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Overview 

• Type oriented programming 

 

• Mesham 

 

• Case study: Asynchronous Jacobi 

 

• Further extension to scalable linear solvers 

 

• Conclusions 
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Background 

• Writing parallel codes is far more complex than sequential 

code 

– Issues such as data locality, task placement 

– Modifying an early decision such as distribution method can require 

an entire rewrite 

– Commonly use lower level sequential languages for a variety of 

reasons 

– Languages with many options can quickly become bloated 

• This problem will only get worse as we move towards 

exascale and the challenges become greater 

 

• Trade off between programmability and performance 

– Control vs abstraction 
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var a : Int :: volatile[A::B::C::D] :: const :: register[“ax”] ; 

Type oriented programming 

register const volatile int a; 
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precedence 

a : a :: writable; 

a:=99; 

 

Changing the variable type 

from that point on 

(a :: writable):=99; 
Changing the type just for 

this single expression 

The type matters whenever the variable is “used” 

http://www.epcc.ed.ac.uk/


What does this give us? 

1. Opportunities for optimisation 

By the programmer specifying their code in this high level manner the compiler 

can obtain a much more complete view of the system and apply optimisation. 

 

2. A choice between explicit and implicit programming 

In the absence of type information the compiler can apply sensible defaults 

 

3. The right person for the right job 

An expert in the field might create the type using their in depth knowledge and 

experience. The user of the type need not understand all the underlying 

complexities. 

 

4. Changing fundamental aspects is trivial 

For example changing the method or partitioning or data distribution only 

requires a change in type 
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Mesham 

• Core language centred around a simple imperative model with extensions to 

support type oriented programming (and some other stuff such as parallel 

extensions and exception handling.) 

 

• An external type library with 48 types 

– 23 basic types 

– 25 more complex types 

 

 

• A vehicle for experimenting with types and our application of them 

 

• Multiple example codes implemented in Mesham 

http://www.mesham.com 
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An example 

var a : Int :: allocated[single[on[1]]; 

var b : Int :: allocated[single[on[3]]]; 

a:=b; 
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“a” is an integer allocated 

to process 1 

“b” is an integer but only 

allocated to processes 3 

“a” on process 1 gets the value 

of “b” which is held on process 

3. 

This simple shared memory style guarantees safety and 

consistency but it might not be particularly performant 

0 

2 

1 a 

3 b 

b 
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An example 

var a : Int :: allocated[single[on[1]]; 

var b : Int :: allocated[single[on[3]]]; 

(a :: channel[3,1]):=b; 
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“a” is an integer allocated 

to process 1 

“b” is an integer but only 

allocated to processes 3 

Point to point default (blocking) 

communication 

The programmer has explicitly controlled some aspects of 

parallelism which might be more performant but we make no 

guarantee to the safety or consistency of this 

0 

2 

1 a 

3 b 

b 
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Case study – Asynchronous Jacobi 

• Jacobi’s algorithm is the simplest iterative solution method 

 

 

 

 

 

– Stop iterating when the residual 

 

• Requires communication between iterations 

– For halo swapping data between processes 

– For calculating the global residual 

– Traditionally this has been synchronous 

 

• Can break the lock step algorithmic nature by using asynchronous 

communication 

– To achieve scalability & fault tolerance 
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Case study – Asynchronous Jacobi 

• Three versions: 

– Synchronous 

– Safe asynchronous 

– Racy asynchronous 

 

• Pollution problem 

– Based upon Laplace with fixed boundary conditions 

– Pollution problem (3d diffusion) 

 

• However…… 

– Asynchronous algorithms project have demonstrated potential benefit 

however the asynchronous (F90 + MPI) code is far more complex and 

required a rewrite of the synchronous code to contain tricky and 

uninteresting bookkeeping 
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Can type oriented programming help here? 
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Partitioning and distribution 

var data:array[Double,512,512]::allocated[grid[halo[1],4,4]::single[evendist]]; 
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Synchronous 
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var data:array[Double,nx,ny,nz]::allocated[grid[halo[1], x,y,z]::single[evendist]]; 

 

var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]]; 

zeroGrid(data); 

var norm_b:=fillBoundaryConditions(data); 

for i from 0 to maxIters { 

   norm_r:=computeResidue(data); 

   norm_r:=norm_r / norm_b; 

   if (norm_r < threshold) break; 

   for i from data[pid()].low to data[pid()].high { 

      for j from data[pid()][i].low to data[pid()][i].high { 

         for k from data[pid()][i][j].low to data[pid()][i][j].high { 

            new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6; 

         }; 

      }; 

