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Performance Tuning	


  Everyone recognizes the importance of 
performance in application programs. 
  Performance tuning, however, tends to get put off 

during the software development cycle, and it is 
never considered  in some cases. 
  Factors that lead to this type of situation include 

the following: 
–  Recognition that applications can be optimized with only 

code generation tools and a compiler 
–  Unrealistic expectation that the mere use of the latest 

processor will result in optimal performance while the 
application is running 
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Significance of Performance 
Tuning	


  In the case of calculations whose runtime lasts for 
several months or longer, optimization may result 
in a reduction of runtime on the order of a month. 
  As in the case of numeric libraries, if a program is 

used by many people, tuning will have sufficient 
value. 
  If tuning results in a 30% improvement in 

performance, for example, the net result is the 
same as using a machine having 30% higher 
performance. 
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Optimization	


  Optimization targets many things. 
– Reduction of the amount of code 
– Reduction of the amount of data 
– Reduction of the amount of runtime 

  Here, the act of overwriting a program to 
reduce the runtime is called “optimization”.	
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Benefits of Optimization	


  Optimization reduces the runtime and has the following 
benefits: 
–  More effective use of the computer 
–  Lower energy costs 
–  More calculations can be performed within the same time 

  In consideration of the time required to write and run a 
program, the longer the runtime of a program, the greater 
the benefit from optimization. 
–  If optimization results in a 30% improvement in performance, for 

example, the net result is the same as using a machine having 
30% higher performance. 

  Optimizing a program that will only be run once and that 
has a short runtime would be rather meaningless. 
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Prior to Optimizing	


  Is there a need to optimize? 
  Is the algorithm in use optimal? 
  There is no point in optimizing an inefficient 

algorithm. 
–  A bubble sort program, even if optimized, will not be as 

fast as a quick sort program. 
  The optimal algorithm depends largely on the 

following: 
–  Properties of the problem to be solved 
–  Architecture, amount of memory, etc., of the computer 

to be used 



2014/2/24 8 

Optimization Policy	

  If available, use a vendor-supplied high-speed library as 

much as possible. 
–  BLAS, LAPACK, etc. 

  The optimization capability of recent compilers is extremely 
high. 

  Optimization that can be performed by the compiler must 
not be performed on the user side. 
–  Requires extra effort 
–  Results in a program that is complicated and may contain bugs  

  Overestimates the optimizing capability of compilers 
–  Humans are dedicated to improving algorithms. 

–  Unless otherwise unavoidable, do not use an assembler. 
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First Step in Optimizing	

  First, determine the computing performance of one’s own 

program. 
  FLOPS (Floating Operations Per Second) is used as a 

measure of computing performance. 
–  Units indicating the number for floating-point operations that can be 

performed per second 
–  MFLOPS (10^6), GFLOPS (10^9), TFLOPS (10^12) 

  The FLOPS value is computed from the total (or partial) 
program runtime and the number of operations, and is 
compared to the theoretical peak performance of the 
processor. 
–  In the case of an Intel Core 2, the FLOPS value is four times the 

clock. 
–  In the case of the latest Intel Core i7, the FLOPS value is eight 

times the clock. 



2014/2/24 10 

Time Measurement	

  Targets for time measurement are as follows: 

–  Elapsed time 
–  CPU time 

  If the program to be measured has a short 
runtime, the timer accuracy may be insufficient. 
–  Execute an external loop several times and measure. 

  In this case, note that the loop may not operate 
properly as a result of the compiler optimization. 
–  Insert a dummy routine or make the measurement 

target a subroutine and compile separately. 
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Hot Spots	


  The part of a program that accounts for the 
majority of the computation time is called a “hot 
spot”. 
  First, find out where hot spots exist. 
  The profiler is a convenient tool. 

–  With Linux, the gprof command can be used.  

