HPC architectures
using kernels.

— The suite provides benchmarks that bound the
performance of many real applications as a
function of memory access characteristics, e.g.,

« Spatial locality
* Temporal locality
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Benchmark
 The HPC Challenge benchmark consists at

this time of 7 performance tests:

— HPL (High Performance Linpack)

— DGEMM (matrix-matrix multiplication)

— STREAM (sustainable memory bandwidth)

— PTRANS (A=A+BAT, parallel matrix transpose)

— RandomAccess (integer updates to random
memory locations)

— FFT (complex 1-D discrete Fourier transform)
— b_eff (MPI latency/bandwidth test)
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Summary <2

= /

* To reduce execution time, optimization is
important.

— However, a determination must be made as to
whether optimization is really necessary.

* The ability to perform optimization without

the memory bandwidth becoming rate-limited
Is important for future processors.

 Performance evaluations are effective for
ascertaining the performance of a computer
prior to usage.
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