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UKQCD resources
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BG/Q Racks

(1 rack = 1,024 nodes = 16,384 cores)

58 Gflops/node

• Performance and scalability are good;
Bagel available as open source.
Now works with JLQCD’s IroIro package
Used by JLQCD, , RBC, UKQCD, QCDSF
(KEK, LLNL, Edinburgh, BNL, Argonne)
Also part of IBM’s BG/Q diagnostics system

• 1.26Pflop/s system – codesigned BlueGene/Q with IBM.

• PAB designed the memory prefetch engine for BQC chip.

• Four joint patents in memory system design
0.1% of IBM’s 2012 patent haul.



Why does it scale?

© 2011 IBM Corporation 19 7/10/2011 

Performance 
!  Nearest Neighbor Exchange  

! Optimized SPI software, no other traffic 

! Peaks at 35.4 GB/s 

! Half peak at ~4 KB message size 

! 88.4% of raw link bandwidth 

! 98.3% of peak data utilization 

!  All-to-All pattern on 512 nodes:   97% of peak 

! Optimized SPI software, no other traffic 

Messages  
Spill L2 



SIMD optimisation

QPX supports paired complex SIMD operations (quad double)

• Develop BAGEL domain specific compiler for BG/Q QPX support

• Remember why SIMD was easy on the Connection Machine!

• Subdivide node volume into smaller virtual nodes
• Spread virtual nodes across SIMD lanes (these were memory banks in CM5)
• Modifies data layout to align data parallel operations to SIMD hardware

• Data parallel operation on both virtual nodes is now simple

• Crossing between SIMD lanes restricted to during cshifts between virtual nodes
• Code to treat N-virtual nodes is identical to scalar code for one, except datum is N fold

bigger
(A,B,C ,D)︸ ︷︷ ︸

virtual subnode

(E , F ,G ,H)︸ ︷︷ ︸
virtual subnode

→ (AE ,BF ,CG ,DH)︸ ︷︷ ︸
Packed SIMD

• CSHIFT involves a CSHIFT of SIMD, and a permute only on the surface

(AE ,BF ,CG ,DH)→ (BF ,CG ,DH,AE)︸ ︷︷ ︸
cshift bulk

→ (BF ,CG ,DH, EA)︸ ︷︷ ︸
permute face



SIMD made easy

• Sequence of operations remains the same as on BG/Q after BAGEL layout transformation

• O(100%) SIMD efficiency

Optimised sequence of operations is identical for scalar complex and SIMD operation
BG/L(left, scalar complex) and BG/Q(right vector complex) assembler comparison

bt gt, __lab3

addi. %r9 , %r13 , 0

__lab3:

fxcxnpma 0 , 30 , 29 , 26

dcbt %r18,%r9

fxcxnpma 1 , 30 , 22 , 24

stfpdx 9,%r21,%r17

fxcxnpma 2 , 30 , 7 , 23

stfpdx 10,%r22,%r17

fxcxnpma 3 , 30 , 28 , 27

dcbt %r20,%r9

fxcxnpma 4 , 30 , 21 , 25

stfpdx 11,%r23,%r17

fxcxnpma 5 , 30 , 6 , 31

la %r16, -1(%r16)

fxpmul 7 , 15 , 0

dcbt %r22,%r9

fxpmul 6 , 12 , 0

bt gt, __lab3

addi %r9 , %r13 , 0

__lab3:

qvfxxnpmadd 0 , 29 , 30 , 26

dcbt %r18,%r9

qvfxxnpmadd 1 , 22 , 30 , 24

qvstfdx 9,%r21,%r17

qvfxxnpmadd 2 , 7 , 30 , 23

qvstfdx 10,%r22,%r17

qvfxxnpmadd 3 , 28 , 30 , 27

dcbt %r20,%r9

qvfxxnpmadd 4 , 21 , 30 , 25

qvstfdx 11,%r23,%r17

qvfxxnpmadd 5 , 6 , 30 , 31

la %r16, -1(%r16)

qvfxmul 7 , 15 , 0

dcbt %r22,%r9

qvfxmul 6 , 12 , 0



Path to wider SIMD?

• F90 data parallel compiler with HPF-like distribute extensions controlling both SIMD and
Thread parallelism could be an exascale killer app

• cmfortran + MPI !