  As with “gcc –pg foo.c”, by attaching the “-pg” 
compiler option, special code that writes the profile 
information used by gprof will be generated. 
–  By running a.out, and then specifying gprof a.out, hot 

spots can be identified. 
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gprof Output Example	

Flat profile: 
 
Each sample counts as 0.01 seconds. 
  %    cumulative   self                     self     total            
 time   seconds   seconds   calls   s/call   s/call   name     
 48.90      2.90      2.90            2     1.45     2.83   zfft1d0_ 
 32.38      4.82      1.92    49152     0.00     0.00   fft8b_ 
 14.17      5.66      0.84    16384     0.00     0.00   fft8a_ 
   4.55      5.93      0.27            1     0.27     5.93   MAIN__ 
   0.00      5.93      0.00    16384     0.00     0.00   fft235_ 
   0.00      5.93      0.00            4     0.00     0.00   factor_ 
   0.00      5.93      0.00            3     0.00     1.89   zfft1d_ 
   0.00      5.93      0.00            2     0.00     0.00   settbl_ 
   0.00      5.93      0.00            1     0.00     0.00   settbls_ 
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gprof Output Example	

  As can be seen from the gprof results: 

–  There are three hot spots: 
  zfft1d0_ 
  fft8b_ 
  fft8a_ 

  These 3 hot spots consume more than 95% of 
the total runtime. 
–  Optimization should be performed focusing on these 

hot spots. 
–  When writing the program, pay attention so that the 

hot spots are concentrated. 
–  If there are many hotspots, much effort will be 

required to improve the code. 
  Sometimes it is better to rewrite the code from scratch. 
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Compile Options	


  Performance will vary significantly according to 
the way in which compile options are specified. 
  Use the compiler manual as a reference and try 

various compile options. 
–  “-fast”, “-O3”, “-O2”, etc. 
–  With an Intel Compiler, “-xAVX” (for latest Core i7) 

  Setting a high level of optimization does not 
necessarily produce faster code. 
–  The compiler may optimize excessively. 
–  Note that the calculated results may be inconsistent in 

some cases.  
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Compiler Directives	


  Compiler directives communicate the intent of the 
programmer to the compiler and support optimization. 
–  Different from compile options, compiler directives allow 

optimization to be controlled for individual loops. 

  Examples of directives 
–  When performing vectorization, inform the compiler that there is no 

loop dependency. 
–  Suppress vectorization. 

  Often coded in C language as “#pragma”, in Fortran as “!dir
$” or “cpgi$l”, etc. 
(Note that the coding may differ according to the compiler.) 
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ZAXPY written in Fortran 
       subroutine zaxpy(n,a,x,y) 
       complex*16 a,x(*),y(*) 
!dir$ vector aligned 
       do i=1,n 
           y(i)=y(i)+a*x(i) 
       end do 
       return 
       end 
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Performance  of  ZAXPY
（Xeon  2.8GHz,  1CPU,  Intel  Fortran  )
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Considerations When Writing 
Programs	


  Preserve C or Fortran syntax precisely. 
–  With some compilers, only warnings may be output, but 

these often lead to bugs. 
  Compiler-dependent extensions, with the exception 

of unavoidable circumstances (in the case of a 
directive, for example), should not be used. 
–  Automatic array assignment in g77 

  Case such as real*8 a(n), where a(n) is not a dummy argument 
and n is a variable 

–  Program portability deteriorates. 
–  Cause of unexpected errors 

  To the extent possible, avoid using functions and 
features that are (thought to be) seldom used. 
–  Compiler bugs may not have been removed. 
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Loop Unrolling (1/2)	

  Loop unrolling expands a loop in order to do the 

following: 
–  Reduce loop overhead 
–  Perform register blocking  

  If expanded too much, register shortages or 
instruction cache misses may occur, and so care 
is needed. 

