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Our Roadmap:  
Adaptive Supercomputing  

Cascade 

2013 

Next Gen 

~2016 

Future 

~2019 

Baker (XE6) 

2010 

Glacier (XK6) 

2011 

Combine multiple processing technologies into a single, 
scalable system 

Increasing energy-efficiency and reliability at all levels of 
the system 

Designing for extreme scale & concurrency 

Focusing on programming tools, libraries & compilers 
for productivity 

Store and manage data at extreme scale 

Enable science, engineering and advanced analytics on 
one platform 
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The Exascale furrow is a hard one to plough... 

Seymour Cray famously once asked if you would  rather 

plough a field with two strong oxen or five-hundred-and-

twelve chickens.  

 

"Since then, the question has answered itself: power 

restrictions have driven CPU manufacturers away from 

“oxen” (powerful single-core devices) towards multi- 

and many-core “chickens”.  

"An exascale supercomputer will take 
this a step further, connecting tens of 
thousands of many-core nodes.   
 
"Application programmers face the 
challenge of harnessing the power of 
tens of millions of threads." 
 
EPCC News, issue 70 (Autumn 2011) 
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Three Levels of Parallelism Required 

● Developers will continue to use MPI between nodes or sockets 

 

● Developers must address using a shared memory programming 

paradigm on the node 

 

● Developers must vectorize low level looping structures 

 

● While there is a potential acceptance of new languages for 

addressing all levels directly. Most developers cannot afford 

this approach until they are assured that the new language will 

be accepted and the generated code is within a reasonable 

performance range 
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“Cray XK6” 

Accelerating the Way to Better Science 



The Cray XK6 hybrid architecture 

● Announced in May 2011 

 

● NVIDIA Fermi X2090 GPU 
● Upgradable to Kepler 

 

● AMD Interlagos CPU 

 

● Cray Gemini interconnect 
● high bandwidth/low latency scalability 

 

● Unified X86/GPU programming environment 

 

● Fully compatible with Cray XE6 product line 

 

● Fully upgradeable from Cray XT/XE systems 
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Upcoming Heterogeneous Multi Petaflop 
Systems in the US 
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Blue Waters: Sustained Petascale Performance 

• Production Science at Full Scale 

• 235 XE Cabinets + 30 XK Cabinets 

● > 25K compute nodes 

• 11.5 Petaflops 

• 1.5 Petabytes of total memory  

• 25 Petabytes Storage 

● 1 TB/sec IO 

• Cray’s scalable Linux Environment 

• HPC-focused GPU/CPU Programming 

Environment 

 

Titan: A “Jaguar-Size” System with GPUs 

• 200 cabinets 

• 18,688 compute nodes 

• 25x32x24 3D torus (22.5 TB/s global BW) 

• 128 I/O blades (512 PCIe-2 @ 16 GB/s bidir) 

• 1,278 TB of memory 

• 4,352 sq. ft. 

• 10 MW 
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Cray Vision for Accelerated Computing 

● Most important hurdle for widespread adoption of accelerated 
computing in HPC is programming difficulty 
● Need a single programming model that is portable across machine types 

● Portable expression of heterogeneity and multi-level parallelism 

● Programming model and optimization should not be significantly difference for 
“accelerated” nodes and multi-core x86 processors 

● Allow users to maintain a single code base 

 

● Cray’s approach to Accelerator Programming is to provide an 
ease of use tightly coupled high level programming 
environment with compilers, libraries, and tools that can hide 
the complexity of the system 

 

● Ease of use is possible with  
● Compiler making it feasible for users to write applications in Fortran, C, and 

C++ 

● Tools to help users port and optimize for hybrid systems 

● Auto-tuned scientific libraries 
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Unified X86/GPU Programming Environment 

● The Cray XK6 includes the first-generation of the Cray Unified 

X86/GPU Programming Environment 

 

● Why is Cray putting so much effort into this? 
● Opens up GPU computing to a larger user base 

● A good programming environment narrows the gap between observed 

and achievable performance 

 

● It supports three classes of users: 
1. “Hardcore" GPU programmers with existing CUDA ports 

2. Users with parallel codes, ideally with some OpenMP experience, but less 

GPU knowledge 

3. Users with serial codes looking for portable parallel performance with and 

without GPUs 
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Programming for a Node with Accelerator 

● Fortran, C, and C++ compilers 
● OpenACC directives to drive compiler optimization 

● Compiler does the “heavy lifting” to split off the work destined     
for the accelerator and perform the necessary data transfers 

● Compiler optimizations to take advantage of accelerator and               
multi-core X86 hardware appropriately 

● Advanced users can mix CUDA functions with compiler-generated accelerator 
code 

● Parallel Debugger support with DDT or TotalView 
 

● Cray Reveal, built upon an internal compiler representation of the 
application (the Cray Compiler Program Library) 

● Source code browsing tool that provides interface between the user, the compiler, 
and the performance tool  

● Scoping tool to help users port and optimize applications 

● Performance measurement and analysis information for porting and optimization 

 

● Scientific Libraries support 
● Auto-tuned libraries (using Cray Auto-Tuning Framework) 
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● Why a new model? There are already many ways to program: 
● CUDA  and OpenCL 

● All are quite low-level and closely coupled to the GPU 

●  PGI CUDA Fortran 

● Still CUDA just in a better base language 

●  PGI accelerator directives, CAPS HMPP 

● First steps in the right direction – Needed standardization 

 

● User needs to write specialized kernels: 
● Hard to write and debug 

● Hard to optimize for specific GPU 

● Hard to update (porting/functionality) 
 

● OpenACC Directives provide high-level approach 
● Simple programming model for heterogeneous systems 

● Easier to maintain/port/extend code 

● Non-executable statements (comments, pragmas) 

● The same source code can be compiled for multicore CPU 

● Based on the work in the OpenMP Accelerator Subcommittee 
● Proposed to the OpenMP Language Committee 

● Subcommittee of OpenMP ARB, aiming for OpenMP 4.0 

● Possible performance sacrifice 

● A small performance gap is acceptable (do you still hand-code in assembler?) 

