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§1. K computer and Strategic Field Program   

Overview of Project 
l  Development of 10 Pflops-class system in Kobe 
     ⇒ named “K computer”  by public competition  
l  Development  of grand challenge applications in nano science and 

life science 
l  Buildup of a research center in computational science around the 

10 Pflops-class system 
     ⇒ Advanced Institute for Computational Science (AICS) at Kobe 
l  Project period (construction) is from Japanese FY 2006 to 2012 
l  RIKEN is responsible for the computer development 
    Note: independent of RIKEN-BNL-Colombia Collab. 
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Site for K computer   

Kobe Airport  

Sannomiya 
(Downtown) 

Port Island  

AICS 

Port Liner ‘Monorail’  

Shin-Kobe 
(Shinkansen)  

Osaka  
Kyoto	
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Some photo  

Logo	


Computer room	


Building	


Rack 

Plan to host  
Lattice 2015 

at Kobe	
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Strategic Field Program  

For strategic use of K computer 
l  Government selected 5 strategic fields in science and 

technology for importance from national view point 
l  For each field, Government also selected a core institute 
l  Each core institute is responsible for organizing research and 

supercomputer resources in the respective field and its 
community, for which they receive 

          − priority allocation of K computer resources 
                       (〜1% for lattice QCD) 
          − funding to achieve the research goals 
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Strategic Fields and Core Institutes  
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　　　　　     Questions in history of mankind 
 

•  What is the smallest component of matter? 
•  What is the most fundamental interaction? 

§2. Introduction to Lattice QCD  
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u c t 

d s b 

+2/3e 

−1/3e 

quark 
（R,B,G）	


Elementary Particles Known to Date	


 Higgs particle 
 (LHC@CERN) 

electric  
charge 

Q	


electric  
charge 

Q	




force   relative strength   gauge boson quantum theory  

Computational elementary particle physics has been led by 
lattice QCD over past 30 years 

One of important applications on K computer 
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Fundamental Interactions	


Strong　　　　  
EM 

Weak       
Gravity         
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  Superstring(?) 



Particles and Interactions	
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quark	
 proton	
 neutron	

nucleus	


Carbon atom	
 diamond crystal structure 	


Strong interaction 

Chemical bond with EM interaction 

〜10−15m	


〜10−10m	


electron	


nucleon	
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Aim of Lattice QCD	


QCD Lagrangian ＝ first principle 
 
 
 
Only coupling const. g and quark masses mq are free parameters 
 
 
 
 
 
Too strong to investigate with perturbative analysis  
⇒ nonperturbative analysis with numerical method based on first principle 
 
 
 
 
　                       

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

〈O[Aµ, q, q̄]〉 =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

〈O[Aµ, q, q̄]〉 =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

〈Oh(t)O†
h(0)〉 t$0∼ exp (−mht) h = π, nucleon

1

gluon quark 
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Numerical method	


quark	
 gluon	


Numerical integration with Monte Carlo method 
                                        on discretized 4-dim. space-time lattice 
 
 
　　　 
　　 
 
　　 
 
Average over the values evaluated on configurations  
 
                       

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

〈O[Aµ, q, q̄]〉 =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

〈O[Aµ, q, q̄]〉 =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

〈Oh(t)O†
h(0)〉 t$0∼ exp (−mht) h = π, nucleon

1

statistical error	


L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

L = −1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [iγµ(∂µ − igAµ) − mq] q

〈O[Uµ, q, q̄]〉 =
1

Z

∫
DUµDqDq̄ O[Uµ, q, q̄] exp

{
−

∫
d4xL[Uµ, q, q̄]

}

〈O[Uµ, q, q̄]〉 =
1

N

N∑

i=1
O[U (i)

µ , q(i), q̄(i)] + O



1√
N





〈O[Aµ, q, q̄]〉 =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)] + O



1√
N





U (i)
µ , q(i), q̄(i)

〈Oh(t)O†
h(0)〉 t%0∼ C exp (−mht) h = π, nucleon

〈O4He(t)O
†
4He(0)〉 t%0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

1
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Physical Parameters 

Small number of parameters 
　　・4-dim. volume：  V=NX・NY・NZ・NT  
　　・lattice spacing：  a (as a function of coupling const. g) 
     ・quark masses：  mq (q=u,d,s,…) 
 
 
 
　　                  

quark	
 gluon	


a	
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π, K, K＊, ρ, ω, η, φ, a, b, f, D, B, ...	


