
Nick Brown

EPCC

n.brown@epcc.ed.ac.uk

Type oriented parallel

programming

and scalable linear

solvers

CCS-EPCC Workshop

mailto:markb@epcc.ed.ac.uk

Overview

• Type oriented programming

• Mesham

• Case study: Asynchronous Jacobi

• Further extension to scalable linear solvers

• Conclusions

Type oriented parallel programming and scalable linear solvers 2

http://www.epcc.ed.ac.uk/

Background

• Writing parallel codes is far more complex than sequential

code

– Issues such as data locality, task placement

– Modifying an early decision such as distribution method can require

an entire rewrite

– Commonly use lower level sequential languages for a variety of

reasons

– Languages with many options can quickly become bloated

• This problem will only get worse as we move towards

exascale and the challenges become greater

• Trade off between programmability and performance

– Control vs abstraction

Type oriented parallel programming and scalable linear solvers 3

http://www.epcc.ed.ac.uk/

var a : Int :: volatile[A::B::C::D] :: const :: register[“ax”] ;

Type oriented programming

register const volatile int a;

Type oriented parallel programming and scalable linear solvers 4

precedence

a : a :: writable;

a:=99;

Changing the variable type

from that point on

(a :: writable):=99;
Changing the type just for

this single expression

The type matters whenever the variable is “used”

http://www.epcc.ed.ac.uk/

What does this give us?

1. Opportunities for optimisation

By the programmer specifying their code in this high level manner the compiler

can obtain a much more complete view of the system and apply optimisation.

2. A choice between explicit and implicit programming

In the absence of type information the compiler can apply sensible defaults

3. The right person for the right job

An expert in the field might create the type using their in depth knowledge and

experience. The user of the type need not understand all the underlying

complexities.

4. Changing fundamental aspects is trivial

For example changing the method or partitioning or data distribution only

requires a change in type

 Type oriented parallel programming and scalable linear solvers 5

http://www.epcc.ed.ac.uk/

Mesham

• Core language centred around a simple imperative model with extensions to

support type oriented programming (and some other stuff such as parallel

extensions and exception handling.)

• An external type library with 48 types

– 23 basic types

– 25 more complex types

• A vehicle for experimenting with types and our application of them

• Multiple example codes implemented in Mesham

http://www.mesham.com

Type oriented parallel programming and scalable linear solvers 6

http://www.epcc.ed.ac.uk/

An example

var a : Int :: allocated[single[on[1]];

var b : Int :: allocated[single[on[3]]];

a:=b;

Type oriented parallel programming and scalable linear solvers 7

“a” is an integer allocated

to process 1

“b” is an integer but only

allocated to processes 3

“a” on process 1 gets the value

of “b” which is held on process

3.

This simple shared memory style guarantees safety and

consistency but it might not be particularly performant

0

2

1 a

3 b

b

http://www.epcc.ed.ac.uk/

An example

var a : Int :: allocated[single[on[1]];

var b : Int :: allocated[single[on[3]]];

(a :: channel[3,1]):=b;

Type oriented parallel programming and scalable linear solvers 8

“a” is an integer allocated

to process 1

“b” is an integer but only

allocated to processes 3

Point to point default (blocking)

communication

The programmer has explicitly controlled some aspects of

parallelism which might be more performant but we make no

guarantee to the safety or consistency of this

0

2

1 a

3 b

b

http://www.epcc.ed.ac.uk/

Case study – Asynchronous Jacobi

• Jacobi’s algorithm is the simplest iterative solution method

– Stop iterating when the residual

• Requires communication between iterations

– For halo swapping data between processes

– For calculating the global residual

– Traditionally this has been synchronous

• Can break the lock step algorithmic nature by using asynchronous

communication

– To achieve scalability & fault tolerance

 Type oriented parallel programming and scalable linear solvers 9

Ax-b
2

£ tol

http://www.epcc.ed.ac.uk/

Case study – Asynchronous Jacobi

• Three versions:

– Synchronous

– Safe asynchronous

– Racy asynchronous

• Pollution problem

– Based upon Laplace with fixed boundary conditions

– Pollution problem (3d diffusion)

• However……

– Asynchronous algorithms project have demonstrated potential benefit

however the asynchronous (F90 + MPI) code is far more complex and

required a rewrite of the synchronous code to contain tricky and

uninteresting bookkeeping

Type oriented parallel programming and scalable linear solvers 10

Can type oriented programming help here?

http://www.epcc.ed.ac.uk/

Partitioning and distribution

var data:array[Double,512,512]::allocated[grid[halo[1],4,4]::single[evendist]];

Type oriented parallel programming and scalable linear solvers 11

512

512

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

http://www.epcc.ed.ac.uk/

Synchronous

Type oriented parallel programming and scalable linear solvers 12

var data:array[Double,nx,ny,nz]::allocated[grid[halo[1], x,y,z]::single[evendist]];

var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]];

zeroGrid(data);

var norm_b:=fillBoundaryConditions(data);

for i from 0 to maxIters {

 norm_r:=computeResidue(data);

 norm_r:=norm_r / norm_b;

 if (norm_r < threshold) break;

 for i from data[pid()].low to data[pid()].high {

 for j from data[pid()][i].low to data[pid()][i].high {

 for k from data[pid()][i][j].low to data[pid()][i][j].high {

 new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6;

 };

 };

 };

 data:=new_data;

 sync data;

}

http://www.epcc.ed.ac.uk/

var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async, x,y,z]::single[evendist]];

