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GPU hardware  

•  Separate memory address space bw Host/Device	


o  Newer devices have means to hide this fact 	

•  Host handles the device	


o  Populates Device memory	


o  Create the program to execute	


o  Collect the results	
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GPU programming 
•  Two main programming frameworks 

o  CUDA: Nvidia programming model, quite common 
o  OpenCL: Standard based on CUDA programming model but no 

longer focused on GPUs 

•  Both of them based on a two-source system 
o  Host code with API calls to prepare execution and data 
o  Kernel code exposing device-specific features and parallelism 

•  Specific compiler and/or libraries are required 
o  CUDA: NVIDIA CC 
o  OpenCL: Vendor-specific platform 



Simple example 

void saxpy_serial(int n, float a, float *x, 
float *y) 
{ 
for (int i = 0; i < n; ++i) 
      y[i] = a*x[i] + y[i]; 
} 
 
 
 

Original C code	





Example of CUDA code (I) 

__global__ void saxpy_parallel(int n, float 
a, float *x, float *y) 
{ 
int i = blockIdx.x*blockDim.x + threadIdx.x; 
if (i < n) y[i] = a*x[i] + y[i]; 
} 
 
 

Kernel code	





Example of CUDA code (II) 
// Allocate two N-vectors h_x and h_y 
int size = N * sizeof(float); 
float* h_x = (float*)malloc(size); 
float* h_y = (float*)malloc(size); 
// Initialize them... 
// Allocate device memory 
float* d_x; float* d_y; 
cudaMalloc((void**)&d_x, size)); 
cudaMalloc((void**)&d_y, size)); 
// Copy host memory to device memory 
cudaMemcpy(d_x, h_x, size, cudaMemcpyHostToDevice); 
cudaMemcpy(d_y, h_y, size, cudaMemcpyHostToDevice); 
// Invoke parallel SAXPY kernel with 256 threads/block 
int nblocks = (n + 255) / 256; 
saxpy_parallel<<<nblocks, 256>>>(N, 2.0, d_x, d_y); 
// Copy result back from device memory to host memory 
cudaMemcpy(h_y, d_y, size, cudaMemcpyDeviceToHost); 
 

Host code	





Simple OpenCL example 

http://users.jyu.fi/~tro/TIEA342/OpenCL/saxpy.c	



__kernel void saxpy(const unsigned int n,  \ 
   const float a,                          \ 
  __global float* x,                       \ 
   __global float* y)    
{                                                                        
   int i = get_global_id(0);                               
   if(i < n)                     
       y[i] = a * x[i] + y[i]; 
}                                    
 

Kernel code	





Simple OpenCL example 

http://users.jyu.fi/~tro/TIEA342/OpenCL/saxpy.c	



 cl_platform_id platform; 
  cl_uint num_platforms; 
  err = clGetPlatformIDs(1,&platform,&num_platforms); 
 
  if (err != CL_SUCCESS) { 
    printf("Error: Failed to get a platform id!\n"); 
    return EXIT_FAILURE; 
  } 
  
   size_t returned_size = 0; 
  cl_char platform_name[1024] = {0}, platform_prof[1024] = {0}, platform_vers[1024] = {0}, platform_exts[1024] = {0}; 
  err  = clGetPlatformInfo(platform, CL_PLATFORM_NAME,       sizeof(platform_name), platform_name, &returned_size); 
  err |= clGetPlatformInfo(platform, CL_PLATFORM_VERSION,    sizeof(platform_vers), platform_vers, &returned_size); 
  err |= clGetPlatformInfo(platform, CL_PLATFORM_PROFILE,    sizeof(platform_prof), platform_prof, &returned_size); 
  err |= clGetPlatformInfo(platform, CL_PLATFORM_EXTENSIONS, sizeof(platform_exts), platform_exts, &returned_size); 
  
  if (err != CL_SUCCESS) { 
    printf("Error: Failed to get platform infor!\n"); 
    return EXIT_FAILURE; 
  } 
  } 
  context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &err); 
  if (!context) { 
    return EXIT_FAILURE; 
  } 
  cl_command_queue commands; 
  commands = clCreateCommandQueue(context, device_id, 0, &err); 
 
  if (!commands) { 
    return EXIT_FAILURE; 
  } 
  program = clCreateProgramWithSource(context, 1, (const char **) &KernelSource, NULL, &err); 
  if (!program) { 
    return EXIT_FAILURE; 
  } 
  err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

.....	

