$\label{eq:BlueGene} \begin{array}{c} \mathsf{BlueGene}/\mathsf{Q} \mbox{ simulations and Hierarchically Deflated Conjugate} \\ & \mathsf{Gradient} \end{array}$

Peter Boyle, University of Edinburgh

July 4, 2013

・ロト・日本・モト・モート ヨー うへで

UKQCD resources

- Performance and scalability are good; Bagel available as open source.
 Now works with JLQCD's Irolro package Used by JLQCD, RBC, UKQCD, QCDSF (KEK, LLNL, Edinburgh, BNL, Argonne) Also part of IBM's BG/Q diagnostics system
- 1.26Pflop/s system codesigned BlueGene/Q with IBM.
- PAB designed the memory prefetch engine for BQC chip.
- Four joint patents in memory system design 0.1% of IBM's 2012 patent haul.

Why does it scale?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SIMD optimisation

QPX supports paired complex SIMD operations (quad double)

- Develop BAGEL domain specific compiler for BG/Q QPX support
- Remember why SIMD was easy on the Connection Machine!
 - Subdivide node volume into smaller virtual nodes
 - Spread virtual nodes across SIMD lanes (these were memory banks in CM5)
 - Modifies data layout to align data parallel operations to SIMD hardware
- Data parallel operation on both virtual nodes is now simple
 - · Crossing between SIMD lanes restricted to during cshifts between virtual nodes
 - Code to treat N-virtual nodes is identical to scalar code for one, except datum is N fold bigger

SIMD made easy

- Sequence of operations remains the same as on BG/Q after BAGEL layout transformation
- O(100%) SIMD efficiency

Optimised sequence of operations is *identical* for scalar complex and SIMD operation BG/L(left, scalar complex) and BG/Q(right vector complex) assembler comparison

```
bt gt, __lab3
                                                             bt gt, __lab3
addi. %r9 . %r13 . 0
                                                              addi %r9 . %r13 . 0
__lab3:
                                                      lab3:
fxcxnpma 0 , 30 , 29 , 26
                                                              qvfxxnpmadd 0 , 29 , 30 , 26
dcbt %r18.%r9
                                                              dcbt
                                                                     %r18.%r9
fxcxnpma 1 , 30 , 22 , 24
                                                              qvfxxnpmadd 1 , 22 , 30 , 24
stfpdx 9,%r21,%r17
                                                              gystfdx 9,%r21,%r17
fxcxnpma 2 , 30 , 7 , 23
                                                              qvfxxnpmadd 2 , 7 , 30 , 23
stfpdx 10,%r22,%r17
                                                              qvstfdx 10,%r22,%r17
fxcxnpma 3 , 30 , 28 , 27
                                                              qvfxxnpmadd 3 , 28 , 30 , 27
dcbt %r20,%r9
                                                              dcbt
                                                                     %r20.%r9
fxcxnpma 4 , 30 , 21 , 25
                                                              gvfxxnpmadd 4 . 21 . 30 . 25
stfpdx 11,%r23,%r17
                                                              gystfdx 11.%r23.%r17
fxcxnpma 5, 30, 6, 31
                                                              gvfxxnpmadd 5 , 6 , 30 , 31
la %r16, -1(%r16)
                                                              la %r16, -1(%r16)
                                                              qvfxmul 7 , 15 , 0
fxpmul 7 , 15 , 0
dcbt %r22,%r9
                                                              dcbt %r22,%r9
                                                              qvfxmul 6 , 12 , 0
fxpmul 6 , 12 , 0
```

Path to wider SIMD?

- F90 data parallel compiler with HPF-like distribute extensions controlling *both* SIMD and Thread parallelism could be an exascale killer app
- cmfortran + MPI !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Flavor physics from lattice QCD