Meson (quark and anti-quark)	


p, n, Δ, Λ, Σ, Σ＊, Ξ, Ξ＊, Ω, Λc, Ξc, Λc, ...  

Baryon (3 quarks)	


Hadron Masses  

Hadron	


Confinement : quark can never be retrieved by itself	
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Fundamental quantities both in physical and technical senses 

Hadron Mass Calculation 

physical side 
   physical input ⇒ mu,md,ms,… ⇒ reproduce all the hadron spectrum?                            
   (ex. mπ, mK, mΩ)                           validity of QCD / determination of mq 

 
technical side 
   hadron correlators in terms of quark fields                              
    
                                                                       ⇒ extract mh by fit                                                
   
                                                                                meson 
      quark line diagrams 
   from Wick contractions                                         baryon 
                                                                                     

L =
1

4
FµνFµν +

∑

q=u,d,s,c,b,t
q̄ [γµ(∂µ − igAµ) + mq] q

〈O[Aµ, q, q̄]〉 =
1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] exp

{
−

∫
d4xL[Aµ, q, q̄]

}

〈O[Aµ, q, q̄]〉 =
1

N

N∑

i=1
O[A(i)

µ , q(i), q̄(i)]

A(i)
µ , q(i), q̄(i)

〈Oh(t)O†
h(0)〉 t$0∼ C exp (−mht) h = π, nucleon

〈O4He(t)O
†
4He(0)〉 t$0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

exp (2iδ(k)) exp (ikL) = 1

tan δ(k) =
g2

ρππ

6π

k3

√
s(m2

ρ − s)
(2k)2 = s − (2mπ)2

1

0	
t	


t	
 0	




physical input  
  mπ, mK, mΩ   

 
   

 mu=md, ms, a	
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PACS-CS 09	
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K+(us) 

K0(ds) 
497.6MeV 

493.7MeV 

_ 

_	


0.490

0.491

0.492

0.493

0.494

0.495

0.496

0.497

0.498

0.499

0.500

Hadron masses in 2+1 Flavor  QCD  

consistent within 2〜3% error bars 
similar results are obtained by other groups 

Isospin symmetry  
breaking effects	


1 GeV=1.78×10−27 kg	
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§3. 1+1+1フレーバーQCD+QED  

Isospin symmetry breaking 
     − EM interaction 
           Qu=+2/3e, Qd=Qs=−1/3e, e=√4π/137 
     − u-d quark mass difference 
           mu=md≠ms (2+1フレーバー) ⇒ mu≠md≠ms (1+1+1フレーバー) 
  
Physical input: 
     mπ+(ud), mK0(ds), mK+(us), mΩ-(sss) 
 
Output: 
     mu, md, ms, lattice spacing, …  
 

reweighting  
method	
 1+1+1flavor QCD+QED 

on the physical point	

2+1 flavor QCD generation 
around the physical point	


PACS-CS 12	
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Reweighting Method  

Simulation parameter：m 
Target parameter：m’ 
 
 
 
 
 
 
　　　　　　　        　 
 
　　　　　　　        　 
 
 
 

      

B̄µ(N = n/2) =
1
27

[(bµ(n) + bµ(n + µ̂/2))

+
∑

ν !=µ

∑

νs=±ν

(bνs(n) + bµ(n + ν̂s/2) + bµ(n + ν̂s/2 + µ̂/2) − bνs(n + µ̂))

+
1
2

∑

ρ !=ν !=µ

∑

ρs=±ρ

∑

νs=±ν

(bρs(n) + bνs(n + ρ̂s/2)

+bµ(n + ρ̂s/2 + ν̂s/2) + bµ(n + ρ̂s/2 + ν̂s/2 + µ̂/2)
−bρs(n + µ̂) − bνs(n + ρ̂s/2 + µ̂))

+
1
6

∑

σ !=ρ !=ν !=µ

∑

σs=±σ

∑

ρs=±ρ

∑

νs=±ν

(bσs(n) + bρs(n + σ̂s/2) + bνs(n + σ̂s/2 + ρ̂s/2)

+bµ(n + σ̂s/2 + ρ̂s/2 + ν̂s/2) + bµ(n + σ̂s/2 + ρ̂s/2 + ν̂s/2 + µ̂/2)
−bσs(n + µ̂) − bρs(n + σ̂s/2 + µ̂) − bνs(n + σ̂s/2 + ρ̂s/2 + µ̂))]

