筑波大学計算センターコロキウム, Jun 16, 2011

TSUBAME 2.0の概要

東京工業大学・学術国際情報センター

青木 尊之

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

1

GP-GPU Computing

General-Purpose Graphics Processing Unit

High Performance over TFLOPS

Major differences from Previous Accelerators ClearSpeed, Grape, , ,

High Memory Bandwidth suitable for CFD applications Consumer Product inexpensive Software Development Environment CUDA, Open CL

Supercomputer in the world

2010 November

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH Cluster, X5670 2.93Ghz 6C, NVIDIA GPU, FT- 1000 8C / 2010 NUDT	186368	2566.00	4701.00	4040.00
2	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
3	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	2580.00
4	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.61
5	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12- core 2.1 GHz / 2010 Cray Inc.	153408	1054.00	1288.63	2910.00

TSUBAME 2.0

Rack (30 nodes)

System (58 racks)

1442 nodes: 2952 CPU sockets, 4264 GPUs

Performance: 224.7 TFLOPS (CPU) % Turbo boost 2196 TFLOPS (GPU) Total: 2420 TFLOPS

Memory: 103.9 TB

Details of Compute Node

HP ProLiant SL390s

DIMM 6C DIMM 5F

DIMM 6C DIMM 5F

SSD

2×USB

Internal

Micro SD

USB

NVIDIA Tesla M2050 (Fermi Core) ×3 515GFLOPS VRAM 3GB/GPU GPU :

CPU: Intel Xeon X5670 2.93Ghz ×2 6 core/socket 76.7 GFLOPS (12cores/node) % Turbo boost: 3.196GHz Memory: 58GB DDR3 1333MHz 一部 103GB

SSD: 60GB ×2(120GB/node) 一部 120GB ×2(240GB/node)

DIMM 4B DIMM 3E DIMM 2A DIMM 1D **QDR** Infiniband $\times 4$ QSFP Intel Xeon HCA $\times 1$ X5670 × 2 SFP+ ×8 Gen2 Mellanox ConnectX DDR3 QP GPU ×16 Gen2 ×16 7,8,9,10 PCI-SLOT 1 CPU1 ×24 PCIE Riser Conn Tylersburg- $\times 8$ ×8 Gen2 PCI-SLOT 36D 5,6 **QDR** Infiniband ×4 Gen2 NIC1 QPI **RJ45** HCA Intelkawela ESI 1,2 NIC2 82576 **RJ45** Mellanox ConnectX 1 CPU2 -0 DIMM 2A DIMM 1D DIMM 4B DIMM 3E 10 PI-Riser ×16 PCI-SLOT GPU Tylersburg-36D O ESI ×16 PCI-SLOT GPU ESI 6 PCI-E Riser SSD 6×SATA RJ45 10/100PHY GXE

Serial (RJ45)

GROM

SROM

NVRAM

Video

SPI

LVAD

RN50/ES1000

DVI

PCI

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

P6

ICH10

High-Speed Network and Reliable Storage System

ORNL Jaguar vs Tsubame 2.0

Similar Peak Performance, 1/4 the Size and Power

Supercomputer in the world

The Green500 list, November 2010

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype	38.80
2+	1448.03	National Astronomical Observatory of Japan	GRAPE-DR accelerator Cluster, Infiniband	24.59
2	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
8	933.06	NCSA	Hybrid Cluster Core i3 2.93Ghz Dual Core, NVIDIA C2050, Infiniband	36.00
4	828.67	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	57.96
5	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
5	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54

TSUBAME2.0 PUE = 1.2

(Power Usage Effectiveness)

CPU/GPU Spec Sheet

		Intel Xeon X5670	Tesla C2050 /M2050	GeForce GTX 580 Fermi
	Peak Performance [GFlops]	76.8*,153.6	515*,1030	197*,1576
GPU	Number of Processor	6	448	512
	Core Clock [GHz]	2.93	1.15	1.544
	Bandwidth[GB/s]	32.0	148.6	192.1
Mamani	Memory Interface [bit]	64	384	384
Memory	Memory Clock [GHz]	1.333 (DDR3)	1.50 (GDDR5)	2.00 (GDDR5)
Bpeak/Fpeak	Bandwidth/Performance	0.416	0.289	0.974