		Theoretical parameter	Value and uncertainties	Reference
		$f_{+}(0)$	$0.9632 \pm 0.0028 \pm 0.0051$	Sec. 3
		f_K	$156.3 \pm 0.3 \pm 1.9~{\rm MeV}$	Sec. 3
	Δm, & Δm	f_K/f_{π}	$1.205 \pm 0.001 \pm 0.010$	Sec. 3
		f_{D_s}/f_D	$1.186 \pm 0.005 \pm 0.010$	Sec. 3
		f_{D_s}	$251.3 \pm 1.2 \pm 4.5~{\rm MeV}$	Sec. 3
	0.5 sin 2β	f_{B_s}	$231 \pm 3 \pm 15 \text{ MeV}$	Sec. 3
		f_{Bs}/f_B	$1.209 \pm 0.007 \pm 0.023$	Sec. 3
도		$\hat{B}_{B_s}/\hat{B}_{B_d}$	$1.01 \pm 0.01 \pm 0.03$	Sec. 3
	0.3 Er	\dot{B}_{B_s}	$1.28 \pm 0.02 \pm 0.03$	Sec. 3
		\hat{B}_K	$0.730 \pm 0.004 \pm 0.036$	Sec. 3
	02	ĸ	$0.940 \pm 0.013 \pm 0.023$	[10]
		$\overline{m}_{c}(\overline{m}_{c})$	$(1.286 \pm 0.013 \pm 0.040)$ GeV	[10]
		$\overline{m}_t(\overline{m}_t)$	$(165.017 \pm 1.156 \pm 0.11)~{\rm GeV}$	[10]
		$\alpha_s(M_Z)$	0.1176 ± 0.0020	[4]
	-0.4 -0.2 0.0 0.2 0.4 0.8 0.8 1.0	η_{ee}	computed from $\overline{m}_c(\overline{m}_c)$ and α_s	[11]
	ρ	η_{ct}	0.47 ± 0.04	[12]
		η_{tt}	0.5765 ± 0.0065	[13]
		$\hat{\eta}_B$	0.8393 ± 0.0034	[10]

- · A key motivation for lattice field theory is theoretical input to flavour physics
- Cabibbo, Kobayashi, Maskawa flavour induced by Higgs couplings Sensitivity too New Particles through loop corrections if these also mix flavours Possibly induce non-unitarity of measured CKM matrix
- Relevance for both Energy & Intensity Frontier
 - · Lattice calculations increasingly dominant source of theoretical input
 - Range of calculations *increasing* with time c.f. RBC-UKQCD $K \rightarrow \pi\pi$ work (2012 Wilson Award)
- Focused K_{l3} decays, f_K/f_π (V_{us}) and neutral kaon mixing within and beyond standard model, $K\to\pi\pi$

RBC-UKQCD simulation status

Ensembles

New physical point Mobius (H_T) 2+1f ensembles, $m_{\rm res} \sim 1$ MeV Iwasaki 48³ × 96 × 24 $a^{-1} = 1.75$ GeV 1600 Trajectories Iwasaki 64³ × 128 × 12 $a^{-1} = 2.3$ GeV 2100 (1000) Trajectories

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

RBC-UKQCD simulation status

- All-mode-averaging analysis giving 0.1 % scale statistical errors for both ensembles
- EigCG deflation is used in solver
- 50 measurements on 48³
- 22 measurements on 64³

Quantity	Physical Value	Simulation Value	Deviation (Sim Phys.)/Phys.
m_{π}/m_K	0.2723	0.2793(6)	2.5%
m_{π}/m_{Ω}	0.0807	0.0835(5)	3.3%
m_K/m_Ω	0.2964	0.2989(16)	0.8%
		0	+/-

Above the π^0 , below the $\pi^{+/-}$.

 $f_K/f_\pi = 1.1914(21)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

K_{I3} form factor

$$\langle \pi(p_{\pi})|V_{\mu}|K(p_{K})
angle = f_{+}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu} + f_{-}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}$$

• Product $G_F V_{us} f_+^{K\pi} (q^2 = 0)$ determined experimentally

- Theoretical input required to determine V_{us} (λ in Wolfenstein parametrisation)
- · Chiral perturbation theory, Lattice QCD are the most competitive approaches

New datapoint eliminates systematic error in mass extrapolation.

Neutral Kaon oscillation and decay

Induces off diagonal part of Wigner Weisskopf Hamiltonian:

$$\begin{split} M_{12}^{*} &= \frac{1}{2m_{K}} \frac{G_{F}^{2} M_{W}^{2}}{16\pi^{2}} \left[\lambda_{c}^{2} S_{0}(x_{c}, x_{c}) + 2\lambda_{c} \lambda_{t} S_{0}(x_{c}, x_{t}) + \lambda_{t}^{2} S_{0}(x_{t}, x_{t}) \right] \\ &\times \langle K^{0} | \bar{s} \gamma_{\mu} (1 - \gamma_{5}) d \bar{s} \gamma_{\mu} (1 - \gamma_{5}) d | \bar{K}^{0} \rangle \end{split}$$