〈O[m]〉m ⇒ 〈O[m′]〉m′

〈O[m′]〉m′ =
∫ DUO[m′]e−S[m′]

∫ DUe−S[m′]

=
∫ DUO[m′]e−S[m]−(S[m′]−S[m])

∫ DUe−S[m]−(S[m′]−S[m])

=
∫ DUO[m′]e−S[m]−∆[m′,m]

∫ DUe−S[m]−∆[m′,m]

=
〈O[m′]e−∆[m′,m]〉m

〈e−∆[m′,m]〉m

〈O[U ](κ∗
u,κ

∗
d,κ

∗
s )〉(κ∗u,κ∗d,κ∗s ),fQED =

〈O[U ](κ∗
u,κ

∗
d,κ

∗
s )det[Wuds[U ]]〉(κud,κs),qQED

〈det[Wuds[U ]]〉(κud,κs),qQED

3

B̄µ(N = n/2) =
1
27

[(bµ(n) + bµ(n + µ̂/2))

+
∑

ν !=µ

∑

νs=±ν

(bνs(n) + bµ(n + ν̂s/2) + bµ(n + ν̂s/2 + µ̂/2) − bνs(n + µ̂))

+
1
2

∑

ρ !=ν !=µ

∑

ρs=±ρ

∑

νs=±ν

(bρs(n) + bνs(n + ρ̂s/2)

+bµ(n + ρ̂s/2 + ν̂s/2) + bµ(n + ρ̂s/2 + ν̂s/2 + µ̂/2)
−bρs(n + µ̂) − bνs(n + ρ̂s/2 + µ̂))

+
1
6

∑

σ !=ρ !=ν !=µ

∑

σs=±σ

∑

ρs=±ρ

∑

νs=±ν

(bσs(n) + bρs(n + σ̂s/2) + bνs(n + σ̂s/2 + ρ̂s/2)

+bµ(n + σ̂s/2 + ρ̂s/2 + ν̂s/2) + bµ(n + σ̂s/2 + ρ̂s/2 + ν̂s/2 + µ̂/2)
−bσs(n + µ̂) − bρs(n + σ̂s/2 + µ̂) − bνs(n + σ̂s/2 + ρ̂s/2 + µ̂))]

〈O[m]〉m ⇒ 〈O[m′]〉m′

〈O[m′]〉m′ =
∫ DUO[m′]e−S[m′]

∫ DUe−S[m′]

=
∫ DUO[m′]e−S[m]−(S[m′]−S[m])

∫ DUe−S[m]−(S[m′]−S[m])

=
∫ DUO[m′]e−S[m]−∆[m′,m]

∫ DUe−S[m]−∆[m′,m]

=
〈O[m′]e−∆[m′,m]〉m

〈e−∆[m′,m]〉m

〈O[U ](κ∗
u,κ

∗
d,κ

∗
s )〉(κ∗u,κ∗d,κ∗s ),fQED =

〈O[U ](κ∗
u,κ

∗
d,κ

∗
s )det[Wuds[U ]]〉(κud,κs),qQED

〈det[Wuds[U ]]〉(κud,κs),qQED

3

Expectation value at target parameter m’  can be obtained with 
the use of configurations generated at parameter m(≠m’) 
※ works better as the difference of m and m’ diminishes 



0 5 10 15 20 25
t

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

K0 to K+ propagators

K0-K+ mass difference  

Fit result 4.54(1.09) MeV is consistent with exp. value 3.937(28) MeV 
within error bars 

〈O[U ](κ∗
u,κ

∗
d,κ

∗
s )〉(κ∗u,κ∗d,κ∗s ) =

〈O[U ](κ∗
ud,κ

∗
s )det[Wuds[U ]]〉(κud,κs),qQED

〈det[Wuds[U ]]〉(κud,κs),qQED

det[Wuds[U ]] =



 lim
Nη→∞

1

Nη

Nη∑

i=1
e−|W−1

uds[U ]ηi|2+|ηi|2




1
2

Wuds[U ] =
∏

q=u,d,s

D(ephQq,κ∗
q)

D(0,κq)

det[Wuds] = 〈e−|W−1
udsη|

2+|η|2〉η

det[Wuds] = det[W (1)
uds] × det[W (2)

uds] × · · ·× det[W (NB)
uds ]

〈
K0(t)K0(0)

〉

〈K+(t)K+(0)〉 ( Z (1 − (mK0 − mK+)t)