● Goal is to provide at least 80% of the performance obtained with hand coded CUDA 

● Already seeing this in many cases, more tuning ongoing 

 
 

 

OpenACC Accelerator Programming Model 
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Motivating Example: Reduction  

 

● Sum elements of an array 

 

● Original Fortran code 
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a=0.0 

  

do i = 1,n 

 a = a + b(i) 

end do 



The reduction code in simple CUDA 
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dim3 dimBlock(128, 1, 1); 

dim3 dimGrid(2048, 1, 1); 

dim3 small_dimGrid(16, 1, 1); 

  

int smemSize = 128 * sizeof(int); 

int *buffer_d, *red_d; 

int *small_buffer_d; 

  

cudaMalloc((void **) &buffer_d , 

sizeof(int)*2048); 

cudaMalloc((void **) &small_buffer_d , 

sizeof(int)*16); 

cudaMalloc((void **) &red_d , sizeof(int)); 

  

  

reduce0<<< dimGrid, dimBlock, smemSize >>>(b_d, 

buffer_d); 

  

reduce0<<< small_dimGrid, dimBlock, smemSize 

>>>(buffer_d, small_buffer_d); 

  

reduce0<<< 1, 16, smemSize >>>(small_buffer_d, 

red_d); 

  

cudaMemcpy(&red, red_d, sizeof(int), 

cudaMemcpyDeviceToHost); 

  

*a = red; 

  

cudaFree(buffer_d); 

cudaFree(small_buffer_d); 

cudaFree(b_d); 

} 

__global__ void reduce0(int *g_idata, int 

*g_odata) 

{ 

extern __shared__ int sdata[]; 

  

unsigned int tid = threadIdx.x; 

unsigned int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

sdata[tid] = g_idata[i]; 

__syncthreads(); 

  

for(unsigned int s=1; s < blockDim.x; s *= 2) { 

if ((tid % (2*s)) == 0) { 

sdata[tid] += sdata[tid + s]; 

} 

__syncthreads(); 

} 

  

if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 

} 

  

 

extern "C" void reduce0_cuda_(int *n, int *a, 

int *b) 

{ 

int *b_d,red; 

const int b_size = *n; 

  

  

cudaMalloc((void **) &b_d , sizeof(int)*b_size); 

cudaMemcpy(b_d, b, sizeof(int)*b_size, 

cudaMemcpyHostToDevice); 



The reduction code in optimized CUDA 
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  if (tid < 32) 

    { 

        volatile T* smem = sdata; 

        if (blockSize >=  64) { smem[tid] = mySum = mySum + smem[tid + 32];  } 

        if (blockSize >=  32) { smem[tid] = mySum = mySum + smem[tid + 16];  } 

        if (blockSize >=  16) { smem[tid] = mySum = mySum + smem[tid + 8];  } 

        if (blockSize >=   8) { smem[tid] = mySum = mySum + smem[tid + 4];  } 

        if (blockSize >=   4) { smem[tid] = mySum = mySum + smem[tid + 2];  } 

        if (blockSize >=   2) { smem[tid] = mySum = mySum + smem[tid + 1];  } 

    } 

 

    if (tid == 0) 

        g_odata[blockIdx.x] = sdata[0]; 

} 

extern "C" void reduce6_cuda_(int *n, int *a, int *b) 

{ 

   int *b_d; 

   const int b_size = *n; 

  

   cudaMalloc((void **) &b_d , sizeof(int)*b_size); 

   cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice); 

  

   dim3 dimBlock(128, 1, 1); 

   dim3 dimGrid(128, 1, 1); 

   dim3 small_dimGrid(1, 1, 1); 

   int smemSize = 128 * sizeof(int); 

   int *buffer_d; 

   int small_buffer[4],*small_buffer_d; 

  

   cudaMalloc((void **) &buffer_d , sizeof(int)*128); 

   cudaMalloc((void **) &small_buffer_d , sizeof(int)); 

   reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, 

b_size); 

   reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize 

>>>(buffer_d, small_buffer_d,128); 

   cudaMemcpy(small_buffer, small_buffer_d, sizeof(int), 

cudaMemcpyDeviceToHost); 

  

   *a = *small_buffer; 

  

   cudaFree(buffer_d); 

   cudaFree(small_buffer_d); 

   cudaFree(b_d); 

} 

template<class T> 

struct SharedMemory 

{ 

    __device__ inline operator       T*() 

    { 

        extern __shared__ int __smem[]; 

        return (T*)__smem; 

    } 

  

    __device__ inline operator const T*() const 

    { 

        extern __shared__ int __smem[]; 

        return (T*)__smem; 

    } 

}; 

  

template <class T, unsigned int blockSize, bool nIsPow2> 

__global__ void 

reduce6(T *g_idata, T *g_odata, unsigned int n) 