Here,

$$\lambda_t = V_{ts}^* V_{td} = -A^2 \lambda^5 (1 - \rho - i\eta)$$

Indirect CP violation from imaginary part of λ_t^2 piece

$$\Rightarrow \eta(1-\rho) = \text{constant}$$

hyperbola ϵ_K constraint Also obtaining:

- 1. B_K giving 0.1% statistical error
- 2. $K \rightarrow \pi \pi \Delta_I = \frac{3}{2}$ giving 2% statistical error may lead to *new* constraint on $i\eta$

Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

$$\kappa \sim rac{\lambda_{max}}{\lambda_{min}}$$

- Lattice chiral fermions possess an exact index theorem
- Index theorem $\Rightarrow \exists$ near zero modes separated from zero only by quark mass
- Recent algorithmic progress eliminates low mode subspace from Krylov inversion

EigCG:

- Determine N_{vec} ~ O(V) eigenvectors φ_i up to some physical λ
- $48^3 \Rightarrow 600$ vectors, $64^3 \Rightarrow 1500$ vectors
- Significant setup cost & storage cost $\propto V^2$
- Eliminates N_{vec} dimensional subspace $S = sp{\phi_i}$ from problem

$$M = \begin{pmatrix} M_{\bar{s}\bar{s}} & \epsilon \\ \epsilon^{\dagger} & M_{ss} \end{pmatrix} ; \qquad M_{ss}^{-1} = \frac{1}{\lambda_i} |i\rangle\langle i|$$

Where $\epsilon = M_{\tilde{s}s}$ is proportional to the error in the eigenvectors Guess $\phi = \text{diag}\{0\} \oplus \text{diag}\{\frac{1}{\lambda_i}\}\eta$

Why can we do better

Luscher's observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons

- N-zero modes look like admixtures of single instanton eigenmodes
- Divide one mode into chunks centred on each each instanton
- All N-zero modes described by the span of these chunks

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Luscher's inexact deflation

Avoid critical slowing down in Krylov solution of

 $M\psi = \eta$

- Accelerate sparse matrix inversion by treating a vector subspace S = span{φ_k} exactly
- If the lowest lying eigenmodes are well contained in S the "rest" of the problem avoids critical slowing down

Setup:

- Must generate subspace vectors ϕ_k that are "rich" in low modes
- Subdividing these vectors into blocks b

$$\phi_k^b(x) = \begin{cases} \phi_k(x) & ; \quad x \in b \\ 0 & ; \quad x \notin b \end{cases}$$

yields a much larger subspace¹ e.g. $48^3 \times 96$ lattice with 4^4 blocks gives a $12^3 \times 24$ coarse grid and $O(10^4)$ bigger deflation space.

¹This idea was previously used in adaptive multigrid where small *covariant derivative* \leftrightarrow algebraically smooth. Blocks \leftrightarrow aggregates. Luscher, though reinventing ideas used in multigrid, established connection between Krylov deflation such as EigCG and MG

Luscher's setup

Introduce subspace projectors

$$P_{S} = \sum_{k,b} |\phi_{k}^{b}\rangle \langle \phi_{k}^{b}| \quad ; \quad P_{\tilde{S}} = 1 - P_{S}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compute M_{ss} as

$$M = \begin{pmatrix} M_{\bar{S}\bar{S}} & M_{\bar{S}\bar{S}} \\ M_{\bar{S}S} & M_{\bar{S}S} \end{pmatrix} = \begin{pmatrix} P_{\bar{S}}MP_{\bar{S}} & P_{\bar{S}}MP_{\bar{S}} \\ P_{\bar{S}}MP_{\bar{S}} & P_{\bar{S}}MP_{\bar{S}} \end{pmatrix}$$

- Can represent matrix M exactly on this subspace by computing its matrix elements, known as the little Dirac operator 2

$$\begin{split} A^{ab}_{jk} &= \langle \phi^a_j | M | \phi^b_k \rangle \\ (M_{SS}) &= A^{ab}_{ij} | \phi^a_i \rangle \langle \phi^b_j | \\ M^{-1}_{SS} &= (A^{-1})^{ab}_{ij} | \phi^a_i \rangle \langle \phi^b_j | \end{split}$$

and

A inherits a sparse structure from
$$M$$

²Coarse grid matrix in MG

Subspace Schur decomposition

We can Schur decompose any matrix

$$M = \begin{bmatrix} M_{55} & M_{5s} \\ M_{s5} & M_{ss} \end{bmatrix}$$
(2)