(mK0 − mK+)t ) 1

2

much smaller than 1	


PACS-CS 12	


exp: 3.937(28) MeV 	


slope = mK+−mK0	


lattice size=323×64, a 〜 0.1 fm	


1%	


K+(us) 

K0(ds) 
497.6MeV 

493.7MeV 

_ 

_	


0.490

0.491

0.492

0.493

0.494

0.495

0.496

0.497

0.498

0.499

0.500

EM interaction ＋ u-d quark mass diff. 
⇒ diff. of mK0(ds) and mK+(us) 



Quark masses  

Physical input: 
     mπ+(ud)=139.7(15.5) [MeV]                    exp: 139.6 [MeV] 
     mK0(ds)=497.6(8.1) [MeV]                      exp: 497.6 [MeV]  
     mK+(us)=492.4(8.1) [MeV]                      exp: 493.7 [MeV]                        
     mΩ(sss)は実験値に固定          　　　　　　exp: 1672.5 [MeV]  
 
Quark masses (MSbar scheme at µ=2 GeV): 
     mu=2.57(26)(07) [MeV]  
     md=3.68(29)(10) [MeV]  
     ms=83.60(58)(2.23) [MeV] 
 
Sizable finite size effects are expected in QCD+QED simulation 
 　　π meson mass(140MeV)@QCD ⇔ photon(massless)@QED    
                            
⇒ Simulation with larger lattice size 964 on K computer 
　　Also useful for calculation of light nuclei and nuclear force 
 

PACS-CS 12	
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Performance on K computer 	


•  Kernel (MatVec) performance: >50%  
•  Solver performance: 〜26% 
•  Weak scaling test 
  − 63×12/node fixed 
  − 16 nodes (V=123×24) ⇒ 12288 nodes (V=48×72×962) 

　　                  

16	


256 

2048 

12288	
 #node	
 scalability	


16 ⇒ 256	
 98%	


256 ⇒ 2048	
 98%	


2048 ⇒ 12288	
 96%	


good scaling	


Production run started in fall of 2012	


B/F=0.5 on K computer	




Current status	
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•   Configuration generation with DDHMC 
　　　　　　 2+1 flavor (mu=md≠ms) QCD 
               stout-smeared Wilson-clover with NP CSW 
               lattice size=964, lattice spacing〜0.1fm  
 
　　                  

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

π K N Λ Σ Ξ Ω

(mH/m
Ω

)latt / (mH/m
Ω

)exp − 1

Further tuning with  
reweighting method 

5%	

2%	


preliminary	


physical input  
  mπ, mK, mΩ   
 
   
 mu=md, ms, a	

 

Only stable hadron masses	
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§4. Construction of Nuclei  

We are now achieving a precision measurement of hadron masses  
Next step is a challenge for multi-scale physics 
  
 
 
 
 
 
 
Exploratory study for 4He and 3He nuclei 
            
 
     4He: 2 proton+2 neutron ⇒ 12 quark propagators 
     3He: 2 proton+1 neutron ⇒   9 quark propagators  
  
 
 
 

quark	
 nucleus	


Yamazaki-YK-Ukawa 10,12	


〈Oh(t)O†
h(0)〉 t#0∼ C exp (−mht) h = π, nucleon

〈O4He(t)O
†
4He(0)〉 t#0∼ C exp (−m4Het) ∆E4He = E4He − 4EN

8

proton	
 neutron	


nucleon	




0

1/L
3

0

0

1/L
3

0
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Identification of Bound State in a Finite Box   

     ΔE<0 both for bound state and attractive scattering state in L3 box    
                         ex. 4He case:                     
     
 
      
     
               
 
     
     
 
 
 
     
                   Mandatory to check volume dependence of ΔE 

 
 
 
 
                            
    
                                                                                                                      
   
                                                                
                  
                                                                      

scattering state: ΔE∝1/L3	


bound state: ΔE=const	


〈Oh(t)O†
h(0)〉 t#0∼ C exp (−mht) h = π, nucleon

〈O4He(t)O
†
4He(0)〉 t#0∼ C exp (−m4Het) ∆E4He = m4He − 4mN

8
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mπ=0.8 GeV, mN=1.6 GeV in quenched QCD 
(Real world: mN=0.94 GeV)	


Exploratory Study in Quenched QCD  

First successful construction of helium nuclei 
⇒ 2+1 flavor QCD with lighter quark masses 

