
Adrian Jackson

Technical Architect

a.jackson@epcc.ed.ac.uk

HPC at EPCC

The University of Edinburgh

EPCC http://www.epcc.ed.ac.uk

HPC at EPCC

• Edinburgh Parallel Computing Centre

– founded in 1990 at the University of Edinburgh

• Now an Institute within the School of Physics and

Astronomy

• High performance and novel computing for academia

and industry

2

HPC at EPCC
3

EPCC

• EPCC is the HPC Centre of the

University of Edinburgh

• Vital statistics:

– ~75 staff

– ~£4M turnover from external sources

• Multidisciplinary and multi-funded

– with a large spectrum of activities

… and a critical mass of expertise

• Supports research through:

– Access to facilities

– Training courses

– Visitor programmes

– Collaborative projects

HPC Research

Training

Visitor
Programmes

European
Projects

Facilities

Technology
Transfer

Facilities: HECToR

HPC at EPCC 4

• UK National HPC

Service

• Currently 30-

cabinet Cray XE6

system

– 90,112 cores

• Each node has

– 2×16-core AMD

Opterons (2.3GHz Interlagos)

– 32 GB memory

• Peak of over 800 TF and 90 TB of memory

ARCHER

• Next generation UK National Service

– Cray XC30

– 1.6 Pflop/s machine

– 16 cabinets

– 376 nodes per cabinet

– 2 cabinets high memory

– Node:

– 2 x Intel Xeon E5-2697 processor,
12-cores 2.7 GHz

– 64 GB DDR3 1866 MHz

– High memory nodes:

– 2 x Intel Xeon E5-2697 processor,
12-cores 2.7 GHz

– 128 GB DDR3 1866 MHz

HPC at EPCC 5

Facilities: DiRAC and Indy

• Indy: Linux and Windows HPC cluster

– 1536 cores

– 24 nodes: 64 cores, 256GB

– 128 cores

– 2 nodes: 64 cores, 512GB

– Commercial usage focus

– No job length or queue restrictions

• DiRAC: BlueGene/Q

– 6144 compute nodes

– 98304 compute cores

– 1.26PFlop/s

HPC at EPCC 6

Facilities: EDIM1

� A machine for Data Intensive

Research

� Commissioned by EPCC &

Informatics

� Designed for I/O-intensive

applications

� Use commodity components

� Combine them in a novel way

� Use cheap low-power

processors

HPC at EPCC 7

• EDIM1

– 120 nodes

– Dual-Core Intel 1.6 GHz

ATOM processor

– NVIDIA ION GPU

– 1 x 256 MB SSD

– 3 x 2TB HDD

– Data staging node for hot-plugging SATA hard

disks for direct data upload

Gb Ethernet

USB2

Facilities: EDIM1

HPC at EPCC 8

Facilities: UK Research Data Facility

• RDF is designed for long term data storage

HPC at EPCC 9

• RDF consists of

– 7.8PB disk

– 19.5 PB backup tape

– Provide a high capacity robust file store;

– Persistent infrastructure - will last beyond
any one national service;

– Will remove end of service data issues -
transfers at end of services have become
increasingly lengthy;

– Will also ensure that data from the
current HECToR service is secured

• GPU testbed

• Hydra

– NVIDIA Fermi GPGPUs

– Intel Xeon Phi

– NVIDIA K20’s

HPC at EPCC 10

Other Facilities

GPGPUs

NVIDIA Fermi C2050

NVIDIA Fermi C2070

AMD FireStream 9270

NVIDIA K20

• MSc in HPC

– One year masters, 30-50 students annually

– Message-Passing Programming

– Shared-Memory Programming

– HPC Architectures

– Programming Skills

– Software Development

– Threaded Programming

• Short courses in parallel and novel computing

– Academia and Industry

• PhD Students

Training

HPC at EPCC 11

– Parallel Numerical Algorithms

– HPC Ecosystem

– Parallel Design Patterns

– Performance Programming

– Parallel Programming Languages

– Dissertation/Project (3 Months)

Projects

HPC at EPCC 12

• Nu-FuSE is an international project (funded

through the G8 Research Councils Initiative on

Multilateral Research Funding) looking to

significantly improve computational modelling

capabilities to the level required by the new

generation of fusion reactors.

