

1

Lattice QCD on K computer

Yoshinobu Kuramashi University of Tsukuba & RIKEN AICS

4 July 2013, University of Tsukuba

Plan of Talk

- §1. K computer and Strategic Field Program
- §2. Introduction to Lattice QCD
- §3. 1+1+1 Flavor QCD+QED Simulation
- §4. Direct Construction of Light Nuclei
- §5. Nuclear Force
- §6. Summary

Overview of Project

Development of 10 Pflops-class system in Kobe

⇒ named "K computer" by public competition

- Development of grand challenge applications in nano science and life science
- Buildup of a research center in computational science around the 10 Pflops-class system

⇒ Advanced Institute for Computational Science (AICS) at Kobe

- Project period (construction) is from Japanese FY 2006 to 2012
- RIKEN is responsible for the computer development *Note: independent of RIKEN-BNL-Colombia Collab.*

Site for K computer

at Kobe

Computer room

©RIKEN

Strategic Field Program

For strategic use of K computer

- Government selected 5 strategic fields in science and technology for importance from national view point
- For each field, Government also selected a core institute
- Each core institute is responsible for organizing research and supercomputer resources in the respective field and its community, for which they receive
 - priority allocation of K computer resources

(\sim 1% for lattice QCD)

- funding to achieve the research goals

Multilavers of life

Strategic Fields and Core Institutes strategic field Next generation Global New Life Matter engineering science & materials change & Universe Medicine

computer

core institute

RIKEN	Institute for Solid State Physics U. Tokyo	Earth Simulator Center JAMSTEC	Institute for Industrial Science U. Tokyo	Center for Comp. Science U. Tsukuba
Life science Community	Materials science Community	Earth science Community	Engineering Community Industry	Basic science Community
Supercomputer resources	Supercomputer resources	Supercomputer resources	Supercomputer resources	Supercomputer resources

Questions in history of mankind

- What is the smallest component of matter?
- What is the most fundamental interaction?

Elementary Particles Known to Date

Fundamental Interactions

force relative strength gauge boson quantum theory

Strong	1	Gluon	QCD
EM	0.01	Photon	QED
Weak	0.00001	Weak Boson	Weinberg-Salam
Gravity	10 ⁻⁴⁰	Graviton	Superstring(?)

Computational elementary particle physics has been led by lattice QCD over past 30 years One of important applications on K computer

Particles and Interactions

Aim of Lattice QCD

QCD Lagrangian = first principle

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[\gamma_{\mu} (\partial_{\mu} - igA_{\mu}) + m_{q} \right] q$$

Only coupling const. g and quark masses m_q are free parameters

Too strong to investigate with perturbative analysis ⇒ nonperturbative analysis with numerical method based on first principle

Numerical method

Numerical integration with Monte Carlo method on discretized 4-dim. space-time lattice

$$\langle \mathcal{O}[A_{\mu}, q, \bar{q}] \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{D}q \mathcal{D}\bar{q} \ \mathcal{O}[A_{\mu}, q, \bar{q}] \ \exp\left\{-\int d^{4}x \mathcal{L}[A_{\mu}, q, \bar{q}]\right\}$$

$$Average over the values evaluated on configurations equark equark equark$$

$$\left\langle \mathcal{O}[A_{\mu}, q, \bar{q}] \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[A_{\mu}^{(i)}, q^{(i)}, \bar{q}^{(i)}] + O\left(\frac{1}{\sqrt{N}}\right)$$

statistical error

Physical Parameters

Small number of parameters

- •4-dim. volume: V=NX•NY•NZ•NT
- lattice spacing: a (as a function of coupling const. g)
- •quark masses: m_q (q=u,d,s,...)

Hadron Masses

Confinement : quark can never be retrieved by itself

Hadron Mass Calculation

Fundamental quantities both in physical and technical senses

physical sidephysical input ⇒ $m_u, m_d, m_s, ... \Rightarrow$ reproduce all the hadron spectrum?(ex. $m_{\pi}, m_{K}, m_{\Omega}$)validity of QCD / determination of m_q

technical side

hadron correlators in terms of quark fields

 $\left< \mathcal{O}_h(t) \mathcal{O}_h^{\dagger}(0) \right> \stackrel{t \gg 0}{\sim} C \exp\left(-m_h t\right) \Rightarrow \text{extract } \mathbf{m}_{\mathbf{h}} \text{ by fit}$

493.7MeV

§3. 1+1+1フレーバーQCD+QED

PACS-CS 12

Isospin symmetry breaking

- EM interaction Q_u=+2/3e, Q_d=Q_s=-1/3e, e=√4π/137 - u-d quark mass difference m_u=m_d≠m_s (2+1フレ−*i*×−) ⇒ m_u≠m_d≠m_s (1+1+1フレ−*i*×−)

Physical input:

 $m_{\pi^+}(ud), m_{K0}(ds), m_{K^+}(us), m_{\Omega^-}(sss)$

Output:

m_u, m_d, m_s, lattice spacing, ...