$$= \begin{bmatrix} 1 & M_{\bar{s}s}M_{ss}^{-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & M_{ss} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ M_{ss}^{-1}M_{s\bar{s}} & 1 \end{bmatrix}$$
(3)

$$= UDL$$
 (4)

where the Schur complement

$$S = M_{\bar{s}\bar{s}} - M_{\bar{s}\bar{s}} M_{s\bar{s}}^{-1} M_{s\bar{s}}$$

$$\tag{5}$$

and the inverse matrix is

$$M^{-1} = L^{-1} D^{-1} U^{-1} (6)$$

$$= \begin{bmatrix} 1 & 0 \\ -M_{ss}^{-1}M_{ss} & 1 \end{bmatrix} \begin{bmatrix} S^{-1} & 0 \\ 0 & M_{ss}^{-1} \end{bmatrix} \begin{bmatrix} 1 & -M_{ss}M_{ss}^{-1} \\ 0 & 1 \end{bmatrix}$$
(7)

Projector properties

Lower and upper diagonal matrices of Schur decomp. correspond to Luscher's projectors P_L and P_R

$$P_{L} = P_{\bar{S}}U^{-1} = \begin{pmatrix} 1 & -M_{\bar{S}S}M_{SS}^{-1} \\ 0 & 0 \end{pmatrix}$$
$$P_{R} = L^{-1}P_{\bar{S}} = \begin{pmatrix} 1 & 0 \\ -M_{\bar{S}S}^{-1}M_{S\bar{S}} & 0 \end{pmatrix}$$
$$Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}$$

Luscher's properties:

$$P_{L}^{2} = P_{L} \quad ; \quad P_{R}^{2} = P_{R}$$

$$P_{L}M = MP_{R} = P_{L}MP_{R} = (1 - P)D(1 - P) = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$$

$$PP_{L} = P_{R}P = 0$$

$$P_{L}(1 - P) = (1 - P)P_{R} = (1 - P) = P_{5}$$

Luscher's algorithm

 $M\psi = UDL\psi = \eta$

Multiply by P_L and $1 - P_L$ obtaining two independent equations:

$$P_L M \psi = P_L \eta$$

 $(1 - P_L) M \psi = M(1 - P_R) \psi = (1 - P_L) \eta$

The first implies

$$P_L M P_R \psi = P_L \eta$$

and second implies

$$(1-P_R)\psi\equiv\psi_s+M_{s\bar{s}}^{-1}M_{s\bar{s}}\psi_{\bar{s}}=M_{s\bar{s}}^{-1}\eta_s$$

Luscher develops an inversion algorithm for

$$P_L M \chi = P_L \eta$$

and then reconstructs the complete solution

$$\psi = P_R \chi + M_{\rm ss}^{-1} \eta_s$$

Also we have

$$QM = 1 - P_R$$

Inversion of $P_L M$

Luscher suppress little Dirac Operator overhead with Schwarz alternating procedure (SAP)

$$(P_L M) M_{SAP} \phi = P_L \eta$$

$$\psi = M_{SAP} \phi$$

$$P_L = \begin{pmatrix} 1 & -M_{\bar{S}S} M_{SS}^{-1} \\ 0 & 0 \end{pmatrix}$$

• Each step of an outer Krylov solver involves an *inner* Krylov solution of the little Dirac op coarse grid

(日) (同) (目) (日) (日) (0) (0)

- This enters the matrix $P_L M$ being inverted and errors propagator into solution
- Luscher tightens the precision during convergence; uses history forgetting *flexible* GCR

Non-hermitian system possible as evalues of D_W live in right half of complex plane:

- Little Dirac operator for D_W is nearest neighbour
- Red black preconditioning of Little dirac op possible
- Schwarz alternating procedure possible as D_W does not connect red to red.

Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR) Aim to speed up the red-black preconditioned system as this starts better conditioned

$$\mathcal{H} = \left(M_{oo} - M_{oe}M_{ee}^{-1}M_{eo}
ight)^{\dagger}\left(M_{oo} - M_{oe}M_{ee}^{-1}M_{eo}
ight) = M_{\mathrm{prec}}^{\dagger}M_{\mathrm{prec}}$$

Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!