{ 

    T *sdata = SharedMemory<T>(); 

  

    unsigned int tid = threadIdx.x; 

    unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x; 

    unsigned int gridSize = blockSize*2*gridDim.x; 

  

    T mySum = 0; 

    while (i < n) 

    { 

        mySum += g_idata[i]; 

        if (nIsPow2 || i + blockSize < n) 

            mySum += g_idata[i+blockSize]; 

        i += gridSize; 

    } 

sdata[tid] = mySum; 

    __syncthreads(); 

  

    if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum 

+ sdata[tid + 256]; } __syncthreads(); } 

    if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum 

+ sdata[tid + 128]; } __syncthreads(); } 

    if (blockSize >= 128) { if (tid <  64) { sdata[tid] = mySum = mySum 

+ sdata[tid +  64]; } __syncthreads(); } 

 

  



The reduction code in OpenACC 

● Compiler does the work: 
● Identifies parallel loops within the 

region 

● Determines the kernels needed 

● Splits the code into accelerator and 

host portions 

● Workshares loops running on 

accelerator 

● Make use of MIMD and SIMD style 

parallelism 

● Data movement 

● allocates/frees GPU memory at 

start/end of region 

● moves data to/from GPU 

May 2012 Luiz DeRose © Cray Inc. 
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!$acc data present(a,b) 

!$acc parallel 

  

a = 0.0 

  

!$acc loop reduction(+:a) 

  

do i = 1,n 

  a = a + b(i) 

end do 

   

!$acc end parallel 

!$acc end data 

 

 

 

TM 



Reduction Example Compilation Messages 
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ftn-6413 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 94  

  A data region was created at line 94 and ending at line 107. 

 

ftn-6405 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 95  

  A region starting at line 95 and ending at line 101 was 
placed on the accelerator. 

 

ftn-6430 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 98  

  A loop starting at line 98 was partitioned across the 
threadblocks and the 128 threads within a threadblock. 

 

     
 
  90.         subroutine sum_of_int_4(n,a,b) 
  91.         use global_data 
  92.         integer*4 a,b(n) 
  93.         integer*8 start_clock, elapsed_clocks, end_clock 
  94.         !$acc data present(a,b) 
  95.  G----< !$acc parallel  
  96.  G      a = 0.0 
  97.  G      !$acc loop reduction(+:a) 
  98.  G g--< do i = 1,n 
  99.  G g      a = a + b(i) 
100.  G g--> end do 
101.  G----> !$acc end parallel 
102.         !$acc end data 
103.         end subroutine sum_of_int_4 

ftn-6413 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 94  
  A data region was created at line 94 and ending at line 107. 
 
ftn-6405 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 95  
  A region starting at line 95 and ending at line 101 was placed on 
the accelerator. 
 
ftn-6430 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 98  
  A loop starting at line 98 was partitioned across the threadblocks 
and the 128 threads within a threadblock. 



 Summary of code complexity and performance 

Reduction code summary 

Programming 
Model 

Unit of 
computation 

Lines of code Performance in 
Gflops (higher 
is better) 

Performance 
normalized to 
X86 core 
 

Fortran  Single x86 core 4 2.0 Gflops 1.0 

Simple CUDA GPU 30 1.74 Gflops 0.87 

Optimized 
CUDA 

GPU 69 10.5 Gflops 5.25 

OpenACC GPU 9 8.32 Gflops 4.16 

May 2012 Luiz DeRose © Cray Inc. 
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OpenACC Execution model 

● Host-directed execution with attached GPU 
● Main program executes on “host” (i.e. CPU) 

● Compute intensive regions offloaded to the accelerator device 

● Under control of the host 

● “Device” (i.e. GPU) executes parallel regions 

● Typically contain “kernels” (i.e. work-sharing loops), or 

● Kernels regions, containing one or more loops which are executed as kernels.   

● Host must orchestrate the execution by:  

● Allocating memory on the accelerator device,  

● Initiating data transfer,  

● Sending the code to the accelerator,  

● Passing arguments to the parallel region,  

● Queuing the device code,  

● Waiting for completion,  

● Transferring results back to the host, and  

● Deallocating memory.   

● Host can usually queue a sequence of operations  

● To be executed on the device, one after the other. 
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OpenACC Memory model 

● Distinct memory spaces on the host and device 
● Different locations, different address space 

● Data movement performed by host using runtime library calls that explicitly 

move data between the separate memories  

● GPUs have a weak memory model 
● No synchronisation between different execution units (SMs) 

● Unless explicit memory barrier 

● One can write OpenACC kernels with race conditions 

● Giving inconsistent execution results 

● Compiler will catch most errors, but not all (no user-managed barriers) 

● OpenACC 
● Data movement between the memories implicit 

● Managed by the compiler, 

● Based on directives from the programmer. 