Reweighting Method

Simulation parameter: m Target parameter: m'

$$\langle \mathcal{O}[m] \rangle_m \Rightarrow \langle \mathcal{O}[m'] \rangle_{m'}$$

$$\begin{split} \langle \mathcal{O}[m'] \rangle_{m'} &= \frac{\int \mathcal{D}U \mathcal{O}[m'] e^{-S[m']}}{\int \mathcal{D}U e^{-S[m']}} \\ &= \frac{\int \mathcal{D}U \mathcal{O}[m'] e^{-S[m] - (S[m'] - S[m])}}{\int \mathcal{D}U e^{-S[m] - (S[m'] - S[m])}} \\ &= \frac{\int \mathcal{D}U \mathcal{O}[m'] e^{-S[m] - \Delta[m',m]}}{\int \mathcal{D}U e^{-S[m] - \Delta[m',m]}} \\ &= \frac{\langle \mathcal{O}[m'] e^{-\Delta[m',m]} \rangle_m}{\langle e^{-\Delta[m',m]} \rangle_m} \end{split}$$

Expectation value at target parameter m' can be obtained with the use of configurations generated at parameter $m(\neq m')$ \times works better as the difference of m and m' diminishes 19

K⁰-K⁺ mass difference

PACS-CS 12

Fit result 4.54(1.09) MeV is consistent with exp. value 3.937(28) MeV within error bars

Quark masses

PACS-CS 12

Physical input:

 $m_{\pi^+}(ud)=139.7(15.5)$ [MeV] $m_{K0}(ds)=497.6(8.1)$ [MeV] $m_{K^+}(us)=492.4(8.1)$ [MeV] $m_{\Omega}(sss)$ は実験値に固定 exp: 139.6 [MeV] exp: 497.6 [MeV] exp: 493.7 [MeV] exp: 1672.5 [MeV]

Quark masses (MSbar scheme at μ =2 GeV): m_u =2.57(26)(07) [MeV] m_d =3.68(29)(10) [MeV] m_s =83.60(58)(2.23) [MeV]

Sizable finite size effects are expected in QCD+QED simulation π meson mass(140MeV)@QCD ⇔ photon(massless)@QED

⇒ Simulation with larger lattice size 96⁴ on K computer Also useful for calculation of light nuclei and nuclear force

Performance on K computer

- Kernel (MatVec) performance: >50%
- Solver performance: ~26%
- Weak scaling test
 - $6^3 \times 12$ /node fixed

- 16 nodes (V=12³×24) \Rightarrow 12288 nodes (V=48×72×96²)

#node	scalability	
16 ⇒ 256	98%	
256 ⇒ 2048	98%	
2048 ⇒ 12288	96%	

B/F=0.5 on K computer

Production run started in fall of 2012

Current status

 Configuration generation with DDHMC 2+1 flavor (m_u=m_d≠m_s) QCD stout-smeared Wilson-clover with NP C_{SW} lattice size=96⁴, lattice spacing~0.1fm

§4. Construction of Nuclei

We are now achieving a precision measurement of hadron masses Next step is a challenge for multi-scale physics

Exploratory study for ⁴He and ³He nuclei Yamazaki-YK-Ukawa 10,12 $\langle \mathcal{O}_{4_{\text{He}}}(t) \mathcal{O}_{4_{\text{He}}}^{\dagger}(0) \rangle \stackrel{t \gg 0}{\sim} C \exp(-m_{4_{\text{He}}}t)$ ⁴He: 2 proton+2 neutron \Rightarrow 12 quark propagators ³He: 2 proton+1 neutron \Rightarrow 9 quark propagators

 ΔE < 0 both for bound state and attractive scattering state in L³ box

ex. ⁴He case: $\Delta E_{4}_{He} = m_{4}_{He} - 4m_N$

Mandatory to check volume dependence of ΔE

Yamazaki-YK-Ukawa 10

First successful construction of helium nuclei \Rightarrow 2+1 flavor QCD with lighter quark masses

Light Nuclei in 2+1 Flavor QCD (1)

Yamazaki-YK-Ukawa 12

2+1フレーバーQCD, m_{π} =0.5 GeV, m_{N} =1.32 GeV on HA-PACS

	4He	3He	NN(3S1)	NN(1S0)
Binding energy [MeV]	43(12)(8)	20.3(4.0)(2.0)	11.5(1.1)(0.6)	7.4(1.3)(0.6)
Exp. value [MeV]	28.3	7.72	2.22	0

Successful construction of helium nuclei in 2+1 flavor QCD 27

Light Nuclei in 2+1 Flavor QCD(2)

Yamazaki-YK-Ukawa 12

Both ³S₁ and ¹S₀ channels are bound at heavy quark region

Target on K computer: construction of nuclei at the physical point

§5. Nuclear Force

BS wave function with lattice QCD ⇒ NN Potential

29

Possible Applications

- Determination of nuclear force at the physical point Center force, tensor force, LS force, ...
- Determination of hyperon force at the physical point various channels with the strangeness S=-1, -2, -3, -4
- 3 body force repulsive force at the short distance?
- Studies of exotic hadrons representative case is H-dibaryon

Preparatory Studies

HAL QCD 12

2+1 flavor QCD, lattice size= $32^3 \times 64$, m_{π}=0.70, 0.57, 0.41 GeV

Attractive phase shift, though the magnitude is just 10% of exp. value (no bound state \Rightarrow inconsistency against the direct method) Phase shift becomes smaller, as quark mass decreases \Rightarrow need direct comparison with exp. values at the physical point

Lattice QCD on K computer

scientific target

- 1+1+1 flavor QCD+QED at the physical point
- Investigation of resonances
- Direct construction of light nuclei
- Determination of baryon-baryon potentials
- Other physical quantities ...