double A[N], B[N], C; 
for (i = 0; i < N; i++) { 
  A[i] += B[i] * C; 
} 

double A[N], B[N], C; 
for (i = 0; i < N; i += 4) { 
  A[i] += B[i] * C; 
  A[i+1] += B[i+1] * C; 
  A[i+2] += B[i+2] * C; 
  A[i+3] += B[i+3] * C; 
} 
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Loop Unrolling (2/2)	

double A[N][N], B[N][N], 
            C[N][N], s; 
for (j = 0; j < N; k++) { 
   for (i = 0; i < N; j++) { 
      s = 0.0; 
      for (k = 0; k < N; k++) { 
         s += A[i][k] * B[j][k]; 
      } 
      C[j][i] = s; 
    } 
} 

double A[N][N], B[N][N], 
        C[N][N], s0, s1; 

for (j = 0; j < N; k += 2) 
   for (i = 0; i < N; i++) { 
      s0 = 0.0;  s1 = 0.0; 
      for (k = 0; k < N; k++) { 
         s0 += A[j][k] * B[j][k]; 
         s1 += A[j+1][k] * B[j][k]; 
      } 
      C[j][i] = s0; 
      C[j+1][i] = s1; 
   } 

Matrix multiplication	
 Optimized matrix multiplication	
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Loop Interchange	


  Loop interchange is a technique mainly for reducing the 
adverse effects of large-stride memory accesses. 

  In some cases, the compiler judges the necessity and 
performs loop interchanges.	


double A[N][N], B[N][N], C; 
for (j = 0; j < N; j++) { 
  for (k = 0; k < N; k++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

Before loop interchange	


double A[N][N], B[N][N], C; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
    A[k][j] += B[k][j] * C; 
  } 
} 

After loop interchange	
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Padding	

  Effective in cases where multiple arrays have been mapped 

to the same cache location and thrashing occurs 
–  Especially in the case of an array having a size that is a power of two 

  It is recommended to change the defined sizes of two-
dimensional arrays. 

  In some instances, this can be handled by specifying the 
compile options. 

double A[N][N], B[N][N]; 
for (k = 0; k< N; k++) { 
  for (j = 0; j < N; j++) { 
    A[j][k] = B[k][j]; 
  } 
} 

Before padding	


double A[N][N+1], B[N][N+1]; 
for (k = 0; k < N; k++) { 
  for (j = 0; j < N; j++) { 
        A[j][k] = B[k][j]; 
  } 
} 

After padding	
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Blocking (1/2)	

  Effective method for optimizing memory accesses 
  Cache misses are reduced as much as possible. 

double A[N][N], B[N][N], C; 
for (i = 0; i < N; i++) { 
  for (j = 0; j < N; j++) { 
    A[i][j] += B[j][i] * C; 
  } 
} 

double A[N][N], B[N][N], C; 
for (i = 0; i < N; i += 4) { 
  for (j = 0; j < N; j += 4) { 
    for (ii = i; ii < i + 4; ii++) { 
      for (jj = j; jj < j + 4; jj++) { 
        A[ii][jj] += B[jj][i] * C; 
      } 
    } 
  } 
} 
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Blocking (2/2)	


Memory access pattern 
without blocking	


Memory access pattern 
with blocking	
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Use of Streaming SIMD 
Instructions	


  To process floating-point operations at faster 
speeds, recent processors are often equipped 
with what is called streaming SIMD instructions. 
–  Intel’s SSE/SSE2/SSE3/SSE4/AVX instruction sets 
–  AMD Athlon’s 3DNow! instruction set 
–  Motorola PowerPC’s AltiVec instruction set 

  With Intel’s recent Sandy Bridge, the use of 
AVX instructions enables the floating-point 
operation performance to be made 8 times as 
large. 
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How to Use the SIMD 
Instruction Set	


  The SIMD instruction set may be used in the 
following ways. 