- Must find further suppression of little Dirac operator overhead as LDop more costly
- Must find a replacement for the Schwarz preconditioner
- Must find appropriate solver: (P_LM)M_{SAP} nonhermitian matrix so unsuitable for CG

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Must ensure system is tolerant to ill convergence of inner Krylov solver(s).

Hermiticity and improved subspace generation

· Hermitian system gains the properties

$$P_L^{\dagger} = P_R \qquad (P_L M)^{\dagger} = P_L M$$

• Since we use $\mathcal{H} = M_{\rm prec}^+ M_{\rm prec}$ we have a Hermitian Positive (semi) Definite matrix. Generate subspace with rational multi-shift solver applied to Gaussian noise

$$R(\eta^{ ext{Gaussian}}) = rac{24\epsilon}{(\mathcal{H}+\epsilon)(\mathcal{H}+2\epsilon)(\mathcal{H}+3\epsilon)(\mathcal{H}+4\epsilon)}$$

- Classic low pass filtering problem use rational filter
 - Gain $1/x^4$ suppression in single pass without inverse iteration
 - $\epsilon \sim 10^{-3}$ adds IR safety to the inversion O(1000) iterations per subspace vector
 - NB Also possible for $\gamma_5 D_W$

SHAPE OF VECTORS...

Little Dirac Operator

4 hop little Dirac operator is painful!

- Limit the stencil of the Little Dirac operator by requiring block $\geq 4^4$
- Mobius fermions M_{ee}^{-1} is non-local in s-direction \Rightarrow blocks stretch full s-direction
- · Sparse in 4d with next-to-next-to-next-to-nearest coupling
- Matrix still connects to 80 neighbours

$$\begin{array}{c} (\pm \hat{x}), \ (\pm \hat{y}), \ (\pm \hat{z}), \ (\pm \hat{t})\\ (\pm \hat{x} \pm \hat{y}), \ (\pm \hat{x} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{t}), \ (\pm \hat{y} \pm \hat{z}), \ (\pm \hat{y} \pm \hat{t}), \ (\pm \hat{z} \pm \hat{t})\\ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{t}), \ (\pm \hat{x} \pm \hat{z} \pm \hat{t}), \ (\pm \hat{y} \pm \hat{z} \pm \hat{t})\\ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{y} \pm \hat{z} \pm \hat{t})\end{array}$$

- · Underlying cost at least ten times more than non-Hermitian system
- Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension

(日) (日) (日) (日) (日) (日) (日) (日)

Little Dirac Operator Implementation

- 10×10 matrix multiply reasonably high cache reuse
- Using IBM xlc vector intrinsics gives adequate performance
- 80 small messages of order 1-5 KB
- Programme BG/Q DMA engines directly to eliminate MPI overhead
- Asynchronous send overhead under 10 microseconds with precomputed DMA descriptors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 50x faster than MPI calls.
- Single precision accelerated gives around 50 Gflop/s per node in L2 cache
- (re)Discovered bug in L2 cache around 4 months after Argonne

Replacing SAP preconditioner

Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian system that is accurate for high modes.

- Useful to prototype preconditioner using Chebyshev polynomials Can shape spectral response to any desired shape ... at a cost
- Naive left-right preconditioner:

$$L^{\dagger}(P_{L}\mathcal{H})L\phi = L^{\dagger}P_{L}\eta$$

Use fixed order Chebyshev polynomial preconditioner

$$L = \mathrm{Cheby}(x^{-\frac{1}{2}}, \mathcal{H})$$
 ; $\mathcal{H} = M_{\mathrm{prec}}^{\dagger} M_{\mathrm{prec}}$; $\chi = L\phi$

- This is Hermitian and works in CG, but is not a very good preconditioner.
- Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner M_P

$$M_P = L^{\dagger}L = \operatorname{Cheby}(x^{-\frac{1}{2}}, \mathcal{H}) \operatorname{Cheby}(x^{-\frac{1}{2}}, \mathcal{H}) \to \operatorname{Cheby}(x^{-1}, \mathcal{H})$$

- · Accuracy exponential in Cheby order so better to use single, higher order
- Found it best to restrict range of Chebyshev to be accurate at higher eigenvalues, rely on deflation on lowest modes!