 This is not the complete host code!	





Both P.M. are extremely verbose and cluttered!	





Why don’t use something more minimalistic?	





OpenMP: Exploiting multi-core nodes 

void saxpy_serial(int n, float a, float *x, 
float *y) 
{ 
#pragma omp parallel for 
for (int i = 0; i < n; ++i) 
      y[i] = a*x[i] + y[i]; 
} 
 
 
 

Compiler translates sequential code to a parallel 
implementation	





Some previous approaches 

•  hiCUDA (Toronto Univ., 2009) 

•  PGI Accelerator Model (Initial. rel. 2008) 

•  HMPP Directives (from CAPS) 

•  llc (Univ. la Laguna, 2010) / llcl (Univ. La Laguna, 2011) 

•  OMPCUDA (Univ. of Tokyo, 2010) based on OMNI 
OpenMP compiler (Univ. of Tsukuba) 



OpenACC standard 

•  Combined effort from 
PGI, CAPS, Cray and 
others to produce an 
standard for GPU 
directives 

•  Members of the standard 
are also on the OpenMP 
comittee 



OpenACC execution model 
•  Host-directed execution 

with attached GPU 
o  Compute regions offloaded 

to the accelerator 
o  Device execute parallel 

regions 

•  Host handle all the set-up 
operations 
o  Allocate, initialise, copy, 

queue, wait, etc 

•  Hosts can queue 
operations 



OpenACC standard 
•  C and Fortran API 

o  #pragma acc in C 
o  !$acc sentinels in Fortran 

•  Currently implemented by PGI, CAPS and Cray  

•  Open Source / experimental implementation (accULL) 
o  Compilant with 1.0 rev. of the standard for C 
o  Support for CUDA and OpenCL devices 
o  https://bitbucket.org/ruyman/accull/downloads 

o  Official release 0.2 (April, quite old) 
o  Pre-release of 0.3 available! 

o  Python compiler framework (yacf) and C++ Runtime System  
o  accULL: An OpenACC Implementation with CUDA and 

OpenCL Support – EuroPar ‘12 



Two key ideas 
Offload Region 

•  Selects a piece of code 
to be offloaded to the 
device 

•  The host set-up the 
required parameter(s) 
and run the kernel(s) 

•  May wait or not for the 
kernel(s) to finish 

Data Region 

•  Defines data required on 
the device for a future 
offload region 

•  User indicates the 
compiler/runtime which 
variables will be required 
in the future 

•  Can indicate variable 
directionality too 



Very simple example 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

    for (int i = 0; i < 20; i++)  
       for (int j = 0; j < 30; i++) { 

            // Do something with a and c ! 
       } 

} 



OpenMP 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

   #pragma omp parallel for shared(a, c) 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c! 

       } 
} 



OpenACC Compute region 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Basic 
offload 
directive	





OpenACC Compute region 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Basic 
offload 
directive	





OpenACC Compute region 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Implicit 
data 
region	





OpenACC Compute region 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 

   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Copy Inside	



Copy Outside	





OpenACC Compute region 
/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

/* Repeat until accuracy is enough */ 
while (err >= TOL) { 
   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Copy Inside	



Copy Outside	





/* Matrix initialization */ 
int a[20][30]; 

int c[10][15]; 
/* Support code */ 

.... 

#pragma acc data copy(a,c) 
while (err >= TOL) { 
   #pragma acc kernels loop 
    for (int i = 0; i < 20; i++)  

       for (int j = 0; j < 30; i++) { 
            // Do something with a and c ! 

       } 
} 

Copy Inside	



Copy Outside	



OpenACC Data region 



•  An accelerator kernels construct surrounds loops to be 
executed on the accelerator, typically as a sequence of 
kernel operations. 

