

HPC at CCS University of Tsukuba

Masayuki Umemura (Center for Computational Sciences, University of Tsukuba)

Organization of CCS

T2K Tsukuba System

(T2K: Tsukuba, Tokyo and Kyoto Open Supercomputer Alliance)

HA-PACS system (base-cluster)

- Spec of compute nodes
 - CPU x2 + GPU x4/node

(4 GPU: 2660 GFLOPS + 2 CPU: 332 GFLOPS~ 3 TFLOPS / node)

- Advanced CPU: Intel SandyBridge: high-peak performance enhanded by 256bit AVX instruction, and high memory bandwidth by 1600MHz DDR3 (2.6GHz SandyBridge-EP (8 core) = 166.4 GFLOPS, 51.2GB/s memory bandwidth, 128GB)
- x40 lane for CPU direct I/O of PCIe Gen3
- Advanced GPU: NVIDIA M2090: M2070 512core enhance version: peak performance 665GFLOPS
- Interconnect network
 - Infiniband QDR x 2 rail (trunk)
 - Connected by PCIe Gen3 x8 lane

- System spec.
 - 268 nodes
 - CPU 89TFLOPS + GPU 713TFLOPS = total 802TFLOPS
 - Memory 34TByte, memory bandwidth 26TByte/sec
- Bi-section bandwidth 2.1TByte/秒
- Storage 504TByte
- Power 408kW
- 26 ranks, Installed on Jan, 2012
- Operation started from Feb, 2012

Organization of HA-PACS Project

Project Office for Exascale Computational Sciences

Project Office for Exascale Computing System Development

Masayuki Umemura Kazuhiro Yabana Hiroshi Tanaka Hiroyuki Kitagawa Yoshinobu Kuramashi Tong Xiao-Min Hiroyuki Kusaka Toshiyuki Amagasa Daisuke Takahashi Toshihiro Hanawa Kohji Yoshikawa Mitsuo Shoji Koji Terasaki

Ken'ichi Ishikawa Yasuteru Shigeta CCS, U. Tsukuba CCS, U. Tsukuba

Hiroshima U

Osaka U.

Nuclear Physics Geoenvironment Database Particle Physics Materials Science Geoenvironment Database Computer Science Computer Science Astrophysics Bioscience Geoenvironment Particle Physics Bioscience

Astrophysics, Chief

- Collaboration between Computational Science and Computer Science
- Collaboration among Computational Sciences
- Algorisms
- GPU computing
- Science goals

Computational Sciences by HA-PACS

Hydrodynamics, Radiation, Chemical Reactions

Particle Physics

Multi-scale physics

Investigate hierarchical properties via direct construction of nuclei in lattice QCD GPU to solve large sparse linear systems of equations

Finite temperature and density

Phase analysis of QCD at finite temperature and density GPU to perform matrix-matrix product of dense matrices

Expected QCD phase diagram

0.1Gvr

Reionization

Galaxy Formation

Supermassive Black Holes

Star

Formation

Dark Age

First Objects

0.38My

Cosmic Recombination

Big Bang

Astrophysics

1Gv

13.7Gy

(A) 6-Dimensional Radiation Hydrodynamics

3-Dimensional Hydrodynamics + 6-Dimensional Radiation Transfer

<u>Goals</u> Elucidation of Galaxy Formation Elucidation of Cosmic Reionization

Acceleration by GPU/TCA of ray tracing and chemical reactions, which are of strong scaling.
 Realization of radiation hydrodynamics

(B) 6D Vlasov Simulation of Self-Gravitating Systems

Goals Dark Matter Dynamics Collisionless plasma

A direct integration of collisionless Boltzmann equation
 Not suffer from two-body relaxation which is inevitable in N-body simulation

Nuclear Physics

Simulation with real-time and real-space method for many-fermion systems

Nuclear response and reaction dynamics relevant to nucleosynthesis

- Nuclear transfer reaction to produce r-process nuclei experimentally
- Fusion reaction of light nuclei
- Systematic investigation of nuclear response function

Application of nuclear methods to other fields

- First-principles calculation for light-matter interaction
- Propagation of ultra-intense laser pulse
- Simulation for atto-second electron dynamics

Methodology : Time-dependent mean-field theory (TDDFT, TDHF, TDHFB) with real-time and 3D real-space method

Merit of GPU calculation : High performance calculation for the operation of Hamiltonian on orbital wave functions

TDHF simulation to produce neutron-rich nuclei by multi-nucleon transfer reaction

Atto-second electron dynamics in solid induced by ultrashort laser pulse

Materials Science

 $=H\Psi$

Develop a general numerical method to solve the time-dependent Schrödinger equation for many-electron quantum systems and use it to

understand atomic, molecular and materials structures and their dynamics
 search a way to *control* the structures and dynamics in femtosecond (10⁻¹⁵ s) or even attosecond (10⁻¹⁸ s) time scales.

Holographic image of an electron wavepacket colliding with ionic core.

Controlling the XUV transparency by IR laser in attosecond time scale

Geoenvironment

Objectives

 ✓ GPU application to the Next-Generation Atmospheric General Circulation Modell NICAM
 ✓ GPU application to the Large Eddy Simulation (LES)
 ✓ GPU application to the 3D Normal Mode Expansion of the atmospheric state variables

Expected Products

- •LES model with 10 m spatial resolution is developed by the GPU application
- •NICAM physical processes is efficiently calculated by the GPU application
- •Energetics analysis of the high-resolution atmospheric GCM is possible by the GPU application

Merit of the GPU/TCA application

Weather forecasting model by a grid discretization is a type of stencil computation. The memory access is therefore simple, and the computational acceleration up to 10 times speed is possible by the GPU/TCA application.