  (1) Vectorization by compiler 
  (2) Using SIMD intrinsic functions 
  (3) Using an inline assembler 
  (4) Directly writing a “.s” file with an assembler 

  In order from (1) to (4), the coding increases in 
complexity, but there are advantages from the 
perspective of performance. 
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Example of calculating product-sum of 
double-precision complex numbers 

(a + b + c) with an SSE3 intrinsic function	

#include <pmmintrin.h>      /* Header file for SSE3 instruction */ 
 
static __inline  __m128d ZMULADD(__m128d a, __m128d b, __m128d c) 
{ 
  __m128d br, bi;                                           /* 128bit data type */ 
 
  br = _mm_movedup_pd(b);                        /* br = [b.r b.r]  real part */ 
  br = _mm_mul_pd(br, c);                            /* br = [b.r*c.r b.r*c.i] */ 
  a = _mm_add_pd(a, br);                             /* a = [a.r+b.r*c.r a.i+b.r*c.i] */ 
  bi = _mm_unpackhi_pd(b, b);                     /* bi = [b.i b.i]  imaginary part */ 
  c = _mm_shuffle_pd(c, c, 1);                      /* c = [c.i c.r]  replace real part and  

                                                                                      imaginary part */ 
  bi = _mm_mul_pd(bi, c);                             /* bi = [-b.i*c.i b.i*c.r] */ 
 
  return _mm_addsub_pd(a, bi);                    /* [a.r+b.r*c.r-b.i*c.i a.i+b.r*c.i+b.i*c.r] */ 
} 
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ZAXPY written in C language 
typedef struct { double r, I; } doublecomplex; 
 
void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y) 
{ 
  int i; 
   
  if (a.r == 0.0 && a.i == 0.0) return; 
 
#pragma unroll(8) 
#pragma vector aligned 
  for (i = 0; i < n; i++) { 
    y[i].r += a.r * x[i].r – a.i * x[i].i, 
    y[i].i += a.r * x[i].i + a.i * x[i].r; 
} 
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ZAXPY written in SSE3 Intrinsic 
Function 

#include <pmmintrin.h> 
 
typedef struct { double r, i; } doublecomplex; 
__m128d ZMULADD(__m128d a, __m128d b, __m128d c); 
 
void zaxpy(int n, doublecomplex a, doublecomplex *x, doublecomplex *y) 
{ 
  int i; 
  __m128d a0; 
 
  if (a.r == 0.0 && a.i == 0.0) return; 
  a0 = _mm_loadu_pd(&a); 
#pragma unroll(8) 
  for (i = 0; i < n; i++) 
    _mm_store_pd(&y[i], ZMULADD(_mm_load_pd(&y[i]), a0, _mm_load_pd(&x[i]))); 
} 
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Performance  of  ZAXPY
（Intel  Xeon  3.4GHz,  1CPU)
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Objective of Performance 
Evaluation (1/3)	


  Upon actually using a computer system, have you ever had 
the following type of experience? 
–  “I thought this would be a high-performance system, but when I tried 

using it, the actual performance was not as high as I had expected." 

  There are two main reasons for this. 
–  Although touted as “high performance,” the computer system was well 

suited for a certain type of calculations that differed from the 
calculations that the user attempted to execute. 

–  Actually, the computer system concealed its high performance, and 
the problem lies with the user’s method of usage, which did not elicit 
high performance. 
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Objective of Performance 
Evaluation (2/3)	


  There is only one type of computer throughout the world, 
and unless technical advances are realized in the future, 
there will not be much need for “performance evaluations”.  
–  However, the reality is that there is a proliferation of many different 

types of processors and computer systems throughout the world. 
  The user must determine which computer system will be 

able to calculate efficiently the types of problems that he or 
she desires to solve. 

  Also, when improving hardware and software to enhance 
computer performance, in order to “know thyself”, the 
developers of the computer system must perform a 
“performance evaluation” and use the results to improve the 
performance. 
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Objective of Performance 
Evaluation (3/3)	


  By performing a performance evaluation: 
–  A computer system’s level of performance and the type of 

problems for which it is best suited for solving can be 
ascertained. 

–  Also, the time required for calculations of extra-large 
problems that are extremely time-consuming can be 
ascertained in advance. 