Yamazaki-YK-Ukawa 10	
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Light Nuclei in 2+1 Flavor QCD (1) 	
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Yamazaki-YK-Ukawa 12	


2+1フレーバーQCD, mπ＝0.5 GeV, mN=1.32 GeV on HA-PACS  

4He	
 3He	
 NN(3S1)	
 NN(1S0)	

Binding energy [MeV]	
 43(12)(8)	
 20.3(4.0)(2.0)	
 11.5(1.1)(0.6)	
 7.4(1.3)(0.6)	

Exp. value [MeV]	
 28.3	
 7.72	
 2.22	
 0	


Successful construction of helium nuclei in 2+1 flavor QCD 

0 1e-05 2e-05 3e-05 4e-05
1/L3

-0.08

-0.06

-0.04

-0.02

0

experiment
Nf=2+1 mN=1.32GeV

ΔE(4He) [GeV]   

0 1e-05 2e-05 3e-05 4e-05
1/L3

-0.08

-0.06

-0.04

-0.02

0

experiment
Nf=2+1 mN=1.32GeV

ΔE(3He) [GeV]  
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|ΔE(3S1)| > |ΔE(1S0)| is observed 
Important to check quark mass dependence 	


Light Nuclei in 2+1 Flavor QCD(2) 

Yamazaki-YK-Ukawa 12	


Target on K computer: construction of nuclei at the physical point 

ΔENN=mNN− 2mN	


0 0.5 1 1.5 2 2.5
m
π

2[GeV2]

-0.040

-0.020

0.000

0.020

0.040
Fukugita et al. [7]
NPLQCD mixed [8]
Aoki et al. [11]
PACS-CS Voo [2]
NPLQCD 2+1f Voo [3]
NPLQCD 3f Vmax [4]
This work 2+1f Voo

ΔE(1S0) [GeV]

0 0.5 1 1.5 2 2.5
m
π

2[GeV2]

-0.040

-0.020

0.000

0.020

0.040
experiment
Fukugita et al. [7]
NPLQCD mixed [8]
Aoki et al. [11]
PACS-CS Voo [2]
NPLQCD 2+1f Voo [3]
NPLQCD 3f Vmax [4]
This work 2+1f Voo

ΔE(3S1) [GeV]

Both 3S1 and 1S0 channels are bound at heavy quark region 
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based on equal-time BS amplitude 
 
 
Quenched QCD, mN=1.34GeV 

BS wave function with lattice QCD ⇒ NN Potential  
                    

Ishii-Aoki-Hatsuda 07 

Nuclear Force from Lattice QCD

N. Ishii,1,2 S. Aoki,3,4 and T. Hatsuda2

1Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
2Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

3Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
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The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approxi-
mation, using the plaquette gauge action and the Wilson quark action on a 324 [’!4:4 fm"4] lattice. A NN
potential VNN!r" is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating
operator for the nucleon. By studying the NN interaction in the 1S0 and 3S1 channels, we show that the
central part of VNN!r" has a strong repulsive core of a few hundred MeV at short distances (r & 0:5 fm)
surrounded by an attractive well at medium and long distances. These features are consistent with the
known phenomenological features of the nuclear force.
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More than 70 years ago, Yukawa introduced the pion to
account for the strong interaction between the nucleons
(the nuclear force) [1]. Since then, an enormous amount of
energy has been devoted to understand the nucleon-
nucleon (NN) interaction at low energies both from theo-
retical and experimental points of view. As shown in Fig. 1,
phenomenological NN potentials are thought to be char-
acterized by three distinct regions [2,3]. The long range
part (r * 2 fm) is well understood and is dominated by the
one-pion exchange. The medium range part (1 fm & r &
2 fm) receives significant contributions from the exchange
of multipions and heavy mesons (!, !, and "). The short
range part (r & 1 fm) is empirically known to have a
strong repulsive core [4], which is essential not only for
describing the NN scattering data, but also for the stability
and saturation of atomic nuclei, for determining the maxi-
mum mass of neutron stars, and for igniting the type II
supernova explosions [5]. Although the origin of the re-
pulsive core must be closely related to the quark-gluon
structure of the nucleon, it has been a long-standing open
question in QCD [6].

In this Letter, we report our first serious attempt to attack
the problem of nuclear force from lattice QCD simulations
[7]. The essential idea is to define a NN potential from the
equal-time Bethe-Salpeter (BS) amplitude of the two local
interpolating operators separated by distance r [8]. This
type of BS amplitude has been employed by CP-PACS
collaboration to study the ## scattering on the lattice [9].
As we shall see below, our NN potential shows a strong
repulsive core of about a few hundred MeV at short dis-
tances surrounded by an attraction at medium and long
distances in the s-wave channel.

