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UKQCD resources

Weak Scaling for BAGEL DWF RB5D CG Solver

58 Gflops/node
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(1 rack = 1,024 nodes = 16,384 cores)

Bagel available as open source.

Now works with JLQCD's Irolro package
Used by JLQCD, , RBC, UKQCD, QCDSF
(KEK, LLNL, Edinburgh, BNL, Argonne)
Also part of IBM’s BG/Q diagnostics system

e 1.26Pflop/s system — codesigned BlueGene/Q with IBM.
e PAB designed the memory prefetch engine for BQC chip.

e Four joint patents in memory system design
0.1% of IBM's 2012 patent haul.
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SIMD optimisation

QPX supports paired complex SIMD operations (quad double)
e Develop BAGEL domain specific compiler for BG/Q QPX support
® Remember why SIMD was easy on the Connection Machine!

e Subdivide node volume into smaller virtual nodes
e Spread virtual nodes across SIMD lanes (these were memory banks in CM5)
* Modifies data layout to align data parallel operations to SIMD hardware

e Data parallel operation on both virtual nodes is now simple

e Crossing between SIMD lanes restricted to during cshifts between virtual nodes
e Code to treat N-virtual nodes is identical to scalar code for one, except datum is N fold

bigger
(A, B, C,D) (E,F,G,H) — (AE,BF,CG,DH)
—— —_—— — —
virtual subnode virtual subnode Packed SIMD

e CSHIFT involves a CSHIFT of SIMD, and a permute only on the surface
(AE, BF, CG, DH) — (BF, CG, DH, AE) — (BF, CG, DH, EA)

cshift bulk permute face



SIMD made easy

® Sequence of operations remains the same as on BG/Q after BAGEL layout transformation
e 0O(100%) SIMD efficiency

Optimised sequence of operations is identical for scalar complex and SIMD operation
BG/L(left, scalar complex) and BG/Q(right vector complex) assembler comparison

bt gt, __lab3

addi. %9 , %r13 , 0
__lab3:

fxcxnpma 0 , 30 , 29 , 26
debt  %r18,%r9

fxcxnpma 1, 30 , 22 , 24
stfpdx 9,%r2t,%r17
fxcxnpma 2 , 30 , 7 , 23
stfpdx 10,%r22,%r17
fxcxnpma 3 , 30 , 28 , 27
debt  %r20,%r9

fxcxnpma 4 , 30 , 21 , 25
stfpdx 11,%r23,%r17
fxcxnpma 5 , 30 , 6 , 31
la  %r16, -1(%r16)

fxpmul 7 , 15 , 0

debt  %r22,%r9

fxpmul 6 , 12, 0

_-lab3:

bt gt, __lab3
addi %r9 , %r13 , 0

qvfxxnpmadd 0 , 29 , 30 , 26
decbt  %ri8,%r9

qvfxxnpmadd 1 , 22 , 30 , 24
qustfdx  9,%r21,%r17
qvfxxnpmadd 2 , 7 , 30 , 23
qustfdx  10,%r22,%r17
qufxxnpmadd 3 , 28 , 30 , 27
dcbt %r20,%r9

qvfxxnpmadd 4 , 21 , 30 , 25
qustfdx 11,%r23,%r17
qvfxxnpmadd 5 , 6 , 30 , 31
la  %ri16, -1(%r16)
qvfxmul 7 , 15 , 0

debt  %r22,%r9

qvfxmul 6 , 12 , 0



Path to wider SIMD?

e cmfortran + MPI !

e F90 data parallel compiler with HPF-like distribute extensions controlling both SIMD and
Thread parallelism could be an exascale killer app

Generalises to wider SIMD

2x2x2x2 (MIC)

50% efficiency face operations till 16 way SIMD
* 25% efficiency for up to 474 = 256 way SIMD