Tuned chebyshev preconditioner spectral response

IR shift preconditioner

- Better to use a Krylov solver Data dependent coefficients seek optimal polynomial for the actual spectrum of H under some norm
- Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)

$$M_{IRS} = rac{1}{\mathcal{H} + \lambda}$$

- λ is an gauge covariant infra-red regulator that shifts the lowest modes
- · Keeps the Krylov solver working hard on the high mode region
- Plays similar role to the domain size in SAP
- Does not have locality benefit of SAP³

 $^{^{3}}$ Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by Mike Clark)

Robustness

Two inner Krylov solvers

- Little Dirac operator inversion $Q \equiv M_{SS}^{-1}$
- IR shifted preconditioner inversion $M_{IRS} = rac{1}{\mathcal{H}+\lambda}$

Curious robustness effects: during solution to $10^{-8}\ \text{on a}\ 16^3$ lattice

M_{ss}^{-1} residual	M_{IRS} residual	Iteration count
10^{-11}	10^{-8}	36
10 ⁻⁸	10^{-8}	Non converge ⁴
10^{-11}	10^{-8}	36
10^{-11}	10^{-4}	36
10^{-11}	10^{-2}	36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability in M but not Q

Robustness

Consider preconditioned CG with $A = P_L \mathcal{H} = \begin{pmatrix} 1 & -M_{\bar{S}S} M_{SS}^{-1} \\ 0 & 0 \end{pmatrix} \mathcal{H}$

- 1. $r_0 = b Ax_0$
- 2. $z_0 = M_{IRS}r_0$; $p_0 = z_0$
- 3. for iteration k
- 4. $\alpha_k = (r_k, z_k)/(p_k, Ap_k)$
- 5. $x_{k+1} = x_k + \alpha_k p_k$
- 6. $r_{k+1} = r_k \alpha_k A p_k$
- $7. \ z_{k+1} = M_{IRS}r_{k+1}$
- 8. $\beta_{\mathbf{k}} = (\mathbf{r}_{\mathbf{k}+1}, \mathbf{z}_{\mathbf{k}+1})/(\mathbf{r}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}})$
- 9. $\mathbf{p}_{\mathbf{k}+1} = \mathbf{z}_{\mathbf{k}+1} + \beta_{\mathbf{k}}\mathbf{p}_{\mathbf{k}}$
- 10. end for
 - Noise in the preconditioner M_{IRS} only enters the search direction α_k is based on matrix elements of $P_L \mathcal{H}$.
 - Better to use the Little Dirac operator inverse as a preconditioner ...and not separate the solution into subspace and complement

Combining preconditioners

• Have little Dirac operator Q and M_{IRS} representing approximate inverse

- Q on subspace containing low mode
- *M_{IRS}* on high mode space
- splitting is necessarily inexact
- · Options for combining these as a preconditioner
 - Additive

$$M_{IRS} + Q$$

• Consider alternating error reduction steps

Infer family of preconditioner

Sequence	Preconditioner	Name
additive	$M_{IRS} + Q$	AD
M _{IRS} , Q	$P_R M_{IRS} + Q$	A-DEF2
Q, M _{IRS}	$M_{IRS}P_L+Q$	A-DEF1
Q, M _{IRS} , Q	$P_R M_{IRS} P_L + Q$	Balancing Neumann Neumann (BNN)
Q, M _{IRS} , Q	$M_{IRS}P_L + P_RM_{IRS} + Q - M_{IRS}P_L\mathcal{H}M_{IRS}$	MG Hermitian $V(1,1)$ cycle

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to three levels

Take
$$Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}$$
 and $M_{IRS} = (\mathcal{H} + \lambda)^{-1}$

Method	$V_{\rm start}$	M1	M2	M ₃	$V_{\rm end}$
PREC	x	MIRS	1	1	xk+1
AD	x	$M_{IRS} + Q$	1	1	x_{k+1}
DEF1	x	MIRS	1	P_L	$Qb + P_R \times_{k+1}$
DEF2	$Qb + P_R x$	MIRS	P_R	1	x_{k+1}
A-DEF1	x	$M_{IRS}P_I + Q$	P_R	1	x_{k+1}
A-DEF2	$Qb + P_R x$	$P_R M_{IRS} + Q$	1	1	x_{k+1}
BNN	x	$P_R M_{IRS} P_L + Q$	1	1	x_{k+1}

Observations:

- Remain in deflated Krylov picture
- Luscher's algorithm is DEF1
- A-DEF2 moves the little Dirac operator into the preconditioner M₁
- A-DEF1 looks like V(1,0) multigrid
- A-DEF2 looks like V(0,1) multigrid
- Will make it Heirarchical by deflating the deflation matrix Q