• The focus is on three specific scientific areas:

• fusion plasma

• the materials from which fusion reactors are

built;

• physics of the plasma edge

• This will require computing at the “exascale” level

across a range of simulation codes, collaborating

together to work towards full integrated fusion

tokamak modelling.

Nu-FuSE: Nuclear Fusion Simulation at Exascale

http://www.nu-fuse.com

Nu-FuSE

HPC at EPCC 13

HPC at EPCC 14

Example: Oncology

• Aim: investigate genetic causes of bowel cancer

• Collaborative project between EPCC and the Colon
Cancer Genetics Group (CCGG)

• Vast amount of data

– Over 500,000 genetic markers from 2000 people

• Two-stage study

• Stage 1: investigated effect of each individual marker

– Required ~565,000 computations, O(N) problem

– Predicted serial runtime ~4 months on a single cpu

– Parallel code took 6.5 hours on 128 processors
(www.sanofi-aventis.com)

HPC at EPCC 15

Example: Oncology

• Stage 2: investigated interactions

between the gene markers

– Every pair of markers must be tested

– O(N2) problem

565,000 x 565,000
2 = 1.5 billion gene interactions!

– Key challenges: runtime, memory, scaling &

sorting

HPC at EPCC 16

Oncology

• Runtime

– code expected to take 400 days, optimisation reduced this to 130 days but
still too long

– Need a parallel code

• Memory

– Impossible to fit all the data into memory

– However, we only actually need 5% of the results

• Scaling

– 2D decomposition used with a “task farm”

– More chunks than processors

• Sorting

– Parallel sorting algorithm used

• Computed interactions between all pairs of markers
– 565,0002 computations

• Runtime reduced from 400 days to 5 hours on 512 CPUs on HECToR

• 8.5x109 (192GB) probability values obtained

• Sorting performed in 5 minutes

HPC at EPCC

Example: CFD Code COSA

• COSA CFD simulation code

– Serial code

– M. Sergio Campobasso author
– FORTRAN code
– Currently 2D, 3D under development
– Demonstrate performance of harmonic balance vs time domain for

periodic unsteady flows

• Single code incorporates multiple functionality
– Euler, viscous laminar and turbulent equations
– Structured multi-block solver using explicit multigrid integration
– Time-domain solution based on dual-time-stepping
– Harmonic Balance solver with variable number of harmonics

• Serial code required significant computational time
– Weeks for a reasonable dataset
– Code developed using multi-block format

17

Pure MPI Performance

HPC at EPCC 18

Efficiency – Power used

HPC at EPCC 19

Hybrid Parallelisation

HPC at EPCC 20

Hybrid Efficiency

HPC at EPCC 21

Example: MDMP

• New parallel programming approach
– Optimise parallel performance

– Assuming computing free, memory expensive, communication very
expensive

– Optimising communications

– Similar to memory optimisations

– High communication latency

– Cache or pre-fetch optimisations

– Not quite as simple

• Parallel Programming Challenges
– Work with MPI based codes

– Generate MPI calls for parallelism

– Enable easy new development

– Directives based/Compile based implementation

– Provide framework for optimisation communications

– Runtime monitoring and scheduling of communications

– Enable different communication layers to be used

HPC at EPCC 22

• Standard computational and communication

• Calculate over

array or matrix

• Communicate

halo data at

the end of the

calculations

Optimise standard patterns

HPC at EPCC 23

MDMP Fundamentals

#pragma send(…)

#pragma recv(…)

for (iter=1;iter<=maxiter; iter++){

#pragma recv(old[0][0], NP, prev)

#pragma recv(old[MP+1][1], NP, next)

#pragma send(old[MP][1], NP, next)

#pragma send(old[1][1], NP, prev)

for (i=1;i<MP+1;i++){

for (j=1;j<NP+1;j++){

new[i][j]=0.25*(old[i-1][j]+old[i+1][j]+

old[i][j-1]+old[i][j+1] - edge[i][j]);

}

}

for (i=1;i<MP+1;i++){

for (j=1;j<NP+1;j++){

old[i][j]=new[i][j];