Flavor physics from lattice QCD

Theoretical parameter | Value and uncertainties | Reference
f+(0) 0.9632 + 0.0028 £ 0.0051 Sec. 3
. . . . - Jx 156.3 £ 0.3+ 1.9 MeV Sec. 3
g E Ii/ = 1.205 £ 0.001 £ 0.010 Sec. 3
b am, AMBEET f e Io.lip 1186 £ 0.005 £ 0.010 Sec. 3
£ E I, 2513412445 MV Sec. 3
i E o, 231£3£15 MeV Sec. 3
i = In.lfn 1.209 4 0.007 £ 0.023 Sec. 3
H [ 3 Bg,/Bg, 1.01+0.01 +0.03 Sec. 3
> % - Bp, 1,284 0.02 4+ 0.03 Sec. 3
= B Bi 0.730 £ 0.004 + 0.036 Sec. 3
| e 0.940 £ 0.013 + 0.023 [10]
| & () (1.286 0013 £0.040) GeV' [10]
p q () (165.017 % 1156 2 0.11) GeV. 10]
= e " o5 = a,(Mz) 0.1176 +0.0020 4
- e computed from () and a, | [11]
P et 0474004 12]
e 0.5765 4 0.0065 13]
i 0.8393 4 0.0034 (10]

A key motivation for lattice field theory is theoretical input to flavour physics

Cabibbo, Kobayashi, Maskawa flavour induced by Higgs couplings
Sensitivity too New Particles through loop corrections if these also mix flavours
Possibly induce non-unitarity of measured CKM matrix

Relevance for both Energy & Intensity Frontier

e Lattice calculations increasingly dominant source of theoretical input
e Range of calculations increasing with time
c.f. RBC-UKQCD K — w7 work (2012 Wilson Award)

Focused K3 decays, fx/fr (Vus) and neutral kaon mixing within and beyond standard model,
K — 7



RBC-UKQCD simulation status

Ensembles

m (unitary, degenerate quarks) and a? for DWF ensembles
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New physical point Mobius (Hy) 2+1f ensembles, mycs ~ 1 MeV
lwasaki 483 x 96 x 24 a~! =1.75GeV 1600 Trajectories
Iwasaki 64> x 128 x 12 a~! =2.3GeV 2100 (1000) Trajectories



RBC-UKQCD simulation status

e All-mode-averaging analysis giving 0.1 % scale statistical errors for both ensembles

e EigCG deflation is used in solver
e 50 measurements on 48°

® 22 measurements on 64°

Quantity Physical Value

Simulation Value Deviation (Sim. - Phys.)/Phys.

My /Mg 0.2723 0.2793(6) 2.5%
M /Mo 0.0807 0.0835(5) 3.3%
my/ma 0.2964 0.2989(16) 0.8%

Above the 7, below the 7+/~.

fi /fr = 1.1014(21)



K3 form factor
(T(pe) Vil K (pK)) = ££7(a")(pxc + P )i + £ (6 ) (K = Pre)

e Product Gf V,Jsff"(q2 = 0) determined experimentally

e Theoretical input required to determine Vs (X in Wolfenstein parametrisation)
e Chiral perturbation theory, Lattice QCD are the most competitive approaches
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C 1+ £ (f=123MeV) +(mZ —m? )* (Ay +A, (m} +m2))
— 1+(m} )V /mE (Ag +A, (m} +m?))
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New datapoint eliminates systematic error in mass extrapolation.



Neutral Kaon oscillation and decay

s w d
e Ay
tA vyt =
—_— ——
d w s

Induces off diagonal part of Wigner Weisskopf Hamiltonian:

. G2 M3
My = g 2 [A2So(xe, Xe) + 2AcAeSo(xe, xt) + A7 So(xe, xt)]
X (K°|3y,(1 — v5)d5y, (1 — vs)d|K®)

Here,
Ae = Vi Vg = =AX(1 = p — in)

Indirect CP violation from imaginary part of /\f piece
= n(1 — p) = constant

hyperbola ex constraint
Also obtaining:
1. By giving 0.1% statistical error

2. K—nm A = % giving 2% statistical error
may lead to new constraint on in



Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

A max
Amin

K~

e Lattice chiral fermions possess an exact index theorem

® Index theorem = 3 near zero modes separated from zero only by quark mass

e Recent algorithmic progress eliminates low mode subspace from Krylov inversion
EigCG:

e Determine Nyec ~ O(V) eigenvectors ¢; up to some physical A

o 48% = 600 vectors, 64> = 1500 vectors

e Significant setup cost & storage cost < V2

e Eliminates N,ec dimensional subspace S = sp{¢;} from problem

Mszz € 1 1.,
M = 5 ) ; M = —|iY(i
(" = il
Where € = M is proportional to the error in the eigenvectors
Guess ¢ = diag{0} & diag{+ }n
!