Generalises	
  to	
  wider	
  SIMD	
  

•  2x2	
  (SSE	
  single,	
  Al/vec)	
  

Permute/insert/extract	
  stencils	
  simple	
  
•  50%	
  efficiency	
  face	
  opera/ons	
  /ll	
  16	
  way	
  SIMD	
  

•  25%	
  	
  efficiency	
  for	
  up	
  to	
  4^4	
  =	
  256	
  way	
  SIMD	
  

•  Permuta/on/insert/extract	
  masks	
  
required	
  for	
  16	
  way	
  SIMD	
  &	
  2x2x2x2	
  

•  2x2x2x2	
  (MIC)	
  



Flavor physics from lattice QCD

Theoretical parameter Value and uncertainties Reference

f+(0) 0.9632 ± 0.0028 ± 0.0051 Sec. 3

fK 156.3 ± 0.3 ± 1.9 MeV Sec. 3

fK/f⇡ 1.205 ± 0.001 ± 0.010 Sec. 3

fDs/fD 1.186 ± 0.005 ± 0.010 Sec. 3

fDs 251.3 ± 1.2 ± 4.5 MeV Sec. 3

fBs 231 ± 3 ± 15 MeV Sec. 3

fBs/fB 1.209 ± 0.007 ± 0.023 Sec. 3

B̂Bs/B̂Bd
1.01 ± 0.01 ± 0.03 Sec. 3

B̂Bs 1.28 ± 0.02 ± 0.03 Sec. 3

B̂K 0.730 ± 0.004 ± 0.036 Sec. 3

✏ 0.940 ± 0.013 ± 0.023 [10]

mc(mc) (1.286 ± 0.013 ± 0.040) GeV [10]

mt(mt) (165.017 ± 1.156 ± 0.11) GeV [10]

↵s(MZ) 0.1176 ± 0.0020 [4]

⌘cc computed from mc(mc) and ↵s [11]

⌘ct 0.47 ± 0.04 [12]

⌘tt 0.5765 ± 0.0065 [13]

⌘̂B 0.8393 ± 0.0034 [10]

Table 2: Theoretical inputs used for the global fit of ref. [1]. The errors were treated using the Rfit
scheme.
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• A key motivation for lattice field theory is theoretical input to flavour physics

• Cabibbo, Kobayashi, Maskawa flavour induced by Higgs couplings
Sensitivity too New Particles through loop corrections if these also mix flavours
Possibly induce non-unitarity of measured CKM matrix

• Relevance for both Energy & Intensity Frontier

• Lattice calculations increasingly dominant source of theoretical input
• Range of calculations increasing with time

c.f. RBC-UKQCD K → ππ work (2012 Wilson Award)

• Focused Kl3 decays, fK/fπ (Vus ) and neutral kaon mixing within and beyond standard model,
K → ππ



RBC-UKQCD simulation status

Ensembles

RBC/UKQCD 2+1 flavor (M)DWF ensembles
Ensembles Primary Publications Physical Quantities Relevant to this 

Proposal
1-4 Phys.Rev. D78 (2008) 114509 , , , ,f f B m mK ud sr J  single lattice spacing

1,2,5,6,7 Phys.Rev. D83 (2011) 074508
Phys.Rev. D84 (2011) 014503

, , ,f f m mK ud sr  continuum limit
BK  continuum limit

2 (163 volume) Phys. Rev. D84 (2011) 114503 K " rr I=0, 2 (unphys. kinematics)
1 Eur. Phys. J. C69 (2010) 159 ( )f 0Kr

+

9 Phys. Rev. Lett. 108 (2012) 141601
Phys, Rev, D86 (2012) 074513

Phys. Rev. Lett. 110 (2013) 152001

K I 2" rr =^ h  single lattice spacing
K I 2" rr =^ h  single lattice spacing

/I 1 2D =  rule, partial understanding
1,2,5,6,7,8,9 arXiv:1208.4412 , , , ,f f B m mK ud sr J  improved chiral ext.

This proposal and companion from Christ:
�� Generate ensemble 11

�� Measure , , , , , ( ),f f B m m f K0K ud s K I 2" rrr rJ
+

=^ h
�� Generation of ensemble 10 and correspond-

ing measurements being done on RBC and 
UKQCD BGQ resources

�� Extensive use of deflation and all mode 
averaging to speed up measurements by 
5-20x

New physical point Mobius (HT ) 2+1f ensembles, mres ∼ 1 MeV

Iwasaki 483 × 96× 24 a−1 = 1.75GeV 1600 Trajectories
Iwasaki 643 × 128× 12 a−1 = 2.3GeV 2100 (1000) Trajectories



RBC-UKQCD simulation status

• All-mode-averaging analysis giving 0.1 % scale statistical errors for both ensembles

• EigCG deflation is used in solver

• 50 measurements on 483

• 22 measurements on 643

Ensemble 10:  483 × 96 × 24 with 1/a = 1.73 GeV
�� Using Mobius DWF (MDWF) and have mres�Ⱦ�����RI�SK\VLFDO�OLJKW�TXDUN�PDVV 

mres is 5× smaller than previous simulations (ensembles 1,2,3,4) at this 1/a.

�� CG iteration counts for MDWF 1.5-2× DWF (4d vs. 5d preconditioning?). 
MDWF reduced mres compared to DWF for similar CPU time at this 1/a. 
(Better improvement for DWF thermo.)