Algorithm				
1.	x arbitrary			
2.	$x_0 = V_{\text{start}}$			
3.	$r_0 = b - \mathcal{H} \times_0$			
4.	$y_0 = M_1 r_0$; $p_0 = M_2 y_0$			
5.	for iteration k			
6.	$w_k = M_3 \mathcal{H} p_k$			
7.	$\boldsymbol{\alpha}_k = (\mathbf{r}_k, \mathbf{y}_k)/(\mathbf{p}_k, \mathbf{w}_k)$			
8.	$x_{k+1} = x_k + \alpha_k p_k$			
9.	$r_{k+1} = r_k - \alpha_k w_k$			
10.	$y_{k}=M_{1}r_{k}$			
11.	$\boldsymbol{\beta}_{\boldsymbol{k}} = (\mathbf{r}_{\boldsymbol{k}+1}, \mathbf{y}_{\boldsymbol{k}+1})/(\mathbf{r}_{\boldsymbol{k}}, \mathbf{y}_{\boldsymbol{k}})$			
12.	$\mathbf{p_{k+1}} = \mathbf{M_2y_{k+1}} + \boldsymbol{\beta_kp_k}$			
13.	end for			
14.	$x = V_{end}$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Why does CG work here?

• Hermiticity of M_1 clear for BNN but not A-DEF1/2 Theorem: for $V_{\text{start}} = Qb + P_{RX}$ A-DEF2 is identical to BNN.

• We have from
$$QH = (1 - P_R)$$

 $Qr_0 = Q[HV_{start} - b] = (1 - P_R)[Q_b + P_Rx] - Qb = P_RQ_b = 0$
 $QHp_0 = (1 - P_R)[P_RMP_L + Q]r_0 = 0$

get induction steps:

$$Qr_{j+1} = Qr_j - \alpha_j Q\mathcal{H}p_j = 0$$
$$Q\mathcal{H}p_{j+1} = (1 - P_R)[P_RMP_L + Q]r_j + \beta_j Q\mathcal{H}p_j = 0$$

• Can also show $P_L r_0 = 0$ and $P_L \mathcal{H} p_0 = \mathcal{H} p_0$ so that

$$P_L \mathcal{H} p_{j+1} = \mathcal{H} P_R [P_R M P_L + Q] r_j + \beta_j p_j = \mathcal{H} p_{j+1}$$

and

$$P_L r_{j+1} = P_L r_j - \alpha_j P_L \mathcal{H} p_j = r_j - \alpha_j \mathcal{H} p_j = r_{j+1}$$

BNN then retains $P_L r_j = r_j$ in exact subspace projection arithmetic \Rightarrow BNN iteration ($P_R M P_L r_j$) and A-DEF2 iteration ($P_R M r_j$) equivalent up to rounding

DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to rounding

They differ hugely in sensitivity to convergence error in Q

Reducing little Dirac operator overhead

- Use A-DEF2 to move the little Dirac operator into preconditioner Can relax convergence precision to 10⁻² ⇒ eight order of magnitude gain, saving of O(10) in cost
- Deflate the deflation matrix (Heirarchical). Computing 128 low modes is cheap and saves another factor of 10.
- Reduces O(2000) little Dirac operator iterations to O(20).

	Precision	Heirarchical deflation	iterations
- From 48 ³ at physical quark masses	10^{-7}	N	4478
	10^{-7}	Y	250
	10^{-2}	Y	63

 $100 \times reduction$ in little dirac operator overhead!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

HDCG algorithm

Subspace generation

1. Generate $N_{\rm S}$ vectors ϕ_k from rational (4th order low pass filter)

$$R(\mathcal{H}) = \frac{1}{(\mathcal{H} + \lambda_S)(\mathcal{H} + 2\lambda_S)(\mathcal{H} + 3\lambda_S)(\mathcal{H} + 4\lambda_S)}$$

applied to Gaussian noise Multishift Krylov tolerance ${\rm tol}_{S} \sim 10^{-6}$ Cutoff $\lambda_{S} \sim 10^{-3}$ O(1000) fine matrix multiplies for each vector

 Block these vectors \$\phi_k^b\$ (e.g. 4⁴ × L_s\$) and compute little Dirac operator Need only apply \$N_{stencil}\$ = 80 matrix multiplies per vector to compute little Dirac operator with a Fourier trick Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

- 3. Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.
- 4. Diagonalise this basis to make multiplication cheap