● Device memory caches are managed by the compiler  

● With hints from the programmer in the form of directives  
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!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

● Compiler does the work: 
● Identifies parallel loops within the region 

● Determines the kernels needed 

● Splits the code into accelerator and host 

portions 

● Workshares loops running on accelerator 

● Make use of MIMD and SIMD style 

parallelism 

● Data movement 

● Allocates/frees GPU memory at start/end of 

region 

● Moves data to/from GPU 

 

 

A First Example:  
Execute a region of code on the GPU 

 User can tune default behavior with optional directives and clauses 

 Loop schedule: spreading loop iterations over PEs of GPU 

 Parallelism  NVIDIA GPU  SMT node (CPU) 

 gang:  a threadblock  CPU 

 worker:  warp (32 threads)  CPU core 

 vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

May 2012 
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read-only write-only 



A First OpenACC Program: "Hello World" 

 Two accelerator parallel regions 

 Compiler creates two kernels 
 Loop iterations automatically divided 

across gangs, workers, vectors 

 Breaking parallel region acts as barrier 

 First kernel initializes array 
 Compiler will determine copyout(a) 

 Second kernel updates array 
 Compiler will determine copy(a) 

 Breaking parallel region=barrier 
 No barrier directive (global or within SM) 

 Code still compile-able for CPU 

 Array a(:) unnecessarily moved from and to GPU between kernels 

  "data sloshing" 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
  <stuff> 
END PROGRAM main 



A second version 

 Now added a data region 

 Specified arrays only moved at 
boundaries of data region 

 Unspecified arrays moved by 
each kernel 

 No compiler-determined 
movements for data regions 

 Data region can contain host code 
and accelerator regions 

 Copies of arrays independent 

 
 No automatic synchronization of copies within data region 

  User-directed synchronization via update directive 

 Code still compile-able for CPU 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 



● Data clauses: 
● copy, copyin, copyout, create 

● e.g. copy moves data "in" to GPU at start of region and "out" to CPU at end 

● Supply list of arrays or array sections  

● Fortran use standard array syntax (“:" notation) 

● C/C++ use extended array syntax [start:length] 

● present: share GPU-resident data between kernels 

● present_or_copy [in,out] (pcopy) 

● Use data if already resident, otherwise move the data 

● Tuning clauses: 
● num_gangs, vector_length, collapse... 

● Optimize GPU occupancy, register and shared memory usage, loop scheduling... 

● Some other important clauses: 
● async: Launch accelerator region asynchronously 

● Allows overlap of GPU computation/PCI transfers with CPU computation/network 

 

Directive Clauses 
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Sharing GPU Data Between Subprograms 

 One of the kernels now in subroutine (maybe in separate file) 

 CCE supports function calls inside parallel regions 
 Compiler will automatically inline 

 The present clause uses version of b on GPU without data copy 

 Can also call double_array() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 

May 2012 Luiz DeRose © Cray Inc. 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_array(a) 
!$acc end data 
  <stuff> 
END PROGRAM main 

 
INTEGER FUNCTION double_scalar(c) 
  INTEGER :: c 
  double_scalar = 2*c 
END FUNCTION double_scalar 

 
SUBROUTINE double_array(b) 
  INTEGER :: b(N) 
!$acc parallel loop present_or_copy (b) 
  DO i = 1,N 
   b(i) = double_scalar(b(i)) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE double_array 



● host_data region exposes accelerator memory address on host 
● nested inside data region 

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE) 
● Must include cudaThreadSynchronize() 

● Before: so asynchronous accelerator kernels definitely finished 

● After: so CUDA kernel definitely finished 

● CUDA kernel written as usual 

● Or use same mechanism to call existing CUDA library 

CUDA Interoperability 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
! <Populate a(:) on device 
!  as before> 
!$acc host_data use_device(a) 
  CALL dbl_cuda(a) 
!$acc end host_data 
!$acc end data 
  <stuff> 
END PROGRAM main 

 
 
__global__ void dbl_knl(int *c) { 
  int i = \ 
       blockIdx.x*blockDim.x+threadIdx.x; 
  if (i < N) c[i] *= 2; 
} 
 
extern "C" void dbl_cuda_(int *b_d) { 
  cudaThreadSynchronize(); 
  dbl_knl<<<NBLOCKS,BSIZE>>>(b_d); 
  cudaThreadSynchronize(); 
} 



● async(handle): like CUDA streams 

● Allows overlap of tasks on GPU 
● PCIe transfers in both directions 

● Plus multiple kernels (up to 16 with Fermi) 

● Streams identified by handle 
● Tasks with same handle execute sequentially 

● can wait on one, more or all tasks 

● OpenACC API also allows completeness 

check  

● First attempt, a simple pipeline: 

● Processes array, slice by slice 
● Copy data to GPU, process, bring back to CPU 

● Very complicated kernel operation here! 

● Should be able to overlap 3 streams at once 
● Use slice number as stream handle in this case 

● Runtime MODs it back into allowable range 

● Can actually overlap more than three stream 
● No benefit on this test 

 

OpenACC Async Clause 
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INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000 
 
REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks) 
 
!$acc data create(a,b) 
DO j = 1,Nchunks 
!$acc update device(a(:,j)) async(j) 
 
!$acc parallel loop async(j) 
  DO i = 1,Nvec 
    b(i,j) = SQRT(EXP(a(i,j)*2d0)) 
    b(i,j) = LOG(b(i,j)**2d0)/2d0 
  ENDDO 
 
!$acc update host(b(:,j)) async(j) 
 
ENDDO 
!$acc wait 
!$acc end data 



● Execution times (on Cray XK6): 

● CPU:    3.98s 

● OpenACC, blocking:  3.6s 

● OpenACC, async:   0.82s 

● OpenACC, full async:    0.76s 
 

 

 