�� Force gradient integrator and evolution code by Hantao Yin, solvers by Peter Boyle.  
%*4���������*IORSV�QRGH���������RI�SHDN��GHSHQGLQJ�RQ�ORFDO�YROXPH�

�� 1100 MD time units produced (100 M BGQ core hours) initially with RBRC and 
BNL BGQ.  Most of evolution done on 1 or 2 rack BGQ at Edinburgh.

�� We are at the physical point to a few percent accuracy! 

      

1 Question 1

Are there other calculations, such as long distance contributions to kaon decays, that will
use these ensembles or the G-parity boundary condition ensembles proposed separately?

For the 483 × 96 × 24, 2+1 flavor DWF + Iwasaki gauge action (DWF+I) ensembles we are
currently producing, we have the following results (Table 1) from 26 configurations:

Quantity Physical Value Simulation Value Deviation (Sim. - Phys.)/Phys.
mπ/mK 0.2723 0.2793(6) 2.5%
mπ/mΩ 0.0807 0.0835(5) 3.3%
mK/mΩ 0.2964 0.2989(16) 0.8%

Table 1: Results from measurements on 26, 483 × 96 × 24 configurations, comparing the directly
measured values of mπ, mK and mΩ to physical ratio. The physical ratios use mπ = 135.0 MeV, mK =
495.7 MeV and mΩ = 1.6723 GeV, appropriate for isospin symmetric QCD without electromagnetic
effects. There are no chiral extrapolations in the simulation results, rather these mass values come
directly from the measured two-point functions.

The proposed 643 × 128 × 12 ensembles have an almost identical volume (5.5 fm)3 and should
be equally close to physical light and strange quark masses. As such, these two ensembles are ideal
targets for any set of measurements where the chiral extrapolation is an important source of error,
and/or where one wants the full continuum symmetries of QCD at finite lattice spacing. Clearly a
very small chiral extrapolation, possibly with dynamical light and strange quark reweighting, is all
that is needed to correct for the few percent difference between the simulated masses and the physical
ones.

On our 483 ensembles, we have measured ZA = 0.71184(13) (from the ratio of local to conserved
axial currents) and ZV = 0.7123(13) from the matrix element of the local vector current in pion
states. We see that ZA = ZV to better than our 0.2% statistical error, so chiral symmetry on these
lattices is very good.

These ensembles will be used for many measurements within RBC/UKQCD and, quite likely,
USQCD. They will certainly be used for our evolving study of isospin breaking and electromagnetic
effects and could be very important for nucleon physics, if the (5.5 fm)3 is determined to be large
enough for these measurements. Many nucleon matrix elements requiring renormalization could be
calculated on these lattices, since the good chiral symmetry reduces operator mixing. RBC/UKQCD
are pursuing heavy quark physics on these lattices, since here as well the very small chiral extrapo-
lation is an advantage. Many of our kaon measurements, such as long distance effects and rare kaon
decays, are planned to move to these ensembles as the techniques are improved and the computer
resources increase.

In short, these lattices should support a wide variety of measurements. The good chiral symmetry,
almost physical quark masses and continuum-like renormalization properties of these lattices make
them ideal for virtually any QCD measurement.

The G-parity lattices may be useful for long-distance effects in kaon physics, since the intermediate
pion state would not appear. We plan to calculate other, basic hadronic observables on the G-parity
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�� At simulation parameters, f� = 132.7 +/- 0.0003 MeV, fK = 158.1 +/- 0.2 MeV. 
m�

 �LV�VOLJKWO\�WRR�ODUJH�KHUH�DQG�WKHUH�DUH�Ⱦ����VFDOH�2�D2) errors present.

�� ZA = 0.71184(13) and ZV� ������������VR�0':)�Ƶ6%�LV�YHU\�VPDOO�

Above the π0, below the π+/−.

fK/fπ = 1.1914(21)



Kl3 form factor

〈π(pπ)|Vµ|K(pK )〉 = f Kπ+ (q2)(pK + pπ)µ + f Kπ− (q2)(pK − pπ)µ

• Product GFVus f
Kπ

+ (q2 = 0) determined experimentally

• Theoretical input required to determine Vus (λ in Wolfenstein parametrisation)
• Chiral perturbation theory, Lattice QCD are the most competitive approaches
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New datapoint eliminates systematic error in mass extrapolation.



Neutral Kaon oscillation and decay
3

scheme S to the scheme MS, and US(µ, µn) is the
usual running matrix in the scheme S computed in
perturbation theory. In the previous equation we have
made explicit the fact that our method consists in
re-expressing the running matrix, usually computed
in perturbation theory, by a product of continuum
non-perturbative step scaling matrices.