}

}

}

HPC at EPCC 24

MDMP Fundamentals

• Communicating Regions

#pragma commregion

#pragma commregionfinished

• Defines the scope to consider for the data evaluation and

communication optimisation

– Count read and writes of data to be communicated

– Communicate once; last write occurs (sends), last read/write occurs
(receives)

HPC at EPCC 25

MDMP Fundamentals

#pragma commregion

for (iter=1;iter<=maxiter; iter++){

#pragma recv(old[0][0], NP, prev)

#pragma recv(old[MP+1][1], NP, next)

#pragma send(old[MP][1], NP, next)

#pragma send(old[1][1], NP, prev)

for (i=1;i<MP+1;i++){

for (j=1;j<NP+1;j++){

new[i][j]=0.25*(old[i-1][j]+old[i+1][j]+

old[i][j-1]+old[i][j+1] - edge[i][j]);

}

}

for (i=1;i<MP+1;i++){

for (j=1;j<NP+1;j++){

old[i][j]=new[i][j];

}

}

}

#pragma commregionfinished

HPC at EPCC 26

MDMP Fundamentals

• Combined these enable runtime scheduling of

communications to optimise network usage

– Auto-tuning possible

– Potential for errors

– Adds computational overheads

– May damage memory performance

– Relies on users placing communicating regions correctly

HPC at EPCC 27

MDMP Performance

• STREAMS benchmarks

– Communicating region

Operation Original Time MDMP Time Optimised MDMP

Time

Int Assign 0.000007 0.000189 0.000048

Db Assign 0.000009 0.000173 0.000057

Db Copy 0.000009 0.000300 0.000066

Db Scale 0.000017 0.000297 0.000063

Db Add 0.000035 0.000427 0.000071

Db Triad 0.000035 0.0004333 0.000076

HPC at EPCC 28

MDMP Performance

• STREAMS benchmarks

– No communicating region

Operation Original Time MDMP Time Optimised MDMP

Time

Int Assign 0.000007 0.000113 0.000020

Db Assign 0.000009 0.000083 0.000024

Db Copy 0.000009 0.000128 0.000027

Db Scale 0.000017 0.000167 0.000025

Db Add 0.000035 0.000196 0.000033

Db Triad 0.000035 0.000195 0.000037

HPC at EPCC 29

MDMP Performance

• PingPong benchmark

HPC at EPCC 30

MDMP Performance

• Selective PingPong benchmark

HPC at EPCC 31

MDMP Performance

• Selective PingPong benchmark

HPC at EPCC 32

MDMP Performance

• Delay PingPong benchmark

HPC at EPCC 33

MDMP Performance

• Delay selective PingPong benchmark

HPC at EPCC 34

Summary

• MDMP

– Simplified MPI programming

– Aims to optimise communication

– Automating evaluation and scheduling of

communications

– Won’t work for everything

– Won’t necessarily give best performance

– Requires more memory

– Can default to mapping to MPI only

– Can just use MPI

– Selective optimisations after development

HPC at EPCC 35

PGAS2013

HPC at EPCC 36

Partitioned Global Address Space (PGAS) programming models offer a shared address space

model that simplifies programming while exposing data/thread locality to enhance performance.

The PGAS conference is the premier forum to present and discuss ideas and research

developments in the area of: PGAS models, languages, compilers, runtimes, applications and

tools, PGAS architectures and hardware features.

• Applications. New applications that are uniquely enabled by the PGAS model, existing

applications and effective application development practices for PGAS codes.

• Performance. Analysis of application performance over various programming models.

• Developments in Programming Models and Languages. PGAS models, language

extensions, and hybrid models to address emerging architectures, such as multicore, hybrid,

heterogeneous, SIMD and reconfigurable architectures.

• Tools, Compilers, and Implementations. Integrated Development Environments,

performance analysis tools and debuggers. Compiler optimisations for PGAS languages, low

level libraries, memory consistency models. Hardware support for PGAS languages,

performance studies and insights, productivity studies, and language interoperability.

Contact details

HPC at EPCC 37

EPCC, The University of Edinburgh

JCMB, Mayfield Road, Edinburgh EH9 3JZ

+44 131 650 5022

info@epcc.ed.ac.uk

http://www.epcc.ed.ac.uk/