● NVIDIA Visual profiler: 
● Time flows to right, streams stacked vertically 

● red:  data transfer to GPU 

● pink: computational kernel on GPU 

● blue: data transfer from GPU 

● vertical slice shows what is overlapping 

● only 7 of 16 streams fit in window 

● collapsed view at bottom 

● async handle modded by number of streams 

● so see multiple coloured bars per stream 

OpenACC async Results 
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INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000 
 
REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks) 
 
!$acc data create(a,b) 
DO j = 1,Nchunks 
!$acc update device(a(:,j)) async(j) 
 
!$acc parallel loop async(j) 
  DO i = 1,Nvec 
    b(i,j) = SQRT(EXP(a(i,j)*2d0)) 
    b(i,j) = LOG(b(i,j)**2d0)/2d0 
  ENDDO 
 
!$acc update host(b(:,j)) async(j) 
 
ENDDO 
!$acc wait 
!$acc end data 



OpenACC in CCE 

● man intro_openacc 

● Which module to use, craype-accel-nvidia20 

● Forces dynamic linking 

● Single object file 

● Whole program 

● Messages/list file 

● Compiles to PTX not CUDA 

● Debugger sees original program not CUDA intermediate source 

 

● OpenACC directives status in CCE 
● Only two one constructs are un-implemented 

● Cache 

● Declare 

● One unimplemented data clause 

● deviceptr 
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● Scaling (running big jobs with a large number of GPUs) 
● Results summarized and consolidated in one place 

 

● Statistics for the whole application  
● Performance statistics mapped back to the user source by line number 

● Performance statistics grouped by accelerator directive 

● Single report can include statistics for both the host and the accelerator  

 

● Single tool for GPU and CPU performance analysis 
● Performance statistics 

● Includes accelerator time, host time, and amount of data copied to/from the 

accelerator 

● Kernel level statistics 

● Accelerator hardware counters 

Cray Performance Tools 
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● Loop work estimates 
● Provide information to identify important loops 

 

● Performance statistics 
● Includes accelerator time, host time, and amount of data copied to/from the 

accelerator 

 

● Accelerator hardware counters 
● Hardware counters on the accelerator itself.   

● On NVIDIA Fermi GPUs, there are about 50 available counters 

 

● Kernel level statistics 
● Includes stats about grid size, block size, and occupancy 

 

Types of Statistics 
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Accelerator Performance Statistics 

● Default statistics collected when accelerated directives are 

encountered with event tracing 
● Host time for kernel launches, data copies and synchronization with the 

accelerator 

● Accelerator time for kernel execution and data copies 

● Data copy size to and from the accelerator 

 

● Collection enabled by default for programs built with CCE 

 

● Collection enabled with runtime environment variable for CUDA 

 

● Sampling will not produce accelerator table in the report, but 

samples can show up in CUDA libraries 
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Accelerator Table Column Definitions 

● Host Time% 
● Percentage of wallclock time for events 

● Host Time 
● Wallclock time, in seconds, for the event 

● Acc Time 
● Amount of time the event executed on the accelerator 

● Acc Copy In 
● Amount of data copied to the accelerator 

● Acc Copy Out 
● Amount of data copied from the accelerator 

● Calls 
● The number of time the event occurred 

 

All of the above are summed for regions and functions 
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Table 2:  Time and Bytes Transferred for Accelerator Regions 

 

  Host  |    Host  |     Acc  | Acc Copy  | Acc Copy  | Calls  |Calltree 

 Time%  |    Time  |    Time  |       In  |      Out  |        | PE=HIDE 

        |          |          | (MBytes)  | (MBytes)  |        | 

 

 100.0% |   42.787 |   35.429 |  2554.726 |  2559.820 |  38164 |Total 

|-------------------------------------------------------------------------------------------------------- 

| 100.0% |   42.787 |   35.429 |  2554.726 |  2559.820 |  38164 |himenobmtxp_ 

|        |          |          |           |           |        | himenobmtxp_.ACC_DATA_REGION@li.65 

3  99.6% |   42.628 |   35.273 |  2554.726 |  2559.820 |  38152 |  jacobi_ 

4        |          |          |           |           |        |   jacobi_.ACC_DATA_REGION@li.227 

|||||---------------------------------------------------------------------------------------------------- 

5||||  67.4% |   28.836 |   28.168 |     0.004 |     0.004 |   5015 |jacobi_.ACC_REGION@li.309 

6||||  66.2% |   28.324 |       -- |        -- |        -- |   1003 | jacobi_.ACC_REGION@li.309(exclusive) 

5||||  10.2% |    4.384 |    3.786 |        -- |        -- |   4012 |jacobi_.ACC_REGION@li.334 

6||||   9.5% |    4.050 |       -- |        -- |        -- |   1003 | jacobi_.ACC_REGION@li.334(exclusive) 

5||||   4.7% |    1.998 |       -- |        -- |        -- |      2 |jacobi_.ACC_DATA_REGION@li.227(exclusive) 

5||||   2.6% |    1.113 |    0.513 |        -- |        -- |   4012 |jacobi_.ACC_REGION@li.274 

6||||   1.8% |    0.778 |       -- |        -- |        -- |   1003 | jacobi_.ACC_REGION@li.274(exclusive) 

Accelerator Statistics 
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● A predefined set of counter groups has been created for ease of 

use 
● Combines events that can be counted together 

 

● ACCPC groups start at 1000, and will be incremented by 100 as 

new families of accelerators are supported 

 

● Specify group by number or name 
● PAT_RT_ACCPC=1000     OR 

● PAT_RT_ACCPC=inst_exec_gst 

 