Why can we do better

Luscher's observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons
® N-zero modes look like admixtures of single instanton eigenmodes
e Divide one mode into chunks centred on each each instanton

® All N-zero modes described by the span of these chunks




Luscher’s inexact deflation

Avoid critical slowing down in Krylov solution of

My =n

® Accelerate sparse matrix inversion by treating a vector subspace S = span{¢x } exactly

e |f the lowest lying eigenmodes are well contained in S the “rest” of the problem avoids
critical slowing down

Setup:
® Must generate subspace vectors ¢, that are “rich” in low modes
e Subdividing these vectors into blocks b

s ={ 2 reh

yields a much larger subspace® e.g. 48 x 96 lattice with 4* blocks gives a 123 x 24 coarse grid
and O(10*) bigger deflation space.

1This idea was previously used in adaptive multigrid where small covariant derivative <+ algebraically smooth.
Blocks <+ aggregates. Luscher, though reinventing ideas used in multigrid, established connection between Krylov
deflation such as EigCG and MG



Luscher's setup

Introduce subspace projectors

Ps=> lop)(¢nl i Ps=1-Ps (1)
k,b

Compute Ms; as

wv—( Mss Mss ) _( PsMPs PsMPs
Mss  Mss PsMPs  PsMPs

e Can represent matrix M exactly on this subspace by computing its matrix elements, known as
the little Dirac operator 2

A = (67 M| dy)
(Mss) = AZ|67) (47|

and 1 1yab b
Mss = (A7) 167 (45

A inherits a sparse structure from M

2Coarse grid matrix in MG



Subspace Schur decomposition

We can Schur decompose any matrix

Mss  Ms.
M: S S5
[ MSS_' Mss :|
1 MsMt S 0 1
) 1 0 M Mz Mss
= UDL

where the Schur complement
-1
S = Mss — Mss M~ Mss
and the inverse matrix is

M~l=1"'p Yyt

B 1 0 st 0 1 —MsM!t
Tl MM 1 0o Mt 0



Projector properties

Lower and upper diagonal matrices of Schur decomp. correspond to Luscher's projectors P, and Pg

_py-t_ (1 —MssM!
P, = PsU 7< : s

Luscher's properties:
Pl=P ; Pi=Pg

PLM:I\/IPR:PLMPR:(l—P)D(l—P):( o0 )
PP, = PP =0

P1—P)=(1—-P)Pr=(1—P)=P;s



Luscher's algorithm

My = UDLyp =n
Multiply by P, and 1 — P, obtaining two independent equations:
PLMy = Prn
(1 — PL)M”L‘D = M(l — PR)w = (1 — PL)"7

The first implies
PLMPry = Prn

and second implies
(1= PR)Y = s + M Mssths = M s
Luscher develops an inversion algorithm for
PLMx = Pin
and then reconstructs the complete solution
W = Prx + M.

Also we have
QM =1 — Pg



Inversion of Pf M

Luscher suppress little Dirac Operator overhead with Schwarz alternating procedure (SAP)

(PLM)Msap¢ = P

Y = Msapd
_ (1 —MssM
PL= ( 0 0

e Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op
coarse grid

® This enters the matrix P. M being inverted and errors propagator into solution

® Luscher tightens the precision during convergence; uses history forgetting flexible GCR
Non-hermitian system possible as evalues of Dy live in right half of complex plane:

e Little Dirac operator for Dy is nearest neighbour

® Red black preconditioning of Little dirac op possible

e Schwarz alternating procedure possible as Dy does not connect red to red.



Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR)
Aim to speed up the red-black preconditioned system as this starts better conditioned

— T -
H= (Moo - MoeMeelMeo) (Moo - MoeMeelMeo) = MT Mprcc

prec

‘ Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!
e Must find further suppression of little Dirac operator overhead as LDop more costly
e Must find a replacement for the Schwarz preconditioner
® Must find appropriate solver: (P.M)Msap nonhermitian matrix so unsuitable for CG

® Must ensure system is tolerant to ill convergence of inner Krylov solver(s).



Hermiticity and improved subspace generation

® Hermitian system gains the properties
Pl = Pg (M)t = PM

® Since we use H = Mgrec Mprec We have a Hermitian Positive (semi) Definite matrix.
Generate subspace with rational multi-shift solver applied to Gaussian noise

R Gaussiany __ 24e
( )= HT O T 20 131 + 49)

e Classic low pass filtering problem — use rational filter

e Gain 1/><4 suppression in single pass without inverse iteration
e ¢~ 1073 adds IR safety to the inversion O(1000) iterations per subspace vector
e NB Also possible for vs Dy

SHAPE OF VECTORS...



Little Dirac Operator

4 hop little Dirac operator is painful!
e Limit the stencil of the Little Dirac operator by requiring block > 4*
® Mobius fermions M;el is non-local in s-direction = blocks stretch full s-direction
® Sparse in 4d with next-to-next-to-next-to-nearest coupling

® Matrix still connects to 80 neighbours
(£2), (£9). (£2), (&)
(£2+9), (£8£2)
(£8+y9+2), (£8Ly

x>

e Underlying cost at least ten times more than non-Hermitian system

e Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension



Little Dirac Operator Implementation

10 x 10 matrix multiply reasonably high cache reuse

Using IBM xlc vector intrinsics gives adequate performance

80 small messages of order 1-5 KB

Programme BG/Q DMA engines directly to eliminate MPI overhead

Asynchronous send overhead under 10 microseconds with precomputed DMA descriptors.
50x faster than MPI calls.

Single precision accelerated gives around 50 Gflop/s per node in L2 cache

(re)Discovered bug in L2 cache around 4 months after Argonne



Replacing SAP preconditioner
Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian
system that is accurate for high modes.

e Useful to prototype preconditioner using Chebyshev polynomials
Can shape spectral response to any desired shape ... at a cost

e Naive left-right preconditioner:
L' (PLH)Ly = LTPin
Use fixed order Chebyshev polynomial preconditioner

L=Cheby(x 2,H) : H=M My : x=Lo

prec

e This is Hermitian and works in CG, but is not a very good preconditioner.

® Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner Mp

1
Mp=1LTL = Chcby(xié ,H)Cheby(x~ 2, H) — Cheby(x ', H)

Accuracy exponential in Cheby order so better to use single, higher order

e Found it best to restrict range of Chebyshev to be accurate at higher eigenvalues, rely on
deflation on lowest modes!

Tuned chebyshev preconditioner spectral response



IR shift preconditioner

e Better to use a Krylov solver
Data dependent coefficients seek optimal polynomial for the actual spectrum of H under
some norm

® Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)
Migs = —

HA+ A

® )\ is an gauge covariant infra-red regulator that shifts the lowest modes

e Keeps the Krylov solver working hard on the high mode region

® Plays similar role to the domain size in SAP

e Does not have locality benefit of SAP?

3Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by
Mike Clark)



Robustness

Two inner Krylov solvers

e Little Dirac operator inversion Q = MgSI
® |R shifted preconditioner inversion Mjgs = ﬁ

Curious robustness effects: during solution to 1072 on a 16° lattice

Ms_sl residual Mrs residual Iteration count
1071 1078 36
108 108 Non converge
10- 1 10°° 36
10~ 10~* 36
1071 1072 36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability
in M but not Q

“smallest residual is 107 then diverges. Here Luscher introduced flexible algorithms



Robustness

Y !
Consider preconditioned CG with A = PLH = ( (1) 7M58M55 > H

1.
2
3
4
5.
6
-
8
9

10.

rg:bfAXU

. 20 = Migsro ; po = zo
. for iteration k

- ak = (e, zi) / (Prs APx)

Xk+1 = Xk + Ok Pr

- Tk+1 = rk — axApk
- Zk+1 = Migsrii1
- B = (nern, ziee1) / (e, 2i)

- Pkl = Zkt1 + BePk

end for
Noise in the preconditioner Mjrs only enters the search direction
a is based on matrix elements of P, H.