Let us start with an effective Schrödinger equation ob-
tained from the BS amplitude for two nucleons at low
energies [9,10]:

 # 1

2$
r2%! ~r" $

Z
d3r0U!~r; ~r0"%! ~r0" % E%! ~r"; (1)

where $ & mN=2 and E is the reduced mass of the nu-
cleon and the nonrelativistic energy, respectively. For
the NN scattering at low energies, the nonlocal potential
U is represented as U! ~r; ~r0" % VNN! ~r;r"&! ~r# ~r0" with
the derivative expansion [2]: VNN %VC!r"$VT!r"S12$
VLS!r" ~L ' ~S$O!r2". Here S12%3! ~"1 ' r̂"! ~"2 ' r̂"# ~"1 ' ~"2

is the tensor operator with r̂ & j ~rj=r, ~S the total spin
operator, and ~L & #i~r( ~r the relative angular momen-
tum operator. The central NN potential VC!r", the ten-
sor potential VT!r", and the spin-orbit potential VLS!r"
can be further decomposed into various spin-isospin chan-
nels, e.g., VC!r"%V1

C!r"$V"
C !r" ~"1 ' ~"2$V'

C!r" ~'1 ' ~'2$
V"'
C !r"! ~"1 ' ~"2"! ~'1 ' ~'2". In the phenomenological analysis
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FIG. 1 (color online). Three examples of the modern NN
potential in the 1S0 (spin singlet and s-wave) channel: CD-
Bonn [17], Reid93 [18], and AV18 [19] from the top at r %
0:8 fm.
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beyond which we plot only the data locating on the coor-
dinate axes and their nearest neighbors. As is clear from
Fig. 2, the wave function is suppressed at short distance
and has a slight enhancement at medium distance, which
suggests that the NN system has a repulsion (attraction) at
short (medium) distance.

Figure 3 shows the central (effective central) NN poten-
tial in the 1S0 (3S1) channel at t! t0 " 6. As for r2 in
Eq. (2), we take the discrete form of the Laplacian with the
nearest-neighbor points. E is obtained from the Green’s
function G# ~r;E$ which is a solution of the Helmholtz
equation on the lattice [9]. By fitting the wave function
!#~r$ at the points ~r " #10–16; 0; 0$ and #10–16; 1; 0$ by
G#~r;E$, we obtain E#1S0$"!0:49#15$MeV and E#3S1$ "

!0:67#18$ MeV. Namely, there is a slight attraction be-
tween the two nucleons in a finite box. To make an inde-
pendent check of the ground state saturation, we plot the t
dependence of VC#r$ in the 1S0 channel at several distances
r " 0, 0.14, 0.19, 0.69, 1.37, and 2.19 fm in Fig. 4. The
saturation indeed holds for t! t0 % 6 within errors.

As anticipated from Fig. 2, VC#r$ and Veff
C #r$ have

repulsive core at r & 0:5 fm with the height of about a
few hundred MeV. Also, they have an attraction of about
!#20–30$ MeV at the distance 0:5 & r & 1:0 fm. The
solid lines in Fig. 3 show the one-pion exchange contribu-
tion to the central potential calculated from

 V"
C #r$ "

g2"N
4"

# ~#1 & ~#2$# ~$1 & ~$2$
3

!
m"

2mN

"
2 e!m"r

r
; (5)

where we have used m" ’ 0:53 GeV and mN ’ 1:34 GeV
to be consistent with our data, while the physical value of
the "N coupling constant is used, g2"N=#4"$ ’ 14:0. Even
in the quenched approximation, the one-pion exchange is
possible as the connected quark exchange between the two
nucleons. In addition, there is in principle a quenched
artifact to the NN potential from the flavor-singlet hairpin
diagram (the ghost exchange) between the nucleons [13].
Its contribution to the central potential reads [14]: V%

C #r$ "
g2%N
4"

~$1& ~$2
3 # m"

2mN
$2#1r !

m2
0

2m"
$e!m"r. Here g%N and m0 are the

%N coupling constant and a mass parameter of the ghost,
respectively. The ghost potential has an exponential tail
which dominates over the Yukawa potential at large dis-
tances. Its significance can be estimated by comparing the
sign and the magnitude of em"rVC#r$ and em"rVeff

C #r$ at
large distances, because V%

C #r$ has an opposite sign be-
tween 1S0 and 3S1. Our present data show no evidence of
the ghost at large distances within errors, which may
indicate g%N ' g"N .