GPU Architecture

Showcase of CFD Applications

Lattice Boltzmann Method

Pulmonary Airflow Study

Collaboration with Tohoku University

「人体の不思議展」より X-Ray CT images 512 × 512 × 512 Airway structure Extraction

Pulmonary Airflow Study Collaboration with Tohoku University

Pulmonary Airflow Study

Collaboration with Tohoku University

Real-time TSUNAMI Simulation

ADPC : Asian Disaster Preparedness Center

Early Warning System:

high accuracy

Shallow-Water Eq.

Conservative Form:

Assuming hydrostatic balance

in the vertical direction,

$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} = 0$$

$$\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) + \frac{\partial huv}{\partial y} = -gh\frac{\partial z}{\partial x}$$

$$\frac{\partial hv}{\partial t} + \frac{\partial huv}{\partial x} + \frac{\partial}{\partial y} \left(hv^2 + \frac{1}{2}gh^2 \right) = -gh\frac{\partial z}{\partial y}$$

SCREEN Capture

Large-scale Real-time Tsunami Simulator

Large-scale Real-time Tsunami Simulator

8 GPU 400km×800km (100m mesh) within 3 min

Tsubame 2.0

Number of CPU / GPU

Two-Phase Flow Simulation

Sparse Matrix Solver

 $\mathbf{A} \mathbf{x} = \mathbf{b} \qquad \mathbf{for} \quad \nabla \cdot \left(\frac{1}{\rho} \nabla p\right) = \frac{\nabla \cdot \mathbf{u}}{\Delta t}$

Krylov sub-space methods: CG, BiCGStab, GMRes, , ,

Pre-conditioner: Incomplete Cholesky, ILU, MG, AMG, Block Diagonal Jacobi

Non-zero Packing: CRS \rightarrow ELL, JDL

BiCGStab + MG Pre-conditioner

Set
$$k = 0$$
 $r_0 = p_0 = M^{-1}(b - Ax_0)$
Mizuho Information & Research Institute
for $k = 0$; $k < N$; $k++$;
 $\alpha_k = \frac{(r_0, r_k)}{(r_0, M^{-1}Ap_k)}$ $q_k = r_k - \alpha_k M^{-1}Ap_k$ $\omega_k = \frac{(q_k, M^{-1}Aq_k)}{(M^{-1}Aq_k, M^{-1}Aq_k)}$
 $x_{k+1} = x_k + \alpha_k p_k + \omega_k q_k$
 $r_{k+1} = q_k - \omega_k M^{-1}Aq_k$
if $(r_{k+1}, r_{k+1}) < \varepsilon^2(b, b)$ exit;
 $\beta_k = \frac{(r_0, r_{k+1})}{\omega_k(r_0, M^{-1}Ap_k)}$
 $p_{k+1} = r_{k+1} + \beta_k (p_k - \omega_k M^{-1}Ap_k)$

Collaboration with

loop end

MG V-Cycle

4.0 m/sec impact speed

Milk Crown

Drop on dry floor

Initial stages of dam-break flow P.K.Stanby, A.Chegini and T.C.D.Barnes (1998) GP GPU (a)Dam-site 5.5 m 9.6 m *(b) (b)* Cable t = 0.20 s0.36 s Flume Plate 7 kg mass Release point 0.4 m 0.44 s 0.60 s Container -Laboratory floor FIGURE 1. Sketch of experimental arrangment: (a) side view; (b) section showing pulley/weight system. 0.76 s 1.26 s

Experiment

Simulation

Collaboration: Prof. Hu and Dr. Sueyoshi, RIAM, Kyusyu University

MULTI-GPU Performance

GP GPU