Topography with a 50 m grids

<image>

Database

Data Mining of Big Data based on GPGPU

- Research objective and plan
 - Accelerating data mining from big data using GPU
 - Target mining algorithms
 - Document clustering
 - PLSI (Probabilistic Latent Semantic Indexing)
 - LDA (Latent Dirichret Allocation)
 - Probabilistic association-rule mining
 - Developed algorithms for single-GPU.
 - Develop multi-GPU versions for GPU-cluster environment based on the current algorithms.
- Expected results and breakthrough
 - Application of GPU-cluster to problems other than numerical analysis or simulation.
 - Few existing works have applied GPU-cluster to data mining problems so far.
 - Promote the use of GPU-cluster as a platform for big data analysis.

- Applicability of GPU
 - Some data mining algorithms are suitable for GPU, but others may not.
 - A technical challenge is to combine CPU- and GPU-based computation taking account of the algorithmic characteristics.
- Scale of computation
 - Under consideration
 - Aiming at processing big datasets such that GPU-cluster is necessary.

K computer

- SPARC64TM VIIIfx 2.0GHz octcore (128Gflops / core)
- 16 GB memory / core
- 6D torus network

- Total 82944 nodes (663552 CPU core)
- 1.3PB memory
- 10.6 Pflops peak speed

Prediction of Electron States of Si Nanowires with 100,000 atoms on K Computer

Gordon Bell Prize 2011

Number of atoms in SiNW channels \rightarrow 10,000 - 100,000 atoms !

Surrounding gate transistor

Actually tri-gate by Intel in 2011

Collaborators

- Yukihiro Hasegawa (RIKEN)
- Jun-Ichi Iwata (The University of Tokyo)
- Miwako Tsuji (University of Tsukuba)
- Daisuke Takahashi (University of Tsukuba)
- Atsushi Oshiyama (The University of Tokyo)
- Kazuo Minami (RIKEN)
- Taisuke Boku (University of Tsukuba)
- Fumiyoshi Shoji (RIKEN)
- Atsuya Uno (RIKEN)
- Motoyoshi Kurokawa (RIKEN)
- Hikaru Inoue (Fujitsu Limited)
- Ikuo Miyoshi (Fujitsu Limited)
- Mitsuo Yokokawa (RIKEN)

Solving Kohn-Sham equation -RSDFT-

<u>Advantages</u>

- > Almost free from FFT, reducing communication burden \Rightarrow high efficiency
- > <u>No periodic boundary condition</u> to wave-functions

 \Rightarrow molecules, clusters, surfaces, etc.

≻

Flow of the SCF calculation

Scalability of parallelization in grid spaces and orbitals

• Similarly, other procedure blokes also has a good scalability.

Overall Performance: Gordon Bell Prize 2011

- Sustained performance is **3.08 PFLOPS** /SCF.
- **43.6** % of the peak performance.
- Communication cost is 19% of all execution times.
- One iteration time of SCF is 5500 sec.

Distribution of computional cost

- global communication/space

adjacent communication/space

- global communication/orbital
- wait/orbital

computation

Trillion-body Simulations of Dark Matter Universe on K-Computer

Ishiyama (Tsukuba), Makino (TiTech), Nitadori (AICS, Riken)

Gordon Bell Prize 2012

Visualization by Takeda (CfCA, NAO)

Dynamic domain decomposition

 Δ Space filling curve

O multi section

Allows each node to know easily where to perform short communications

- X equal #particles
- Δ equal #interactions

O equal <#interactions + correction</p>

= equal calculation time

Performance results

- Scalability (2048³ 10240³)
 - Excellent strong scaling
 - 10240³ simulation is well scaled from 24576 to 82944 (full) nodes of K computer
- Performance (12600³)

 The average performance on fullsystem is ~5.67Pflops, which correspond to ~55% of
 Gothe peak ISPeed 2012

Organization for Collaborative Research on Computational Astrobiology

Computational Astrobiology

Astrophysics

Collaboration of Astrophysics, Biophysics, and Planetary Science

Biophysics

Planetary Science

Cosmic origin of L-amino acid

Enantiomeric excess of Amino Acid by interstellar circular-polarized light

Photosynthesis on extra-solar planets Red edge as a biomerker

TDDFT calculations of chlorophylls

Chlorophyll dynamics QM/MM

Mars 0.66	Earth 1.00	E	Current Potential Habitable Exoplanets Compared with Earth and Mars and Ranked in Order of Similarity to Earth					
#7		#6	#5	#4 Farth Similarity Index	#3	#2	#1	
0.72		0.72	0.77	0.79	0.81	0.85	0.92	
						S.		
iese 581 d	i3 c Gl	Gliese 163	HD 85512 b	HD 40307 g*	Kepler-22 b	Gliese 667C c	Gliese 581 g*	
apr 2007	12 4	Sep 2012	Sep 2011	 Discovery Date – Nov 2012 	Dec 2011	Nov 2011	Sep 2010	
iese pr :	63 c Gl 12 <i>f</i> p (phl.upr.edu	Gliese 163 Sep 2012	HD 85512 b Sep 2011 CREDIT: PHL	HD 40307 g* — Discovery Date — Nov 2012	Kepler-22 b Dec 2011	Gliese 667C c Nov 2011	Gliese 581 g* Sep 2010 *planet candidates	