● accpc(5) man page provides list of groups and their 

descriptions 

Accelerator Hardware Performance Counters 
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Table 3:  ACC Performance Counter Data 

 

 warps_launched  | active_warps  | active_cycles  | sm_efficiency  | achieved_occupancy  |Calltree 

 

                    16380 |     1976842921 |         61837413 |                 2.7% |                            66.6% |Total 

|------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

|                   16380 |     1976842921 |         61837413 |                 2.7% |                            66.6% |main 

|                              |                          |                          |                         |                                       | test1 

3                              |                          |                          |                         |                                       | test1.ACC_REGION@li.35 

||||------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

4|||                  16380 |     1976842921 |          61837413 |               3.1% |                            66.6% |test1.ACC_KERNEL@li.35 

4|||                          0 |                       0 |                       0 |               0.0% |                                    -- |test1.ACC_COPY@li.35 

4|||                          0 |                       0 |                       0 |               0.0% |                                    -- |test1.ACC_COPY@li.39  
|================================================================================================ 

Accelerator Hardware Counters Statistics 
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Cray XK6 vs Cray XE6 Programming 

● Single MPI per node 
● Multiple processes cannot share the GPU 

● 1 MPI rank per node is likely not what has been used for the CPU code: 

possibly need to review communication optimization 

● Consider MPI communication/computation overlap  

● Used with core specialization to reserve a core/node for the helper threads 

● Large OpenMP threading 
● It is very important to get cooperation between CPUs and GPU 

● If there is not enough work for 16 OpenMP threads, try running in single 

stream mode, with 1 thread per Bulldozer module 

 export OMP_NUM_THREADS=8 

 aprun -N 1 -d 8 –cc 0,2,4,6,8,10,12,14 –n XX a.out 

● Dynamic linking 
● You need to be aware that dynamic linking is required with GPU codes 

● Dynamic libraries should be automatically set by the build process 

● In some cases dynamically linked codes can be slower than statically linked 

ones 
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A Porting and Optimization Strategy for Multi-
core Systems 

● Reduce the number of MPI ranks per node 

 

● Add parallelism to MPI ranks to take advantage of cores within 

a node while minimizing network injection contention 

 

● Maximize on-node communication between MPI ranks 

 

● Relieve on-node shared resource contention by pairing threads 

or processes that perform different work (for example 

computation with off-node communication) on the same node 

 

● Accelerate work intensive parallel loops 
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Structural Issues with Accelerated Computing 

● Trick is to keep kernel data structures resident in GPU memory 

as much as possible 
● Avoid copying between CPU and GPU 

● Use async, non-blocking, communication, multi-level overlapping 
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GPU 
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SDRAM 6 GB  

GDDR 
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A three-task approach 

● How to move to a hybrid code 
 

1. Identification of possible accelerator kernels 
● Determine where to add additional levels of parallelism 

● Assumes MPI application is functioning correctly on X86 

● Find top work-intensive loops (perftools + CCE loop work estimates) 

 

2. Parallel analysis, scoping and vectorization 
● Split loop work among threads 

● Do parallel analysis and restructuring on targeted high level loops 

● Use CCE loopmark feedback, Reveal loopmark and source browsing 

 

3. Moving to OpenMP and then to OpenACC 
● Add parallel directives and acceleration extensions 

● Insert OpenMP directives (Reveal scoping assistance) 

● Run on X86 to verify application and check for performance improvements 

● Convert desired OpenMP directives to OpenACC 
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Collecting Loop Statistics 

● Need to be using CCE 
module load PrgEnv-cray perftools 

 

● Fresh compile AND link with –h profile_generate 
cc -h profile_generate -c my_program.c 

cc -h profile_generate -o my_program my_program.o 

 

● Instrument binary for event tracing 
pat_build -u my_program (or -w option) 

 

● Run application 

 

● Create report with loop statistics 
pat_report my_program+pat.xf > loops_report 
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Loop Work Estimates Report 
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Table 3:  Inclusive Loop Time from -hprofile_generate 
 
 Loop Incl  |    Loop  |  Loop  |  Loop  |Function=/.LOOP[.] 
      Time  |     Hit  | Trips  | Trips  | PE=HIDE 
     Total  |          |   Min  |   Max  | 
|--------------------------------------------------------------- 
| 
| 175.676881 |        2 |      0 |   1003 |jacobi_.LOOP.07.li.267 
|   0.917107 |     1003 |      0 |    260 |jacobi_.LOOP.08.li.276 
|   0.907515 |   129888 |      0 |    260 |jacobi_.LOOP.09.li.277 
|   0.446784 |     1003 |      0 |    260 |jacobi_.LOOP.10.li.288 
|   0.425763 |   129888 |      0 |    516 |jacobi_.LOOP.11.li.289 
|   0.395003 |     1003 |      0 |    260 |jacobi_.LOOP.12.li.300 
|   0.374206 |   129888 |      0 |    516 |jacobi_.LOOP.13.li.301 
| 126.250610 |     1003 |      0 |    256 |jacobi_.LOOP.14.li.312 
| 126.223035 |   127882 |      0 |    256 |jacobi_.LOOP.15.li.313 
| 124.298650 | 16305019 |      0 |    512 |jacobi_.LOOP.16.li.314 
|  20.875086 |     1003 |      0 |    256 |jacobi_.LOOP.17.li.336 
|  20.862715 |   127882 |      0 |    256 |jacobi_.LOOP.18.li.337 
|  19.428085 | 16305019 |      0 |    512 |jacobi_.LOOP.19.li.338 
|========================================================================= 

subroutine 

line number 

internal label 

nested loops 
• Loop Hits multiply 

• Incl Times reduce 



A Porting and Optimization Strategy 

● Preparation: add checksum(s) and high-res timer to code 
● Check for correctness very frequently 
● Profile code on the host 