•  C 
#pragma acc kernels [clause [[,] clause]…] new-line 

{ structured block } 

•  Any data clause is allowed. 
o  copy,copyin,copyout,... 

•  other Clauses 
o  if( condition ) 
o  async( expression ) 

Kernels 



•  A loop construct applies to the immediately following 
loop or nested loops, and describes the type of 
accelerator parallelism to use to execute the iterations 
of the loop 

•  C 
#pragma acc loop [clause [[,] clause]…] new-line 

{ loop nest } 

•  Clauses: 
o  collapse( n ) 
o  seq 
o  private( list ) , firstprivate( list ) 
o  reduction( operator:list ) (+,-,*,max,min...) 

Loop 



Kernels and Loop example 

 

for (i = 0; i < N; i++) { 

  for (j = 0; j < N; j++) { 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } 

General rule: The more information you provide, the better 



Kernels and Loop example 

#pragma acc kernels loop 

for (i = 0; i < N; i++) { 

  for (j = 0; j < N; j++) { 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } •  Offload the code to the accelerator	


•  Mapping loop to HW architecture is up to the compiler	





Kernels and Loop example 

#pragma acc kernels loop 

for (i = 0; i < N; i++) { 

  #pragma acc loop 

  for (j = 0; j < N; j++) { 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } 
•  Offload the code to the accelerator	


•  Both loops can be scheduled on the accelerator	





Kernels and Loop example 

#pragma acc kernels loop collapse(2) 

for (i = 0; i < N; i++) { 

  for (j = 0; j < N; j++) { 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } 
•  Offload the code to the accelerator	


•  Both loops can be scheduled on the accelerator	





Kernels and Loop example 

#pragma acc kernels loop independent 

for (i = 0; i < N; i++) { 

  #pragma acc loop independent 

  for (j = 0; j < N; j++) { 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } 
•  Offload the code to the accelerator	


•  Both loops can be scheduled on the accelerator	


•  Forces compiler to detect iterations as independent	





Kernels and Loop example 

#pragma acc kernels loop independent 

for (i = 0; i < N; i++) { 

  #pragma acc loop independent 

  for (j = 0; j < N; j++) { 

    #pragma acc loop seq 

    for (k = 0; k < N; k++)  

     a[i][j] += b[i][k]*c[k][j] 

  } 

•  The inner loop is marked as sequential	





Compiler output 

•  Compilers typically shows information about the code 
translation in standard output 
–  PGI:  Compile with –Minfo  , you’ll see which loops are converted 

into kernels. Some loops may be converted into kernels, that 
does not mean they will run in parallel!!  

–  Caps –v : Shows which loops from a nest will be executed in 
parallel 

–  Cray: Shows general information when compiling 
–  accULL : Lots of info about translation, stored in a log file by 

default, output to stdout if  -v 

•  Use this information carefully to further optimize your 
code!   



•  An accelerator data construct defines a region of the 
program within which data is accessible by the 
accelerator. 

•  C 
#pragma acc data [clause [[,] clause]…] new-line 

{ structured block } 

•  Any data clause is allowed. 
o  copy, copyin, copyout,... 

•  other clauses 
o  if( condition ) 
o  async( expression ) 

Data 



•  copy 

•  copyin 

•  copyout 

•  present 

•  pcopy 

•  pcopyin 

•  pcopyout 

•  deviceptr 

Data clauses 



Data 
int	
  main(…)	
  {	
  

…	
  

#pragma	
  acc	
  kernels	
  loop	
  copy(a[0:N])	
   	
  
	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  N;	
  i++)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a[i]	
  =	
  1;	
  

#pragma	
  acc	
  kernels	
  loop	
  pcopyin(a[0:N])	
  \	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  copyout(b[0:N])	
  

	
  	
  for	
  (int	
  i	
  =	
  0;	
  I	
  <	
  N;	
  i++)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  b[i]	
  =	
  a[i]	
  

…	
  

}	
  



Re-using existing CUDA code 

•  Using native CUDA calls (or whatever) 
#pragma acc host_data use_device(a,b,c) 

  cublasSgemm('n','n’,m,n,k,1,a,lda,b,ldb,0,b,ldc); 

•  Using a device pointer in a loop 
void * ptr = acc_malloc(size); 

… 

#pragma acc parallel loop deviceptr(ptr) 

{ 

  …. 