   }; 

   data:=new_data; 

   sync data; 

} 
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var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async, x,y,z]::single[evendist]]; 

Asynchronous 
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var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]]; 

zeroGrid(data); 

var norm_b:=fillBoundaryConditions(data); 

for i from 0 to maxIters { 

   norm_r:=computeResidue(data); 

   norm_r:=norm_r / norm_b; 

   if (norm_r < threshold) break; 

   for i from data[pid()].low to data[pid()].high { 

      for j from data[pid()][i].low to data[pid()][i].high { 

         for k from data[pid()][i][j].low to data[pid()][i][j].high { 

            new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6; 

         }; 

      }; 

   }; 

   data:=new_data; 

   sync data; 

} 

var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async[2], x,y,z]::single[evendist]]; 
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Racy asynchronous 
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var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async::racy, x,y,z]::single[evendist]]; 

 

var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]]; 

zeroGrid(data); 

var norm_b:=fillBoundaryConditions(data); 

for i from 0 to maxIters { 

   norm_r:=computeResidue(data); 

   norm_r:=norm_r / norm_b; 

   if (norm_r < threshold) break; 

   for i from data[pid()].low to data[pid()].high { 

      for j from data[pid()][i].low to data[pid()][i].high { 

         for k from data[pid()][i][j].low to data[pid()][i][j].high { 

            new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6; 

         }; 

      }; 

   }; 

   data:=new_data; 

   sync data; 

} 
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Performance results 

Local problem size: 50x50x50. Weak scaling. Running on Cray XE6 
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Cores Version Runtime 

F90+MPI (s) 

Runtime 

Mesham (s) 

512 Sync 132.1 150.5 

Async (100) 146.9 145.5 

Async racy 126.4 125.7 

2048 Sync 159.4 208.9 

Async (100) 184.9 188.4 

Async racy 163.8 163.5 

8192 Sync 247.1 298.7 

Async (100) 272.5 271.8 

Async racy 264.9 265.0 
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Jacobi with blocks 

• Point wise Jacobi’s algorithm is very slow to converge 

• If the linear system is rewritten in terms of blocks   each 

consisting of several individual elements        with the matrix      

split as shown: 

 

 

 

• Then we can also rewrite Jacobi’s iteration in terms of 

blocks: 
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 Jacobi with blocks 

• Assuming domain decomposition and local operators, this 

requires only halo swaps between neighbouring domains 

• The inner solve of the block equation is then fully local 
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Read initial conditions 

Initialise solver 

Perform block inner solve 

Halo swap 

Recompute local residue 

Calculate global residue 

Check global residue 

Display statistics 

Finalise solver 
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Asynchronous Communication  

• Existing synchronous parallel iterative solvers exist and scale 

reasonably well (e.g. PETSc) 

• Leverage this for the inner solver – each block is solved by a 

group of multiple processes in parallel (synchronously) 

• Introduce asynchrony in halo swap between blocks: 

– Happens at the processor level between blocks 

– If new halo data has arrived from neighbouring block copy it into local 

work array 

– If no new data, start a new inner solve with existing halo data (from a 

previous iteration) 

• Residual checking 

– Asynchronous reduction to determine residual 

– Termination criteria checked against the latest value 
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1024 cores 
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Problem size:50x50x50 per core, weak scaling. Running on HECToR (Cray XE6) 
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16384 cores 
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Problem size:50x50x50 per core, weak scaling. Running on HECToR (Cray XE6) 
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Results summary 
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Cores Group Sync Group Async 

1024 8.33 9.33 

4096 4.25 5.10 

16384 3.19 3.78 

Cores Internal Group Sync Group Async 

1024 1 1 1 

4096 2.88 1.47 1.57 

16384 6.24 2.39 2.55 

Ratio of execution time to pure GMRES for specific core count 

Ratio of execution time to 1024 cores for each version 

Cores Internal Group Sync 

1024 19.20 26.11 

4096 16.57 20.72 

16384 10.05 19.41 

Iteration rate (iterations per second) 
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Slowdown resilience 
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Problem size:50x50x50 per core, 1024 cores. Running on HECToR (Cray XE6) 
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Conclusions 

• Demonstrated how types can be used to provide for varying degrees of 

control 

• At no performance penalty* we can gain improvements in 

programmability by using types 

• Can retrofit type approach to existing languages 

 

• We have extended existing synchronous solvers using an asynchronous 

Block Jacobi Approach 

• Performance and scalability of the block method starts to looks 

favourable with large core counts and problem size 

• In agreement with previous Jacobi iteration work, synchronous 

communication is still favourable to asynchronous at the core counts 

tested. 
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