● Use representative-sized problem, map call tree,  
● Ideally resolve profile by loop nest and measure typical loop iteration counts 

 
● First get your application working without data regions 

 
● Once you have a correct hybrid code 

● Run on x86 + GPU and get performance feedback 
● perftools profiling analysis 

 

● Optimize for data locality and copies to the GPU 
● perftools accelerator statistics 

 

● Optimize kernel(s) on GPU 
● perftools GPU counter statistics 
● perftools Kernel statistics 

 

● Optimize core performance on CPU 
● Automatic profiling analysis with CPU HW counter threshold feedback 
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A Porting and Optimization Strategy 

● Optimizing the data movements 
● Start in subprograms at bottom of call chain 

● Accelerate individual loop nests using parallel regions 

● Concentrate initially on most computationally expensive 

● Add data regions in subprograms 

● Minimize data movements, use create clause where possible 

● May need to accelerate insignificant loop nests to avoid data copies 

● Use available feedback to understand data movement 

● Compiler messages: -ra for CCE creates *.lst listing files 

● Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE 

● NVIDIA compute profiler: export COMPUTE_PROFILE=1 

● CrayPat performance measurement and analysis tool (Cray PE only) 
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Performance Tools Example 
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#ifdef USE_DATA 

!$acc data create(a,b) 

#endif 

   t1 = gettime() 

   stream_counter = 1 

   DO j = 1,Nchunks 

    my_stream = Streams(stream_counter) 

#ifdef USE_DATA 

!$acc update device(a(:,j)) 

#endif 

!$acc parallel loop 

    DO i = 1,Nvec 

     b(i,j) = SQRT(EXP(a(i,j)*2d0)) 

     b(i,j) = LOG(b(i,j)**2d0)/2d0 

    ENDDO 

!$acc end parallel loop 

#ifdef USE_DATA 

!$acc update host(b(:,j)) 

#endif 

     stream_counter = MOD(stream_counter,3) + 1 

   ENDDO 

!$acc wait 

   t2 = gettime() 

!$acc end data 



Performance Tools Example 
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ftn -rad -hnocaf -c -o toaa2.o toaa2.F90 

ftn -rad -hnocaf -o toaa2.x toaa2.o 

pat_build -w toaa2.x 

aprun toaa2.x+pat 

 4999899.3359271679 

 Time =  88.750109565826278 

Experiment data file written: 

/lus/scratch/beyerj/openacc/toaa/toaa2.x+pat+10112-43t.xf 

Application 1880125 resources: utime ~83s, stime ~7s 

pat_report –T toaa2.x+pat+10112-43t.xf 



Performance Tools Example 
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Table 1:  Profile by Function Group and Function 

 

 Time%  |     Time  | Imb.  |  Imb.  | Calls  |Group  

        |           | Time  | Time%  |        | Function  

        

 100.0% | 88.902394 |    -- |     -- | 5003.0 |Total 

|----------------------------------------------------------------------- 

| 100.0% | 88.902394 |    -- |     -- | 5003.0 |USER 

||---------------------------------------------------------------------- 

||  75.4% | 67.041165 |    -- |     -- | 1000.0 |toaa_.ACC_COPY@li.59 

||  24.3% | 21.629574 |    -- |     -- | 1000.0 |toaa_.ACC_COPY@li.65 

||   0.2% |  0.155233 |    -- |     -- |    1.0 |toaa_ 

||   0.0% |  0.037016 |    -- |     -- | 1000.0 |toaa_.ACC_KERNEL@li.59 

||   0.0% |  0.032549 |    -- |     -- | 1000.0 |toaa_.ACC_SYNC_WAIT@li.65 

||   0.0% |  0.006752 |    -- |     -- | 1000.0 |toaa_.ACC_REGION@li.59 

||   0.0% |  0.000074 |    -- |     -- |    1.0 |exit 

||   0.0% |  0.000031 |    -- |     -- |    1.0 |toaa_.ACC_SYNC_WAIT@li.79 

||====================================================================== 

|   0.0% |  0.000000 |    -- |     -- |    0.0 |ETC 

|======================================================================= 
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Table 2:  Time and Bytes Transferred for Accelerator Regions 

 

  Host  |    Host  |     Acc  |  Acc Copy  | Acc Copy  | Calls  |Calltree  

 Time%  |    Time  |    Time  |        In  |      Out  |        | 

        |          |          |  (MBytes)  | (MBytes)  |        | 

        

 100.0% |   88.749 |   88.697 | 152587.891 | 76293.945 |   5001 |Total 

|------------------------------------------------------------------------------------------------- 

| 100.0% |   88.749 |   88.697 | 152587.891 | 76293.945 |   5001 |toaa_ 

||------------------------------------------------------------------------------------------------ 

|| 100.0% |   88.749 |   88.697 | 152587.891 | 76293.945 |   5000 |toaa_.ACC_REGION@li.59 

|||----------------------------------------------------------------------------------------------- 