One notices that in the first n�1 steps, the lower bound
of the Rome-Southampton window (⇤QCD) is replaced by

a more advantageous one (L�1
i ). In other words: we do

not need to be in the perturbative regime. Moreover a
better control of the upper bound is achieved by tak-
ing the continuum limit of the step scaling function (in
particular there is no discretisation error of order a2

0µ
2
n

in contrast to the “naive” RI-MOM implementation). A
couple of remarks are in order:

• Using twisted boundary conditions circumvents the
Fourier mode constraints and allows us to fix the
orientation of the momentum while changing its
magnitude. As emphasised in [12], thanks to this
property we can compute the vertex functions for
an arbitrary number of points lying on the same
scaling trajectory. The continuum limit of the ver-
tex function as a function of µ2 is then properly de-
fined and in particular we do not need to perturba-
tively subtract any lattice artefact. The continuum
extrapolation is also easier since, if we know the lat-
tice spacings with su�cient precision, we can sim-
ulate any arbitrary momentum. This is also useful
because our method requires that each momentum
p = µ0, µ1, . . . µn has to be common to di↵erent sets
of lattices.

• Since we impose periodic boundary conditions, one
could worry about the use of perturbation theory
in a small volume, where the space extent is of
the order of (or smaller than) ⇤�1

QCD [15]. How-
ever we claim that in a non-exceptional graph with
hard external momenta, decoupling will ensure, for
µ � L�1, that our computation is free from fi-
nite volume e↵ects and finite volume perturbation
theory is not needed. While this might need fur-
ther investigation, it is not relevant here since we
consider only “infinite” volumes (of spatial extent
much larger than ⇤�1

QCD).

Before closing this section we wish to mention other
works on non-perturbative running in RI-MOM. Taking
the continuum limit of the ratio of Z factors at di↵er-
ent energies in an RI-MOM scheme was first proposed
in [16] but the authors did not address how to match
the momenta computed with di↵erent lattice spacings
such that the lattice artefacts have an a2 expansion. Zh-
estkov [17] used fine tuning of � in the quenched ap-
proximation to exactly match the Fourier modes but did
not define a quantity which has a well-defined contin-
uum limit. More recent work has looked at the ratios of

d

s d

s

t t

W

W

FIG. 1: Example of box diagram contributing to K0 � K0

mixing in the Standard model.

Zs [14, 18, 19]. However, how to continuum extrapolate
the distinct Fourier modes with distinct lattice artefacts
must be addressed. Some cases have model input like
perturbative subtraction of the lattice discretisation ef-
fects, or rules of thumb such as use of sin(p) instead of
p. Instead here we follow [12] and implement twisted
boundary conditions to keep the orientation of the mo-
menta fixed and give the observables a smooth a2 depen-
dence, and allow for a full non-perturbative continuum
extrapolation.

Renormalization of kaon weak matrix elements.
In this section we give the definitions of the kaon
four-quark operators that we consider in this work. We
refer the reader who would like to find more details
about this part to the recent reviews [20, 21].

In the standard model, neutral kaon mixing is dom-
inated by box diagrams like the one shown in fig-
ure 1. The non-perturbative contributions are given by

hK0|O�s=2
VV+AA|K0i, where O�s=2

VV+AA is the parity conserv-
ing part of (s�µ(1��5)d)(s�µ(1��5)d). It is well known
that this operator belongs to the (27,1) representation of
SU(3)L ⇥ SU(3)R and renormalizes multiplicatively. To
study neutral kaon mixing beyond the standard model it
is useful to introduce the so-called SUSY basis of �s = 2
operators. In this basis O�s=2

1 is the standard model
operator, O�s=2

i , i > 1 are beyond the standard model
(BSM) operators. Denoting by ↵ and � the colour in-
dices, one has

(27, 1) O�s=2
1 = (s↵�µ(1 � �5)d↵) (s��µ(1 � �5)d�) ,

(6, 6)

⇢
O�s=2

2 = (s↵(1 � �5)d↵) (s�(1 � �5)d�) ,
O�s=2

3 = (s↵(1 � �5)d�) (s�(1 � �5)d↵) ,

(8, 8)

⇢
O�s=2

4 = (s↵(1 � �5)d↵) (s�(1 + �5)d�) ,
O�s=2

5 = (s↵(1 � �5)d�) (s�(1 + �5)d↵) .