HDCG solver

Use outer CG A-DEF2 solver, DefICG little dirac solver

Method	$V_{\rm start}$	M1	M2	M ₃	$V_{\rm end}$
A-DEF2	$Qb + P_R x$	$P_R M_{IRS} + Q$	1	1	x_{k+1}
DefICG	$Qb + P_R^{X}$	1	1	$(1 - P_R)$	x_{k+1}
Where					

$$\begin{split} \mathcal{Q} &= \left(\begin{array}{cc} 0 & 0 \\ 0 & M_{SS}^{-1} \end{array} \right) \quad ; \quad \mathcal{P}_R = \left(\begin{array}{cc} 1 & 0 \\ -M_{SS}^{-1}M_{SS} & 0 \end{array} \right) \\ \mathcal{H} &= M_{\mathrm{pc}}^{\dagger}M_{\mathrm{pc}} \quad ; \quad M_{I\!RS} = \left[\mathcal{H} + \lambda_{\mathrm{pc}} \right]^{-1} \end{split}$$

- Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)
- M_{SS} inversion is itself deflated
- All operations in CG are perfromed in single precision except H multiply, x_j and r_j updates.

Tunable parameters

Fine Nvec 40 $4^4 \times L_5$ Fine blocksize 4th order rational λ s \sim 10 $^{-3}$ Fine subspace filter 10^{-6} Fine subspace tolerance Coarse Nvec 128 Coarse blocksize full volume Coarse subspace filter Inverse iteration (3) 10^{-7} Coarse subspace tolerance -1 $\left[M_{\rm DC}^{\dagger}M_{\rm DC} + \lambda_{\rm DC}\right]$ 8 iterations (tol $\sim 10^{-1}$) $\lambda_{\rm pc}$ 1.0 tol 5 \times 10⁻²

1. x arbitrary 2. $x_0 = V_{\text{start}}$ 3. $r_0 = b - \mathcal{H}x_0$ 4. $y_0 = M_1 r_0$; $p_0 = M_2 y_0$ 5 for iteration k 6. $w_k = M_3 \mathcal{H} p_k$ 7. $\alpha_k = (r_k, y_k)/(p_k, w_k)$ 8. $x_{k+1} = x_k + \alpha_k p_k$ 9. $r_{k+1} = r_k - \alpha_k w_k$ 10. $y_k = M_1 r_k$ 11. $\beta_{\mathbf{k}} = (\mathbf{r}_{\mathbf{k}+1}, \mathbf{y}_{\mathbf{k}+1})/(\mathbf{r}_{\mathbf{k}}, \mathbf{y}_{\mathbf{k}})$ 12. $p_{k+1} = M_2 y_{k+1} + \beta_k p_k$ 13. end for 14. $x = V_{end}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q. On 48³ × 96 × 24, M_{π} = 140MeV, a^{-1} = 1.73 GeV on 1024 node rack

Algorithm	Tolerance		Matmuls
CGNE (double)	10^{-8}	1270s	16000
CGNE (mixed)			23000
EigCG (mixed)	10^{-8}	320s	11710
EigCG (mixed)	10^{-4}	55s	1400
EigCG (setup)		10h	
EigCG (vectors)		600 vectors	
HDCG (mixed)	10^{-8}	170s	3100
HDCG (mixed)	10^{-4}	9s	200
HDCG (setup)		1h	
HDCG (vectors)		40 vectors	

- 10^{-4} precision is used for the All-mode-averaging analysis
 - Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG

Conclusions

Comparison	Gain
Exact Solve vs CGNE	7.5x
Exact Solve vs EigCG	2x
Inexact Solve vs EigCG	5×
Setup vs EigCG	10×
Footprint vs EigCG	20x

- Developed inexact deflation method to accelerating preconditioned normal equations Larger stencil required substantial algorithmic improvements
- Moving little Dirac operator into preconditioner gives more robust solver (10x)
- Heirarchical multi-level deflation (10x)
- IR shifted preconditioner replacement for SAP
- Preconditioned CG is to loose convergence of inner Krylov solver(s).
- No flexible algorithm was required
- Approach based in Krylov space methods, but similarities to multigrid

To do:

- Check for numerical rounding in $P_L r_j = r_j$
- Investigate numerically efficiency of additive Schwarz preconditioning ⁵ Domain decomposed preconditioner should give 2x Gflop/s improvement Greater locality ⇒ candidate exascale algorithm

⁵suggested by Mike Clark