Better to use the Little Dirac operator inverse as a preconditioner
...and not separate the solution into subspace and complement



Combining preconditioners

e Have little Dirac operator Q and M)gs representing approximate inverse

e Q on subspace containing low mode
® Migrs on high mode space
e splitting is necessarily inexact

e Options for combining these as a preconditioner

e Additive
Migs + Q
e Consider alternating error reduction steps
Xiy1 = xi + Migs[b — Hxi]
Xit2 = Xit1 + Q[b — Hxiy1]

X;i + Migs[b — Hxi] + Q[b — H[x; + Migs[b — Hx]]]
xi + [(1 = QH)Mirs 4+ Q](b — Hx;)
xi + [PRMirs + Q](b — Hx;)

e Infer family of preconditioner

Sequence Preconditioner Name
additive Migs + Q AD
Mirs, Q PrMigs + Q A-DEF2
Q, Migs MigsPL + Q A-DEF1
Q, Migs, Q PrMigsP, + Q Balancing Neumann Neumann (BNN)

Q, MIRS: Q MIRSPL + PRMIRS + Q — M/R5PLHM(R5 MG Hermitian V(].,].) cycle



Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to

Generalised framework for inexact deflation solvers

three levels
Take Q = 0 0_1 and Migs = (H + ) ~!
0 Mg
Method Vstart My My M3 Vend
PREC x Migs 1 1 Xkt1
AD x Migs + Q@ 1 1 Xkt 1
DEF1 x Mgs 1 P Qb + PR
DEF2 Qb+ Ppx Migs PR 1 Xet1
A-DEF1 x MirsPL + Q PR 1 X1
A-DEF2 Qb+ Pgx PrMgs + @ 1 1 X1
BNN x PRMirsPL + Q 1 1 X1

Observations:

® Remain in deflated Krylov picture

® Luscher's algorithm is DEF1

A-DEF1 looks like V(1,0) multigrid
A-DEF?2 looks like V/(0,1) multigrid

A-DEF2 moves the little Dirac operator into the preconditioner My

Will make it Heirarchical by deflating the deflation matrix Q

10.
11
12.
13.
14.

o o > wN

Algorithm
x arbitrary
X0 = Vstart
n=b— Hxg

yo = Myrg i pg = Mayg

for iteration k

wy = M3Hpy

ap = (1 ye)/(Prs W)
Xk+1 = Xk T kPk

Tkl = M = W

Yk = Myrg

Bk = (k15 Yk+1)/ (rcs i)
Picr1 = M2y + Bipi
end for

x = Vend




Why does CG work here?

Hermiticity of My clear for BNN but not A-DEF1/2
Theorem: for Viiart = Qb + Prx A-DEF2 is identical to BNN.

We have from QH = (1 — Pg)
Qro = Q[H Vistars — bl = (1 — Pr)[Qp + Prx] — Qb= PrQ, =0
QHpo = (1 — Pr)[PRMP. + Q]rp =0
get induction steps:
Qriy1 = Qi — ;QHp; =0
QHpj+1 = (1 — Pr)[PRMPL + Q]r; + B;Q@Hp; =0
Can also show P rp = 0 and P Hpo = Hpo so that
P Hpj+1 = HPR[PRMPL + Q]r; + Bjp; = Hpj1

and
Pirji = Pury — ajPiHp; = 1; — ajHp = rjin

BNN then retains Py r; = r; in exact subspace projection arithmetic
= BNN iteration (PrMPyr;) and A-DEF2 iteration (PrMr;) equivalent up to rounding

DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to rounding

’ They differ hugely in sensitivity to convergence error in Q




Reducing little Dirac operator overhead

o Use A-DEF2 to move the little Dirac operator into preconditioner
Can relax convergence precision to 102
=> eight order of magnitude gain, saving of O(10) in cost

e Deflate the deflation matrix (Heirarchical).
Computing 128 low modes is cheap and saves another factor of 10.