The operators have been studied with various lattice for-
mulations, see for example [22–24]. As we wrote explic-
itly in the previous equations, O�s=2

2 and O�s=2
3 trans-

form like (6, 6) under SU(3)L ⇥ SU(3)R and then mix
together under renormalization. Likewise O�s=2

4 and
O�s=2

5 belong to (8, 8) and also mix together. Thus in
a scheme which preserves chiral symmetry the five-by-
five renormalization matrix is block diagonal: the only

⇒  P
S

1
9
5

Pr
el
im
in
ar
y

Induces off diagonal part of Wigner Weisskopf Hamiltonian:

M∗12 = 1
2mK

G2
F M2

W
16π2

[
λ2
cS0(xc , xc ) + 2λcλtS0(xc , xt) + λ2

tS0(xt , xt)
]

× 〈K 0|s̄γµ(1− γ5)ds̄γµ(1− γ5)d|K̄ 0〉
Here,

λt = V ∗tsVtd = −A2
λ

5(1− ρ− iη)

Indirect CP violation from imaginary part of λ2
t piece

⇒ η(1− ρ) = constant

hyperbola εK constraint
Also obtaining:

1. BK giving 0.1% statistical error

2. K → ππ ∆I = 3
2 giving 2% statistical error

may lead to new constraint on iη



Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

κ ∼ λmax

λmin

• Lattice chiral fermions possess an exact index theorem

• Index theorem ⇒ ∃ near zero modes separated from zero only by quark mass

• Recent algorithmic progress eliminates low mode subspace from Krylov inversion

EigCG:

• Determine Nvec ∼ O(V ) eigenvectors φi up to some physical λ

• 483 ⇒ 600 vectors, 643 ⇒ 1500 vectors

• Significant setup cost & storage cost ∝ V 2

• Eliminates Nvec dimensional subspace S = sp{φi} from problem

M =

(
Ms̄ s̄ ε

ε† Mss

)
; M−1

ss =
1

λi
|i〉〈i|

Where ε = Ms̄s is proportional to the error in the eigenvectors

Guess φ = diag{0} ⊕ diag{ 1
λi
}η



Why can we do better

Luscher’s observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons

• N-zero modes look like admixtures of single instanton eigenmodes

• Divide one mode into chunks centred on each each instanton

• All N-zero modes described by the span of these chunks



Luscher’s inexact deflation

Avoid critical slowing down in Krylov solution of

Mψ = η

• Accelerate sparse matrix inversion by treating a vector subspace S = span{φk} exactly

• If the lowest lying eigenmodes are well contained in S the “rest” of the problem avoids
critical slowing down

Setup:

• Must generate subspace vectors φk that are “rich” in low modes

• Subdividing these vectors into blocks b

φ
b
k (x) =

{
φk (x) ; x ∈ b

0 ; x 6∈ b

yields a much larger subspace1 e.g. 483 × 96 lattice with 44 blocks gives a 123 × 24 coarse grid
and O(104) bigger deflation space.

1This idea was previously used in adaptive multigrid where small covariant derivative↔ algebraically smooth.
Blocks↔ aggregates. Luscher, though reinventing ideas used in multigrid, established connection between Krylov
deflation such as EigCG and MG



Luscher’s setup

Introduce subspace projectors

PS =
∑
k,b

|φb
k〉〈φ

b
k | ; PS̄ = 1− PS (1)

Compute Mss as

M =

(
MS̄ S̄ MSS̄
MS̄S MSS

)
=

(
PS̄MPS̄ PSMPS̄
PS̄MPS PSMPS

)
• Can represent matrix M exactly on this subspace by computing its matrix elements, known as

the little Dirac operator 2

Aab
jk = 〈φa

j |M|φ
b
k〉

(MSS ) = Aab
ij |φ

a
i 〉〈φ

b
j |

and
M−1

SS = (A−1)abij |φ
a
i 〉〈φ

b
j |

A inherits a sparse structure from M

2Coarse grid matrix in MG



Subspace Schur decomposition

We can Schur decompose any matrix

M =

[
Ms̄ s̄ Ms̄s

Mss̄ Mss

]
(2)

=

[
1 Ms̄sM

−1
ss

0 1

] [
S 0
0 Mss

] [
1 0

M−1
ss Mss̄ 1

]
(3)

= UDL (4)

where the Schur complement

S = Ms̄ s̄ −Ms̄sM
−1
ss Mss̄ (5)

and the inverse matrix is

M−1 = L−1D−1U−1 (6)

=

[
1 0

−M−1
ss Mss̄ 1

] [
S−1 0

0 M−1
ss

] [
1 −Ms̄sM

−1
ss

0 1

]
(7)



Projector properties

Lower and upper diagonal matrices of Schur decomp. correspond to Luscher’s projectors PL and PR

PL = PS̄U
−1 =

(
1 −MS̄SM

−1
SS

0 0

)

PR = L−1PS̄ =

(
1 0

−M−1
SS MSS̄ 0

)
Q =

(
0 0

0 M−1
SS

)
Luscher’s properties:

P2
L = PL ; P2

R = PR

PLM = MPR = PLMPR = (1− P)D(1− P) =

(
S 0
0 0

)
PPL = PRP = 0

PL(1− P) = (1− P)PR = (1− P) = PS̄



Luscher’s algorithm

Mψ = UDLψ = η

Multiply by PL and 1− PL obtaining two independent equations:

