
Ruyman Reyes, Ph.D
EPCC

rreyesc@epcc.ed.ac.uk

Overview of
OpenACC and

the SHMEM
implementation

of GROMACs

Tenerife (テネリフェ島)	

Islas Canarias (カナリア諸島)	

Edinburgh (エディンバラ)	

Pop. Density:
•  Japan: 337.1/km2
•  Tenerife: 442/km2

Ruyman Reyes, Ph.D
EPCC

rreyesc@epcc.ed.ac.uk

Overview of
OpenACC

Overview of OpenACC and the SHMEM implementation of GROMACs 	

 3

Ruyman Reyes, Ph.D
EPCC

rreyesc@epcc.ed.ac.uk

Top500
Performance

Co-Processors

GPU hardware

•  Separate memory address space bw Host/Device	

o  Newer devices have means to hide this fact 	

•  Host handles the device	

o  Populates Device memory	

o  Create the program to execute	

o  Collect the results	

Host	

 Device	

CPU	

DRAM	

 Chipset	

 DRAM	

GPU	

 MP	

MP	

MP	

GPU programming
•  Two main programming frameworks

o  CUDA: Nvidia programming model, quite common
o  OpenCL: Standard based on CUDA programming model but no

longer focused on GPUs

•  Both of them based on a two-source system
o  Host code with API calls to prepare execution and data
o  Kernel code exposing device-specific features and parallelism

•  Specific compiler and/or libraries are required
o  CUDA: NVIDIA CC
o  OpenCL: Vendor-specific platform

Simple example

void saxpy_serial(int n, float a, float *x,
float *y)
{
for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

Original C code	

Example of CUDA code (I)

__global__ void saxpy_parallel(int n, float
a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];
}

Kernel code	

Example of CUDA code (II)
// Allocate two N-vectors h_x and h_y
int size = N * sizeof(float);
float* h_x = (float*)malloc(size);
float* h_y = (float*)malloc(size);
// Initialize them...
// Allocate device memory
float* d_x; float* d_y;
cudaMalloc((void**)&d_x, size));
cudaMalloc((void**)&d_y, size));
// Copy host memory to device memory
cudaMemcpy(d_x, h_x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, size, cudaMemcpyHostToDevice);
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(N, 2.0, d_x, d_y);
// Copy result back from device memory to host memory
cudaMemcpy(h_y, d_y, size, cudaMemcpyDeviceToHost);

Host code	

Simple OpenCL example

http://users.jyu.fi/~tro/TIEA342/OpenCL/saxpy.c	

__kernel void saxpy(const unsigned int n, \
 const float a, \
 __global float* x, \
 __global float* y)
{
 int i = get_global_id(0);
 if(i < n)
 y[i] = a * x[i] + y[i];
}

Kernel code	

Simple OpenCL example

http://users.jyu.fi/~tro/TIEA342/OpenCL/saxpy.c	

 cl_platform_id platform;
 cl_uint num_platforms;
 err = clGetPlatformIDs(1,&platform,&num_platforms);

 if (err != CL_SUCCESS) {
 printf("Error: Failed to get a platform id!\n");
 return EXIT_FAILURE;
 }

 size_t returned_size = 0;
 cl_char platform_name[1024] = {0}, platform_prof[1024] = {0}, platform_vers[1024] = {0}, platform_exts[1024] = {0};
 err = clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_name), platform_name, &returned_size);
 err |= clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof(platform_vers), platform_vers, &returned_size);
 err |= clGetPlatformInfo(platform, CL_PLATFORM_PROFILE, sizeof(platform_prof), platform_prof, &returned_size);
 err |= clGetPlatformInfo(platform, CL_PLATFORM_EXTENSIONS, sizeof(platform_exts), platform_exts, &returned_size);

 if (err != CL_SUCCESS) {
 printf("Error: Failed to get platform infor!\n");
 return EXIT_FAILURE;
 }
 }
 context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &err);
 if (!context) {
 return EXIT_FAILURE;
 }
 cl_command_queue commands;
 commands = clCreateCommandQueue(context, device_id, 0, &err);

 if (!commands) {
 return EXIT_FAILURE;
 }
 program = clCreateProgramWithSource(context, 1, (const char **) &KernelSource, NULL, &err);
 if (!program) {
 return EXIT_FAILURE;
 }
 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

.....	

 This is not the complete host code!	

Both P.M. are extremely verbose and cluttered!	

Why don’t use something more minimalistic?	