Several comments are in order here. (1) The asymptotic
wave function at low energy (E ! 0) is approximated as
!asy#r$" sin(kr)&0#k$*

kr ! r)a0
r , where &0#k$ (a0) is the s-wave
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FIG. 2 (color online). The lattice QCD result of the radial
dependence of the NN wave function at t! t0 " 6 in the 1S0
and 3S1 channels. Inset shows the two-dimensional view in the
x! y plane.
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FIG. 3 (color online). The lattice QCD result of the central
(effective central) part of the NN potential VC#r$ [Veff

C #r$] in the
1S0 (3S1) channel for m"=m' " 0:595. The inset shows its
enlargement. The solid lines correspond to the one-pion ex-
change potential (OPEP) given in Eq. (5).
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FIG. 4 (color online). t! t0 dependence of VC#r$ in the 1S0
channel for several different values of the distance r.
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Phenomenological model	

• S-matrix below inelastic threshold.  Unitarity gives

• Nambu-Bethe-Salpeter (NBS) Wave function

�E(r) = �0|N(x + r, 0)N(x, 0)|6q, E⇥
6 quark QCD eigen-state with energy E

N(x) = �abcqa(x)qb(x)qc(x): local operator

Asymptotic behavior

S = e2i�

⇤l
E(r) �⇥ Al

sin(kr � l⇥/2 + �l(k))
kr

r = |r|�⇥

E =
k2

2µN
=

k2

mN

partial wave

�l(k) is the scattering phase shift

Quantum Field Theoretical consideration

9

§5. Nuclear Force	


of the NN scattering phase shift [3], the Schrödinger
equation with a certain parametrization of VNN is solved
and compared with the data. On the other hand, if we can
calculate !! ~r" directly from lattice simulations for various
E, Eq. (1) can be used to define the nonlocal potential
U!~r; ~r0" directly without recourse to the experimental in-
puts except for quark masses and the QCD scale parameter.
In this Letter, instead of finding U by varying E, we take
only the leading term in the derivative expansion at low
energies and extract the central potential VC!r" at fixed E
through

 VC!r" # E$ 1

2"

~r2!!r"
!!r" : (2)

On the lattice, !! ~r" with zero angular momentum (‘ #
0) is defined from the equal-time BS amplitude as

 !! ~r" % 1

24

X

R2O

1

L3

X

~x

P#ijP
$
%&h0jNi

%!R& ~r' $ ~x"Nj
&! ~x"jNNi;

(3)

where we choose the local interpolating operator for the
nucleon: Ni

% # 'abc!tqaC(5#2qb"qi;c% with a, b, and c the
color indices, % and & the Dirac indices, i and j the isospin
indices, and C % (4(2 the charge conjugation. ~r describes
the spatial separation between the nucleons. Since we
consider the NN scattering at low energies, we take only
the upper components of Ni

%. The summation over the
vector ~x projects out the state with zero total momentum.
The summation over discrete rotation R of the cubic group
O projects out the A$1 representation which contains ‘ # 0
state and ‘ ( 4 states. The former can be singled out by
selecting the lowest energy state with the procedure given
in Eq. (4). The spin (isospin) projection is carried out by
the operator P$ (P#); for example, P$%& # !$2"%&!# )%&"
in the spin-singlet (spin-triplet) channel. The renormaliza-
tion factor Z, which relates the BS amplitude on the lattice
and that in the continuum, cancels out in VC!r".

The !!~r # ~y) ~x" in Eq. (3) is nothing but the proba-
bility amplitude to find ‘‘nucleonlike’’ three quarks located
at point ~x and another ‘‘nucleonlike’’ three quarks located
at point ~y. In terms of the physical states,!! ~r" contains not
only the elastic amplitude NN ! NN but also the inelastic
amplitudes such asNN ! *NN. However, at low energies
below threshold, the inelastic part is spatially localized and
does not affect the asymptotic form of !! ~r". Note also that
a different choice of the nucleon interpolating-operator
modifies the relative weight of the elastic and inelastic
amplitudes and thus leads to a different NN potential.
Nevertheless, they give the same scattering phase shift
since the asymptotic form of !!~r" is independent of the
interpolating operators. It is an open question at the mo-
ment how the short distant structure of VNN to be shown
below is affected by the change of the interpolating opera-
tor. For more details on these points, see [10].