PLMψ = PLη

(1− PL)Mψ = M(1− PR )ψ = (1− PL)η

The first implies
PLMPRψ = PLη

and second implies

(1− PR )ψ ≡ ψs + M−1
ss Mss̄ψs̄ = M−1

ss ηs

Luscher develops an inversion algorithm for

PLMχ = PLη

and then reconstructs the complete solution

ψ = PRχ + M−1
ss ηs

Also we have
QM = 1− PR



Inversion of PLM

Luscher suppress little Dirac Operator overhead with Schwarz alternating procedure (SAP)

(PLM)MSAPφ = PLη

ψ = MSAPφ

PL =

(
1 −MS̄SM

−1
SS

0 0

)
• Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op

coarse grid

• This enters the matrix PLM being inverted and errors propagator into solution

• Luscher tightens the precision during convergence; uses history forgetting flexible GCR

Non-hermitian system possible as evalues of DW live in right half of complex plane:

• Little Dirac operator for DW is nearest neighbour

• Red black preconditioning of Little dirac op possible

• Schwarz alternating procedure possible as DW does not connect red to red.



Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR)
Aim to speed up the red-black preconditioned system as this starts better conditioned

H =
(
Moo −MoeM

−1
ee Meo

)† (
Moo −MoeM

−1
ee Meo

)
= M†precMprec

Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!

• Must find further suppression of little Dirac operator overhead as LDop more costly

• Must find a replacement for the Schwarz preconditioner

• Must find appropriate solver: (PLM)MSAP nonhermitian matrix so unsuitable for CG

• Must ensure system is tolerant to ill convergence of inner Krylov solver(s).



Hermiticity and improved subspace generation

• Hermitian system gains the properties

P†L = PR (PLM)† = PLM

• Since we use H = M†precMprec we have a Hermitian Positive (semi) Definite matrix.
Generate subspace with rational multi-shift solver applied to Gaussian noise

R(ηGaussian) =
24ε

(H + ε)(H + 2ε)(H + 3ε)(H + 4ε)

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e-05  0.0001  0.001  0.01  0.1  1  10  100

f(x)

• Classic low pass filtering problem – use rational filter

• Gain 1/x4 suppression in single pass without inverse iteration
• ε ∼ 10−3 adds IR safety to the inversion O(1000) iterations per subspace vector
• NB Also possible for γ5DW

SHAPE OF VECTORS...



Little Dirac Operator

4 hop little Dirac operator is painful!

• Limit the stencil of the Little Dirac operator by requiring block ≥ 44

• Mobius fermions M−1
ee is non-local in s-direction ⇒ blocks stretch full s-direction

• Sparse in 4d with next-to-next-to-next-to-nearest coupling

• Matrix still connects to 80 neighbours

(±x̂), (±ŷ), (±ẑ), (±t̂)
( ±x̂ ± ŷ), ( ±x̂ ± ẑ), (±x̂ ± t̂) , (±ŷ ± ẑ), ( ±ŷ ± t̂), ( ±ẑ ± t̂)

( ±x̂ ± ŷ ± ẑ), ( ±x̂ ± ŷ ± t̂), ( ±x̂ ± ẑ ± t̂), ( ±ŷ ± ẑ ± t̂)
( ±x̂ ± ŷ ± ẑ ± t̂)

• Underlying cost at least ten times more than non-Hermitian system

• Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension



Little Dirac Operator Implementation

• 10× 10 matrix multiply reasonably high cache reuse

• Using IBM xlc vector intrinsics gives adequate performance

• 80 small messages of order 1-5 KB

• Programme BG/Q DMA engines directly to eliminate MPI overhead

• Asynchronous send overhead under 10 microseconds with precomputed DMA descriptors.

• 50x faster than MPI calls.

• Single precision accelerated gives around 50 Gflop/s per node in L2 cache

• (re)Discovered bug in L2 cache around 4 months after Argonne



Replacing SAP preconditioner
Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian
system that is accurate for high modes.

• Useful to prototype preconditioner using Chebyshev polynomials
Can shape spectral response to any desired shape ... at a cost

• Naive left-right preconditioner:

L†(PLH)Lφ = L†PLη

Use fixed order Chebyshev polynomial preconditioner

L = Cheby(x−
1
2 ,H) ; H = M†precMprec ; χ = Lφ

• This is Hermitian and works in CG, but is not a very good preconditioner.

• Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner MP

MP = L†L = Cheby(x−
1
2 ,H)Cheby(x−

1
2 ,H)→ Cheby(x−1

,H)

• Accuracy exponential in Cheby order so better to use single, higher order

• Found it best to restrict range of Chebyshev to be accurate at higher eigenvalues, rely on
deflation on lowest modes!
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Tuned chebyshev preconditioner spectral response



IR shift preconditioner

• Better to use a Krylov solver
Data dependent coefficients seek optimal polynomial for the actual spectrum of H under
some norm

• Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)

MIRS =
1

H + λ

• λ is an gauge covariant infra-red regulator that shifts the lowest modes

• Keeps the Krylov solver working hard on the high mode region

• Plays similar role to the domain size in SAP

• Does not have locality benefit of SAP3
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 100

 0.0001  0.001  0.01  0.1  1  10  100  1000

f(x)

3Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by
Mike Clark)



Robustness

Two inner Krylov solvers

• Little Dirac operator inversion Q ≡ M−1
SS

• IR shifted preconditioner inversion MIRS = 1
H+λ

Curious robustness effects: during solution to 10−8 on a 163 lattice

M−1
SS residual MIRS residual Iteration count

10−11 10−8 36
10−8 10−8 Non converge 4

10−11 10−8 36
10−11 10−4 36
10−11 10−2 36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability

in M but not Q

4smallest residual is 10−7 then diverges. Here Luscher introduced flexible algorithms



Robustness

Consider preconditioned CG with A = PLH =

(
1 −MS̄SM

−1
SS

0 0

)
H

1. r0 = b − Ax0

2. z0 = MIRS r0 ; p0 = z0

3. for iteration k

4. αk = (rk , zk )/(pk ,Apk )

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkApk

7. zk+1 = MIRSrk+1

8. βk = (rk+1, zk+1)/(rk, zk)

9. pk+1 = zk+1 + βkpk

10. end for

• Noise in the preconditioner MIRS only enters the search direction
αk is based on matrix elements of PLH.

• Better to use the Little Dirac operator inverse as a preconditioner
...and not separate the solution into subspace and complement



Combining preconditioners

• Have little Dirac operator Q and MIRS representing approximate inverse

• Q on subspace containing low mode
• MIRS on high mode space
• splitting is necessarily inexact

• Options for combining these as a preconditioner

• Additive
MIRS + Q

• Consider alternating error reduction steps

xi+1 = xi + MIRS [b −Hxi ]
xi+2 = xi+1 + Q[b −Hxi+1]

= xi + MIRS [b −Hxi ] + Q[b −H[xi + MIRS [b −Hxi ]]]
= xi + [(1− QH)MIRS + Q](b −Hxi )
= xi + [PRMIRS + Q](b −Hxi )

• Infer family of preconditioner

Sequence Preconditioner Name
additive MIRS + Q AD
MIRS , Q PRMIRS + Q A-DEF2
Q, MIRS MIRSPL + Q A-DEF1

Q, MIRS , Q PRMIRSPL + Q Balancing Neumann Neumann (BNN)
Q, MIRS , Q MIRSPL + PRMIRS + Q −MIRSPLHMIRS MG Hermitian V(1,1) cycle



Generalised framework for inexact deflation solvers

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to
three levels

Take Q =

(
0 0

0 M−1
SS

)
and MIRS = (H + λ)−1

Method Vstart M1 M2 M3 Vend
PREC x MIRS 1 1 xk+1

AD x MIRS + Q 1 1 xk+1
DEF1 x MIRS 1 PL Qb + PR xk+1
DEF2 Qb + PR x MIRS PR 1 xk+1

A-DEF1 x MIRSPL + Q PR 1 xk+1
A-DEF2 Qb + PR x PRMIRS + Q 1 1 xk+1

BNN x PRMIRSPL + Q 1 1 xk+1

Observations:

• Remain in deflated Krylov picture

• Luscher’s algorithm is DEF1

• A-DEF2 moves the little Dirac operator into the preconditioner M1

• A-DEF1 looks like V(1,0) multigrid

• A-DEF2 looks like V(0,1) multigrid

• Will make it Heirarchical by deflating the deflation matrix Q

Algorithm

1. x arbitrary

2. x0 = Vstart

3. r0 = b −Hx0

4. y0 = M1r0 ; p0 = M2y0

5. for iteration k

6. wk = M3Hpk

7. αk = (rk , yk )/(pk , wk )

8. xk+1 = xk + αk pk

9. rk+1 = rk − αkwk

10. yk = M1rk

11. βk = (rk+1, yk+1)/(rk, yk)

12. pk+1 = M2yk+1 + βkpk

13. end for

14. x = Vend



Why does CG work here?

• Hermiticity of M1 clear for BNN but not A-DEF1/2

Theorem: for Vstart = Qb + PRx A-DEF2 is identical to BNN.