OpenMP: Exploiting multi-core nodes

void saxpy_serial(int n, float a, float *x,
float *y)
{
#pragma omp parallel for
for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

Compiler translates sequential code to a parallel
implementation	

Some previous approaches

•  hiCUDA (Toronto Univ., 2009)

•  PGI Accelerator Model (Initial. rel. 2008)

•  HMPP Directives (from CAPS)

•  llc (Univ. la Laguna, 2010) / llcl (Univ. La Laguna, 2011)

•  OMPCUDA (Univ. of Tokyo, 2010) based on OMNI
OpenMP compiler (Univ. of Tsukuba)

OpenACC standard

•  Combined effort from
PGI, CAPS, Cray and
others to produce an
standard for GPU
directives

•  Members of the standard
are also on the OpenMP
comittee

OpenACC execution model
•  Host-directed execution

with attached GPU
o  Compute regions offloaded

to the accelerator
o  Device execute parallel

regions

•  Host handle all the set-up
operations
o  Allocate, initialise, copy,

queue, wait, etc

•  Hosts can queue
operations

OpenACC standard
•  C and Fortran API

o  #pragma acc in C
o  !$acc sentinels in Fortran

•  Currently implemented by PGI, CAPS and Cray

•  Open Source / experimental implementation (accULL)
o  Compilant with 1.0 rev. of the standard for C
o  Support for CUDA and OpenCL devices
o  https://bitbucket.org/ruyman/accull/downloads

o  Official release 0.2 (April, quite old)
o  Pre-release of 0.3 available!

o  Python compiler framework (yacf) and C++ Runtime System
o  accULL: An OpenACC Implementation with CUDA and

OpenCL Support – EuroPar ‘12

Two key ideas
Offload Region

•  Selects a piece of code
to be offloaded to the
device

•  The host set-up the
required parameter(s)
and run the kernel(s)

•  May wait or not for the
kernel(s) to finish

Data Region

•  Defines data required on
the device for a future
offload region

•  User indicates the
compiler/runtime which
variables will be required
in the future

•  Can indicate variable
directionality too

Very simple example
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 for (int i = 0; i < 20; i++)
 for (int j = 0; j < 30; i++) {

 // Do something with a and c !
 }

}

OpenMP
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 #pragma omp parallel for shared(a, c)
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c!

 }
}

OpenACC Compute region
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Basic
offload
directive	

OpenACC Compute region
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Basic
offload
directive	

OpenACC Compute region
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Implicit
data
region	

OpenACC Compute region
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {

 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Copy Inside	

Copy Outside	

OpenACC Compute region
/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

/* Repeat until accuracy is enough */
while (err >= TOL) {
 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Copy Inside	

Copy Outside	

/* Matrix initialization */
int a[20][30];

int c[10][15];
/* Support code */

....

#pragma acc data copy(a,c)
while (err >= TOL) {
 #pragma acc kernels loop
 for (int i = 0; i < 20; i++)

 for (int j = 0; j < 30; i++) {
 // Do something with a and c !

 }
}

Copy Inside	

Copy Outside	

OpenACC Data region

•  An accelerator kernels construct surrounds loops to be
executed on the accelerator, typically as a sequence of
kernel operations.

•  C
#pragma acc kernels [clause [[,] clause]…] new-line

{ structured block }

•  Any data clause is allowed.
o  copy,copyin,copyout,...

•  other Clauses
o  if(condition)
o  async(expression)

Kernels

•  A loop construct applies to the immediately following
loop or nested loops, and describes the type of
accelerator parallelism to use to execute the iterations
of the loop

•  C
#pragma acc loop [clause [[,] clause]…] new-line

{ loop nest }

•  Clauses:
o  collapse(n)
o  seq
o  private(list) , firstprivate(list)
o  reduction(operator:list) (+,-,*,max,min...)

Loop

Kernels and Loop example

for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 }

General rule: The more information you provide, the better

Kernels and Loop example

#pragma acc kernels loop

for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 } •  Offload the code to the accelerator	

•  Mapping loop to HW architecture is up to the compiler	

Kernels and Loop example

#pragma acc kernels loop

for (i = 0; i < N; i++) {

 #pragma acc loop

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 }
•  Offload the code to the accelerator	

•  Both loops can be scheduled on the accelerator	

Kernels and Loop example

#pragma acc kernels loop collapse(2)

for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 }
•  Offload the code to the accelerator	

•  Both loops can be scheduled on the accelerator	

Kernels and Loop example

#pragma acc kernels loop independent

for (i = 0; i < N; i++) {

 #pragma acc loop independent

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 }
•  Offload the code to the accelerator	

•  Both loops can be scheduled on the accelerator	

•  Forces compiler to detect iterations as independent	

Kernels and Loop example

#pragma acc kernels loop independent

for (i = 0; i < N; i++) {

 #pragma acc loop independent

 for (j = 0; j < N; j++) {

 #pragma acc loop seq

 for (k = 0; k < N; k++)

 a[i][j] += b[i][k]*c[k][j]

 }

•  The inner loop is marked as sequential	

Compiler output

•  Compilers typically shows information about the code
translation in standard output
–  PGI: Compile with –Minfo , you’ll see which loops are converted

into kernels. Some loops may be converted into kernels, that
does not mean they will run in parallel!!

–  Caps –v : Shows which loops from a nest will be executed in
parallel

–  Cray: Shows general information when compiling
–  accULL : Lots of info about translation, stored in a log file by

default, output to stdout if -v

•  Use this information carefully to further optimize your
code!

•  An accelerator data construct defines a region of the
program within which data is accessible by the
accelerator.