® Reduces O(2000) little Dirac operator iterations to O(20).

Precision ‘ Heirarchical deflation ‘ iterations
3 . 1077 N 4478
From 487 at physical quark masses 10-7 v 250
1072 Y 63

100 x reduction in little dirac operator overhead! ‘




HDCG algorithm

Subspace generation
1. Generate Ng vectors ¢y from rational (4th order low pass filter)
1
(H + As)(H + 2Xs)(H + 3As)(H + 4Xs)

R(H) =

applied to Gaussian noise
Multishift Krylov tolerance tols ~ 107°
Cutoff As ~ 10~% O(1000) fine matrix multiplies for each vector

2. Block these vectors q&ﬁ (e-g. 4% x Ls) and compute little Dirac operator
Need only apply Nstencit = 80 matrix multiplies per vector to compute little Dirac operator
with a Fourier trick
Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

3. Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.

4. Diagonalise this basis to make multiplication cheap



HDCG solver

Use outer CG A-DEF2 solver, DeflCG little dirac solver

Method | Vgtart My My M3 Vend
ADEF2 | Qb+ Prx  PrMjps + Q@ 1 1 N1
DefICG | Qb+ Pgx 1 1 (1—-PR) X
Where
( 0 0 ) , ( 1 0 )
= -1 P R = =1
0 Mg —Mss Mgz 0

H =Ml Mpe Migs = [ + Apc]

Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)
® Mgg inversion is itself deflated
All operations in CG are perfromed in single precision except H multiply, ;

and r; updates.

Tunable parameters

Fine Nyec 40
Fine blocksize 44 X L
Fine subspace filter 4th order rational Ag ~ 10—3
Fine subspace tolerance 100
Coarse Nyec 128
Coarse blocksize full volume
Coarse subspace filter Inverse iteration (3)
Coarse subspace tolerance 107
[M}‘;C Mpe + Ape] -t 8 iterations (tol ~ 10— 1)
Apc 1.0
Mzt tol 5 x 1072

SS

-

10.
11

12.
13.
14.

© ® N o o A W N

X arbitrary
x0 = Vstart
rp=>b— Hxy

Yo = Mirg i po = Mayg

for iteration k

wi = M3Hpy
A
Xk41 = Xk T okPk

Tkl = Tk — XkWk

Yk = My

Bk = (k41> Yk+1)/ (k> k)
Pl = Mayip1 + Bpk

end for

x = Vend




Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q.
On 48% x 96 x 24, M, = 140MeV, a—' = 1.73 GeV on 1024 node rack

Algorithm Tolerance Matmuls
CGNE (double) 10°8 1270s 16000
CGNE (mixed) 23000
EigCG (mixed) 1078 320s 11710
EigCG (mixed) 1074 55s 1400
EigCG (setup) 10h
EigCG (vectors) 600 vectors
HDCG (mixed) 1078 170s 3100
HDCG (mixed) 10~* 9s 200
HDCG (setup) 1h
HDCG (vectors) 40 vectors

10~* precision is used for the All-mode-averaging analysis

® Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG



Conclusions

Comparison ‘ Gain
Exact Solve vs CGNE 7.5x
Exact Solve vs EigCG 2x
Inexact Solve vs EigCG 5x

Setup vs EigCG 10x
Footprint vs EigCG 20x

Developed inexact deflation method to accelerating preconditioned normal equations
Larger stencil required substantial algorithmic improvements

Moving little Dirac operator into preconditioner gives more robust solver (10x)
Heirarchical multi-level deflation (10x)

IR shifted preconditioner replacement for SAP

Preconditioned CG is to loose convergence of inner Krylov solver(s).

No flexible algorithm was required

Approach based in Krylov space methods, but similarities to multigrid

To do:

Check for numerical rounding in P.ry = r;

Investigate numerically efficiency of additive Schwarz preconditioning °
Domain decomposed preconditioner should give 2x Gflop/s improvement
Greater locality = candidate exascale algorithm

5suggested by Mike Clark