In the actual simulations, Eq. (3) is obtained through the
four point nucleon correlator,

 FNN! ~x; ~y; t; t0" % h0jNi
%! ~x; t"Nj

&! ~y; t"J NN!t0"j0i

#
X
n
Anh0jNi

%! ~x"Nj
&! ~y"jnie)En!t)t0": (4)

Here J NN!t0" is a source term located at t# t0, which pro-
duces the nucleons with zero total momentum. To enhance
the ground state contribution of the NN system, we adopt
the wall source, J NN!t0" # P#ijP

$
%&N

i
%!t0"N j

&!t0", where
N is obtained from N by replacing q by Q!t0" #P

~xq! ~x; t0". En is the energy of the two-nucleon state jni
and An!t0" % hnjJ NN!t0"j0i. Because of the finite lattice
volume L3, the energy E takes discrete value and has a
finite shift from the noninteracting case !E # O!1=L3" to
be determined from the simulations [11].

In this Letter, we focus on the spin-singlet and spin-
triplet channels with zero orbital angular momentum. In
the standard notation, the former (latter) corresponds to the
2s$1‘J # 1S0 (# 3S1) channel, where s, ‘, and J denote the
total spin, orbital angular momentum, and the total angular
momentum of the two nucleons. The 1S0 is the simplest
channel where only the central potential VC!r" contributes.
On the other hand, there arises a mixing between the 3S1
and 3D1 channels because of the tensor force VT!r". In this
case, one may define an effective central potential Veff

C !r"
which consists of the bare central potential and the induced
central potential by the 3D1 admixture [2]. The definition
in Eq. (2) with !! ~r" being projected onto 1S0 (3S1) cor-
responds to the central potential (the effective central
potential).

To calculate !!~r", we have carried out simulations on a
324 lattice in the quenched approximation. We employ the
plaquette gauge action with the gauge coupling & # 5:7
and the Wilson quark action. The lattice spacing deter-
mined from the + meson mass in the chiral limit is a)1 #
1:44!2" GeV (a ’ 0:137 fm) [12], which leads to the lat-
tice size !4:4 fm"4. The hopping parameter is chosen to be
, # 0:1665, which corresponds to m* ’ 0:53 GeV, m+ ’
0:89 GeV, and mN ’ 1:34 GeV. We use the global heat-
bath algorithm with overrelaxations to generate the gauge
configurations. After skipping 3000 sweeps for thermal-
ization, 500 gauge configurations are collected with the
interval of 200 sweeps. Results for lighter and heavier
quark masses with higher statistics will be reported in
[10]. The Dirichlet (periodic) boundary condition for
quarks is imposed in the temporal (spatial) direction. To
avoid the boundary effect, the wall source is placed at t #
t0 # 5 at which the Coulomb gauge fixing is made. The
ground state saturation for t) t0 ( 6 is checked by the
effective mass of the two-nucleon system.

Figure 2 shows the lattice QCD result of the wave
function at the time slice t) t0 # 6. They are normalized
at the spatial boundary ~r # !32=2 # 16; 0; 0". All the data
including the off-axis ones are plotted for r & 0:7 fm,
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Possible Applications	


30 

•  Determination of nuclear force at the physical point 
            Center force, tensor force, LS force, … 
 
•  Determination of hyperon force at the physical point 
　　　　   various channels with the strangeness S=−1, −2, −3, −4 
 
•  3 body force 
　　　　   repulsive force at the short distance? 
 
•  Studies of exotic hadrons 
　　　　   representative case is H-dibaryon 

 



Preparatory Studies	
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HAL QCD 12	


2+1 flavor QCD, lattice size=323×64, mπ＝0.70, 0.57, 0.41 GeV 

Attractive phase shift, though the magnitude is just 10% of exp. value 
(no bound state ⇒ inconsistency against the direct method) 
Phase shift becomes smaller, as quark mass decreases 
⇒ need direct comparison with exp. values at the physical point 
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Lattice QCD on K computer　　　　 
 
scientific target  
•  1+1+1 flavor QCD+QED at the physical point 
•  Investigation of resonances 
•  Direct construction of light nuclei 
•  Determination of baryon-baryon potentials 
•  Other physical quantities … 
 

 
　　　     

              
 
 
 
 

　　 
　	


 
                       

§6. Summary  