Other directives/features 

•  Ver. 1.0 
–  Parallel directive (low-level kernel creation) 
–  gang/worker/vector clauses (kernel tuning) 
–  cache (memory access optimization within the device kernel) 

•  Ver 2.0 (Announced during ISC 2013) 
–  atomic directive 
–  runtime calls to handle memory (memcpy-to-device) 
–  tile clause (apply loop tiling) 
–  device_type (device-specific optimization) 

•  Support for Intel MIC architectures expected 2014? 
–  Can be implemented with accULL ! 



Learning OpenACC 

•  One-day tutorial with excercises 
–  https://bitbucket.org/ruyman/openacc-lab/overview 

•  OpenACC training resources 
–  http://openacc.org/   

–  Education section contains wide variety of resources 
–  Talks from PGI and others are available there 

•  Stack Overflow – OpenACC tag  

•  EPCC Benchmarks 
–  https://github.com/nickaj/epcc-openacc-benchmarks 
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GROMACs 

•  One of the leading biochemical MD simulation packages 

•  Widely used for simulation of biochemical systems  

•  Both PRACE pan-European HPC and CRESTA exascale 
projects have identified GROMACs as a key code for the 
future  

Density Functional Theory For Dummies 
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GROMACs - SHMEM 

•  6-month project to implement comm. Layer of GROMACs 
using SHMEM 

•  Should improve performance in HECToR (UK main HPC 
resource) 
–  Cray SHMEM implementation has very little overhead and good 

performance 
–  Code is free of Cray SHMEM specifics where possible, uses ifdef 

when not possible 

•  It is currently a WIP – finishing end of August. 

Density Functional Theory For Dummies 
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Why SHMEM? 

Density Functional Theory For Dummies 
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!

•  GROMACs uses SendRecv operations to communicate	


•  SHMEM Implementation provide up to 3.25 speedup	





Progress so-far 

•  Startup and customization of building tools 
–  Use GMX_SHMEM=ON when configuring to enable it 

•  Implementation of the Domain Decomposition 
–  MPI_SendRecv in the DD have been replaced by PUT operations 
–  Collectives replaced by SHMEM equivalents 

•  Implementation of the Particle Decomposition 
–  MPI_SendRecv have been replaced by PUT operations 
–  No collectives converted -> they are not critical in this part of the 

code 

•  PP -> PME communication 
–  Still work in progress … 

Density Functional Theory For Dummies 
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Problems so-far 

•  Lack of documentation / examples 
–  Cray documentation is focused on routines 
–  OpenSHMEM doc is limited (although useful) 

•  Restrictions on variables that can be communicated: 
–  Only symmetric memory can be used in the SHMEM routines 
–  This memory needs to be allocated with a specific routine 

(shmalloc, shrenew) 
–  This routine contains an implicit barrier! 
–  Many temporary buffers used in GROMACS – and they are not 

created by all the process at the same time! 

Density Functional Theory For Dummies 
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Preliminary results 

Overview of OpenACC and the SHMEM implementation of GROMACs 	

 50 
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0 
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3.305 

36 

13.8 

49.8 

3.12 

Time spent in MPI (s) Time spent in 
SHMEM (s) 

Total comm. Time (s) Performance (ns/day) 

Performance comparison (MPI / SHMEM) 
GROMACS-MPI GROMACS-SHMEM 

ADH test-case, 8 cores, 10000 iterations, 1 HECToR-node	





Summary 

•  Still some work to do 

•  Most of the performance lost in the SHMEM 
implementation is due to excessive synchronization (due 
to temp. buffers) 

•  Promising reduction on the comm. Time 

•  Hard to get it to work! 
–  Would be nice an OpenACC-like language to implement this J 
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Thanks / ありがとう 
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