• We have from QH = (1− PR )

Qr0 = Q[HVstart − b] = (1− PR )[Qb + PRx]− Qb = PRQb = 0

QHp0 = (1− PR )[PRMPL + Q]r0 = 0

• get induction steps:
Qrj+1 = Qrj − αjQHpj = 0

QHpj+1 = (1− PR )[PRMPL + Q]rj + βjQHpj = 0

• Can also show PLr0 = 0 and PLHp0 = Hp0 so that

PLHpj+1 = HPR [PRMPL + Q]rj + βjpj = Hpj+1

and
PLrj+1 = PLrj − αjPLHpj = rj − αjHpj = rj+1

BNN then retains PLrj = rj in exact subspace projection arithmetic
⇒ BNN iteration (PRMPLrj ) and A-DEF2 iteration (PRMrj ) equivalent up to rounding

• DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to rounding

They differ hugely in sensitivity to convergence error in Q



Reducing little Dirac operator overhead

• Use A-DEF2 to move the little Dirac operator into preconditioner
Can relax convergence precision to 10−2

⇒ eight order of magnitude gain, saving of O(10) in cost

• Deflate the deflation matrix (Heirarchical).
Computing 128 low modes is cheap and saves another factor of 10.

• Reduces O(2000) little Dirac operator iterations to O(20).

From 483 at physical quark masses

Precision Heirarchical deflation iterations

10−7 N 4478
10−7 Y 250
10−2 Y 63

100 x reduction in little dirac operator overhead!



HDCG algorithm

Subspace generation

1. Generate NS vectors φk from rational (4th order low pass filter)

R(H) =
1

(H + λS )(H + 2λS )(H + 3λS )(H + 4λS )

applied to Gaussian noise
Multishift Krylov tolerance tolS ∼ 10−6

Cutoff λS ∼ 10−3 O(1000) fine matrix multiplies for each vector

2. Block these vectors φb
k (e.g. 44 × Ls ) and compute little Dirac operator

Need only apply Nstencil = 80 matrix multiplies per vector to compute little Dirac operator
with a Fourier trick
Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

3. Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.

4. Diagonalise this basis to make multiplication cheap



HDCG solver

Use outer CG A-DEF2 solver, DeflCG little dirac solver

Method Vstart M1 M2 M3 Vend
A-DEF2 Qb + PR x PRMIRS + Q 1 1 xk+1
DeflCG Qb + PR x 1 1 (1 − PR ) xk+1

Where

Q =

(
0 0

0 M
−1
SS

)
; PR =

(
1 0

−M
−1
SS

M
SS̄

0

)

H = M†pcMpc ; MIRS =
[
H + λpc

]−1

• Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)

• MSS inversion is itself deflated

• All operations in CG are perfromed in single precision exceptH multiply, xj
and rj updates.

Tunable parameters

Fine Nvec 40

Fine blocksize 44 × Ls
Fine subspace filter 4th order rational λS ∼ 10−3

Fine subspace tolerance 10−6

Coarse Nvec 128
Coarse blocksize full volume

Coarse subspace filter Inverse iteration (3)

Coarse subspace tolerance 10−7[
M
†
pcMpc + λpc

]−1
8 iterations (tol ∼ 10−1)

λpc 1.0

M
−1
SS

tol 5 × 10−2

1. x arbitrary

2. x0 = Vstart

3. r0 = b −Hx0

4. y0 = M1r0 ; p0 = M2y0

5. for iteration k

6. wk = M3Hpk

7. αk = (rk , yk )/(pk , wk )

8. xk+1 = xk + αk pk

9. rk+1 = rk − αkwk

10. yk = M1rk

11. βk = (rk+1, yk+1)/(rk, yk)

12. pk+1 = M2yk+1 + βkpk

13. end for

14. x = Vend



Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q.

On 483 × 96× 24, Mπ = 140MeV, a−1 = 1.73 GeV on 1024 node rack

Algorithm Tolerance Matmuls

CGNE (double) 10−8 1270s 16000
CGNE (mixed) 23000
EigCG (mixed) 10−8 320s 11710
EigCG (mixed) 10−4 55s 1400
EigCG (setup) 10h

EigCG (vectors) 600 vectors
HDCG (mixed) 10−8 170s 3100
HDCG (mixed) 10−4 9s 200
HDCG (setup) 1h

HDCG (vectors) 40 vectors

10−4 precision is used for the All-mode-averaging analysis

• Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG



Conclusions

Comparison Gain
Exact Solve vs CGNE 7.5x
Exact Solve vs EigCG 2x

Inexact Solve vs EigCG 5x
Setup vs EigCG 10x

Footprint vs EigCG 20x

• Developed inexact deflation method to accelerating preconditioned normal equations
Larger stencil required substantial algorithmic improvements

• Moving little Dirac operator into preconditioner gives more robust solver (10x)

• Heirarchical multi-level deflation (10x)

• IR shifted preconditioner replacement for SAP

• Preconditioned CG is to loose convergence of inner Krylov solver(s).

• No flexible algorithm was required

• Approach based in Krylov space methods, but similarities to multigrid

To do:

• Check for numerical rounding in PLrj = rj

• Investigate numerically efficiency of additive Schwarz preconditioning 5

Domain decomposed preconditioner should give 2x Gflop/s improvement
Greater locality ⇒ candidate exascale algorithm

5suggested by Mike Clark