•  C
#pragma acc data [clause [[,] clause]…] new-line

{ structured block }

•  Any data clause is allowed.
o  copy, copyin, copyout,...

•  other clauses
o  if(condition)
o  async(expression)

Data

•  copy

•  copyin

•  copyout

•  present

•  pcopy

•  pcopyin

•  pcopyout

•  deviceptr

Data clauses

Data
int	
 main(…)	
 {	

…	

#pragma	
 acc	
 kernels	
 loop	
 copy(a[0:N])	
 	

	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 N;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[i]	
 =	
 1;	

#pragma	
 acc	
 kernels	
 loop	
 pcopyin(a[0:N])	
 \	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 copyout(b[0:N])	

	
 	
 for	
 (int	
 i	
 =	
 0;	
 I	
 <	
 N;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b[i]	
 =	
 a[i]	

…	

}	

Re-using existing CUDA code

•  Using native CUDA calls (or whatever)
#pragma acc host_data use_device(a,b,c)

 cublasSgemm('n','n’,m,n,k,1,a,lda,b,ldb,0,b,ldc);

•  Using a device pointer in a loop
void * ptr = acc_malloc(size);

…

#pragma acc parallel loop deviceptr(ptr)

{

 ….

Other directives/features

•  Ver. 1.0
–  Parallel directive (low-level kernel creation)
–  gang/worker/vector clauses (kernel tuning)
–  cache (memory access optimization within the device kernel)

•  Ver 2.0 (Announced during ISC 2013)
–  atomic directive
–  runtime calls to handle memory (memcpy-to-device)
–  tile clause (apply loop tiling)
–  device_type (device-specific optimization)

•  Support for Intel MIC architectures expected 2014?
–  Can be implemented with accULL !

Learning OpenACC

•  One-day tutorial with excercises
–  https://bitbucket.org/ruyman/openacc-lab/overview

•  OpenACC training resources
–  http://openacc.org/

–  Education section contains wide variety of resources
–  Talks from PGI and others are available there

•  Stack Overflow – OpenACC tag

•  EPCC Benchmarks
–  https://github.com/nickaj/epcc-openacc-benchmarks

Ruyman Reyes, Ph.D
EPCC

rreyesc@epcc.ed.ac.uk

SHMEM
implementation

of GROMACs

GROMACs

•  One of the leading biochemical MD simulation packages

•  Widely used for simulation of biochemical systems

•  Both PRACE pan-European HPC and CRESTA exascale
projects have identified GROMACs as a key code for the
future

Density Functional Theory For Dummies

45

GROMACs - SHMEM

•  6-month project to implement comm. Layer of GROMACs
using SHMEM

•  Should improve performance in HECToR (UK main HPC
resource)
–  Cray SHMEM implementation has very little overhead and good

performance
–  Code is free of Cray SHMEM specifics where possible, uses ifdef

when not possible

•  It is currently a WIP – finishing end of August.

Density Functional Theory For Dummies

46

Why SHMEM?

Density Functional Theory For Dummies

47

!

•  GROMACs uses SendRecv operations to communicate	

•  SHMEM Implementation provide up to 3.25 speedup	

Progress so-far

•  Startup and customization of building tools
–  Use GMX_SHMEM=ON when configuring to enable it

•  Implementation of the Domain Decomposition
–  MPI_SendRecv in the DD have been replaced by PUT operations
–  Collectives replaced by SHMEM equivalents

•  Implementation of the Particle Decomposition
–  MPI_SendRecv have been replaced by PUT operations
–  No collectives converted -> they are not critical in this part of the

code

•  PP -> PME communication
–  Still work in progress …

Density Functional Theory For Dummies

48

Problems so-far

•  Lack of documentation / examples
–  Cray documentation is focused on routines
–  OpenSHMEM doc is limited (although useful)

•  Restrictions on variables that can be communicated:
–  Only symmetric memory can be used in the SHMEM routines
–  This memory needs to be allocated with a specific routine

(shmalloc, shrenew)
–  This routine contains an implicit barrier!
–  Many temporary buffers used in GROMACS – and they are not

created by all the process at the same time!

Density Functional Theory For Dummies

49

Preliminary results

Overview of OpenACC and the SHMEM implementation of GROMACs 	

 50

67.57

0

67.57

3.305

36

13.8

49.8

3.12

Time spent in MPI (s) Time spent in
SHMEM (s)

Total comm. Time (s) Performance (ns/day)

Performance comparison (MPI / SHMEM)
GROMACS-MPI GROMACS-SHMEM

ADH test-case, 8 cores, 10000 iterations, 1 HECToR-node	

Summary

•  Still some work to do

•  Most of the performance lost in the SHMEM
implementation is due to excessive synchronization (due
to temp. buffers)

•  Promising reduction on the comm. Time

•  Hard to get it to work!
–  Would be nice an OpenACC-like language to implement this J

Density Functional Theory For Dummies

51

Ruyman Reyes, Ph.D
EPCC

rreyesc@epcc.ed.ac.uk

Thanks / ありがとう

Density Functional Theory For Dummies

52