Asynchronous

Type oriented parallel programming and scalable linear solvers 13

var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]];

zeroGrid(data);

var norm_b:=fillBoundaryConditions(data);

for i from 0 to maxIters {

 norm_r:=computeResidue(data);

 norm_r:=norm_r / norm_b;

 if (norm_r < threshold) break;

 for i from data[pid()].low to data[pid()].high {

 for j from data[pid()][i].low to data[pid()][i].high {

 for k from data[pid()][i][j].low to data[pid()][i][j].high {

 new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6;

 };

 };

 };

 data:=new_data;

 sync data;

}

var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async[2], x,y,z]::single[evendist]];

http://www.epcc.ed.ac.uk/

Racy asynchronous

Type oriented parallel programming and scalable linear solvers 14

var data:array[Double,nx,ny,nz]::allocated[grid[halo[1]::async::racy, x,y,z]::single[evendist]];

var new_data:array[Double,nx,ny,nz]::allocated[grid[x,y,z]::single[evendist]];

zeroGrid(data);

var norm_b:=fillBoundaryConditions(data);

for i from 0 to maxIters {

 norm_r:=computeResidue(data);

 norm_r:=norm_r / norm_b;

 if (norm_r < threshold) break;

 for i from data[pid()].low to data[pid()].high {

 for j from data[pid()][i].low to data[pid()][i].high {

 for k from data[pid()][i][j].low to data[pid()][i][j].high {

 new_data[i][j][k]:=(data[i+1][j][k]+data[i-1][j][k]+data[i][j+1][k]+data[i][j-1][k]+data[i][j][k+1]+data[i][j][k-1]) * 1/6;

 };

 };

 };

 data:=new_data;

 sync data;

}

http://www.epcc.ed.ac.uk/

Performance results

Local problem size: 50x50x50. Weak scaling. Running on Cray XE6

Type oriented parallel programming and scalable linear solvers 15

Cores Version Runtime

F90+MPI (s)

Runtime

Mesham (s)

512 Sync 132.1 150.5

Async (100) 146.9 145.5

Async racy 126.4 125.7

2048 Sync 159.4 208.9

Async (100) 184.9 188.4

Async racy 163.8 163.5

8192 Sync 247.1 298.7

Async (100) 272.5 271.8

Async racy 264.9 265.0

http://www.epcc.ed.ac.uk/

Jacobi with blocks

• Point wise Jacobi’s algorithm is very slow to converge

• If the linear system is rewritten in terms of blocks each

consisting of several individual elements with the matrix

split as shown:

• Then we can also rewrite Jacobi’s iteration in terms of

blocks:

Type oriented parallel programming and scalable linear solvers 16

A11 A1n

An1 Ann

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

X1

Xn

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

B1

Bn

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Xi
xi

ij

k

jijiii

k

i XABAX)1(1)(

http://www.epcc.ed.ac.uk/

 Jacobi with blocks

• Assuming domain decomposition and local operators, this

requires only halo swaps between neighbouring domains

• The inner solve of the block equation is then fully local

Type oriented parallel programming and scalable linear solvers 17

Read initial conditions

Initialise solver

Perform block inner solve

Halo swap

Recompute local residue

Calculate global residue

Check global residue

Display statistics

Finalise solver

http://www.epcc.ed.ac.uk/

Asynchronous Communication

• Existing synchronous parallel iterative solvers exist and scale

reasonably well (e.g. PETSc)

• Leverage this for the inner solver – each block is solved by a

group of multiple processes in parallel (synchronously)

• Introduce asynchrony in halo swap between blocks:

– Happens at the processor level between blocks

– If new halo data has arrived from neighbouring block copy it into local

work array

– If no new data, start a new inner solve with existing halo data (from a

previous iteration)

• Residual checking

– Asynchronous reduction to determine residual

– Termination criteria checked against the latest value

Type oriented parallel programming and scalable linear solvers 18

http://www.epcc.ed.ac.uk/

1024 cores

Type oriented parallel programming and scalable linear solvers 19

Problem size:50x50x50 per core, weak scaling. Running on HECToR (Cray XE6)

http://www.epcc.ed.ac.uk/

16384 cores

Type oriented parallel programming and scalable linear solvers 20

Problem size:50x50x50 per core, weak scaling. Running on HECToR (Cray XE6)

http://www.epcc.ed.ac.uk/

Results summary

Type oriented parallel programming and scalable linear solvers 21

Cores Group Sync Group Async

1024 8.33 9.33

4096 4.25 5.10

16384 3.19 3.78

Cores Internal Group Sync Group Async

1024 1 1 1

4096 2.88 1.47 1.57

16384 6.24 2.39 2.55

Ratio of execution time to pure GMRES for specific core count

Ratio of execution time to 1024 cores for each version

Cores Internal Group Sync

1024 19.20 26.11

4096 16.57 20.72

16384 10.05 19.41

Iteration rate (iterations per second)

http://www.epcc.ed.ac.uk/

Slowdown resilience

Type oriented parallel programming and scalable linear solvers 22

Problem size:50x50x50 per core, 1024 cores. Running on HECToR (Cray XE6)

http://www.epcc.ed.ac.uk/

Conclusions

• Demonstrated how types can be used to provide for varying degrees of

control

• At no performance penalty* we can gain improvements in

programmability by using types

• Can retrofit type approach to existing languages

• We have extended existing synchronous solvers using an asynchronous

Block Jacobi Approach

• Performance and scalability of the block method starts to looks

favourable with large core counts and problem size

• In agreement with previous Jacobi iteration work, synchronous

communication is still favourable to asynchronous at the core counts

tested.

Type oriented parallel programming and scalable linear solvers 23

http://www.epcc.ed.ac.uk/