  In addition, the decision to perform a calculation 
with a high cost-performance can be made by the 
user in consideration of both the cost of using the 
computer system and its performance. 
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Indicator of Performance 
Evaluation	


  MIPS (Million Instructions Per Second) 
–  Expresses the number of millions of instructions that can be 

executed per second by the CPU 
–  MIPS is ultimately a measure of the number of instructions executed 

and is not suitable for comparisons of performance among 
computers having different architectures. 

  FLOPS (Floating Operations Per Second) 
–  Expresses the number of floating-point operations that can be 

executed per second 
–  MFLOPS, GFLOPS, TFLOPS 

  SPEC (The Standard Performance Evaluation Corporation) 
–  SPEC benchmark values include SPECint, which indicates the 

integer processing performance, and SPECfp, which indicates the 
floating-point processing performance. 
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Examples of Benchmark 
Programs	


  SPEC 
  LINPACK 
  NAS Parallel Benchmarks (NPB) 
  HPC Challenge (HPCC) Benchmark 
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Overview of Each Benchmark 
(1/4)	


  SPEC (Standard Performance Evaluation 
Corporation) 
–  A non-profit organization funded by major vendors 
–  Measurement results published at http://www.spec.org 

  SPEC CPU2006: Comprehensive performance 
evaluation of CPU, memory, and compiler 
–  CINT2006 (SPECint): Evaluates integer processing 

performance 
–  CFP2006 (SPECfp): Evaluations floating-point 

processing performance 
  Additionally includes SPEC MPI2007, SPEC 

OMP2001, etc. 
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Overview of Each Benchmark 
(2/4)	


  LINPACK 
– Developed by Jack Dongarra of the University of 

Tennessee.  
– Benchmark test for evaluating floating-point 

processing performance 
– Uses Gaussian elimination method to estimate 

the time required for solving simultaneous linear 
equations 

– Also used for the “TOP500 Supercomputer” 
benchmark 
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Overview of Each Benchmark 
(3/4)	


  NAS Parallel Benchmarks 
– The NAS Parallel Benchmarks (NPB) are a small 

set of programs designed to help evaluate the 
performance of parallel supercomputers 

– The original eight benchmarks specified in NPB 
1 mimic the computation and data movement in 
CFD applications. 
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NAS Parallel Benchmarks	

  Five kernels 

–  IS: Integer Sort, random memory access 
–  EP: Embarrassingly Parallel 
–  CG: Conjugate Gradient, irregular memory access and 

communication 
–  MG: Multi-Grid on a sequence of meshes, long- and short-distance 

communication, memory intensive 
–  FT: discrete 3D fast Fourier Transform, all-to-all communication 

  Three pseudo applications 
–  BT: Block Tri-diagonal solver 
–  SP: Scalar Penta-diagonal solver 
–  LU: Lower-Upper Gauss-Seidel solver 
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Overview of Each Benchmark 
(4/4)	


  HPC Challenge (HPCC) Benchmark Suite 
– HPC Challenge (HPCC) is a suite of tests that 

examine the performance of HPC architectures 
using kernels. 

– The suite provides benchmarks that bound the 
performance of many real applications as a 
function of memory access characteristics, e.g., 
  Spatial locality 
  Temporal locality 
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HPC Challenge (HPCC) 
Benchmark	


  The HPC Challenge benchmark consists at 
this time of 7 performance tests: 
– HPL (High Performance Linpack) 
– DGEMM (matrix-matrix multiplication) 
– STREAM (sustainable memory bandwidth) 
– PTRANS (A=A+B^T, parallel matrix transpose) 
– RandomAccess (integer updates to random 

                           memory locations) 
– FFT (complex 1-D discrete Fourier transform) 
– b_eff (MPI latency/bandwidth test) 
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Summary	


  To reduce execution time, optimization is 
important. 
– However, a determination must be made as to 

whether optimization is really necessary. 
  The ability to perform optimization without 
the memory bandwidth becoming rate-limited 
is important for future processors. 
  Performance evaluations are effective for 
ascertaining the performance of a computer 
prior to usage. 