3||  75.5% |   67.042 |   67.042 | 152587.891 |        -- |   1000 |toaa_.ACC_COPY@li.59 

3||  24.4% |   21.630 |   21.630 |         -- | 76293.945 |   1000 |toaa_.ACC_COPY@li.65 

3||   0.0% |    0.037 |    0.026 |         -- |        -- |   1000 |toaa_.ACC_KERNEL@li.59 

3||   0.0% |    0.033 |       -- |         -- |        -- |   1000 |toaa_.ACC_SYNC_WAIT@li.65 

3||   0.0% |    0.007 |       -- |         -- |        -- |   1000 |toaa_.ACC_REGION@li.59(exclusive) 

|||=============================================================================================== 

||   0.0% |    0.000 |       -- |         -- |        -- |      1 |toaa_.ACC_SYNC_WAIT@li.79 

|================================================================================================= 

Processing step 3 of 3 
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ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55 

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55 

ACC: Wait async(auto) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55 

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55 

ACC: Wait async(auto) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55 

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55 

ACC: Wait async(auto) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55 

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55 

ACC: Wait async(auto) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61 

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55 

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55 

ACC: Wait async(auto) from toaa2.F90:61 
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ftn -rad -hnocaf -DUSE_DATA -c -o toaa2.o toaa2.F90 

ftn -rad -hnocaf -DUSE_DATA -o toaa2.x toaa2.o 

pat_build -w toaa2.x 

aprun toaa2.x+pat 

 50000944.502389029 

 Time =  4.1188710090027598 

Experiment data file written: 

/lus/scratch/beyerj/openacc/toaa/toaa2.x+pat+10178-

43t.xf 

Application 1880347 resources: utime ~4s, stime ~2s 

pat_report –T toaa2.x+pat+10112-43t.xf 

 

 

 

#ifdef USE_DATA 

!$acc data create(a,b) 

#endif 

   t1 = gettime() 

   stream_counter = 1 

   DO j = 1,Nchunks 

    my_stream = Streams(stream_counter) 

#ifdef USE_DATA 

!$acc update device(a(:,j)) 

#endif 

!$acc parallel loop 

    DO i = 1,Nvec 

     b(i,j) = SQRT(EXP(a(i,j)*2d0)) 

     b(i,j) = LOG(b(i,j)**2d0)/2d0 

    ENDDO 

!$acc end parallel loop 

#ifdef USE_DATA 

!$acc update host(b(:,j)) 

#endif 

     stream_counter = MOD(stream_counter,3) + 1 

   ENDDO 

!$acc wait 

   t2 = gettime() 

!$acc end data 
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Table 2:  Time and Bytes Transferred for Accelerator Regions 

 

  Host  |    Host  |     Acc  | Acc Copy  | Acc Copy  | Calls  |Calltree  

 Time%  |    Time  |    Time  |       In  |      Out  |        | 

        |          |          | (MBytes)  | (MBytes)  |        | 

        

 100.0% |    4.148 |    3.714 |   762.939 |   762.939 |  70005 |Total 

|----------------------------------------------------------------------------------------------------- 

| 100.0% |    4.148 |    3.714 |   762.939 |   762.939 |  70005 |toaa_ 

|        |          |          |           |           |        | toaa_.ACC_DATA_REGION@li.27 

|||--------------------------------------------------------------------------------------------------- 

3||  67.3% |    2.792 |    2.487 |        -- |   762.939 |  30000 |toaa_.ACC_UPDATE@li.71 

||||-------------------------------------------------------------------------------------------------- 

4|||  60.0% |    2.487 |    2.487 |        -- |   762.939 |  10000 |toaa_.ACC_COPY@li.71 

4|||   6.9% |    0.286 |       -- |        -- |        -- |  10000 |toaa_.ACC_SYNC_WAIT@li.71 

4|||   0.4% |    0.018 |       -- |        -- |        -- |  10000 |toaa_.ACC_UPDATE@li.71(exclusive) 

||||================================================================================================== 

3||  25.7% |    1.066 |    1.055 |   762.939 |        -- |  20000 |toaa_.ACC_UPDATE@li.52 

||||-------------------------------------------------------------------------------------------------- 

4|||  25.4% |    1.055 |    1.055 |   762.939 |        -- |  10000 |toaa_.ACC_COPY@li.52 

4|||   0.3% |    0.011 |       -- |        -- |        -- |  10000 |toaa_.ACC_UPDATE@li.52(exclusive) 

||||================================================================================================== 

[[[...]]] 

Processing step 3 of 3 



A Porting and Optimization Strategy (2) 

● Move progressively up call chain, adding data regions 
● Aim to further reduce data movements 

● No problem nesting data regions: use present clause on inner ones 

● May need to port insignificant subprograms to avoid data transfers 

● Use update for essential data transfers (e.g. data for halo swaps) 

● Now optimize kernel performance (often trial and error) 
● Perfect loop nests schedule better than imperfect ones 

● e.g. remove temporary arrays by manually inlining (eliminate array b) 

● Or manually privatize arrays and break loop nest (make b(i,j)) 

 

May 2012 Luiz DeRose © Cray Inc. 
54 

DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1,j) + b(i-1,j) 
 ENDDO 
ENDDO 



A Porting and Optimization Strategy (3) 

● Now look at tweaking the loop scheduling 
● Quick wins 

● Optimize loop scheduling 

● Make sure the right loops are vectorized (for coalesced memory loads) 

● And that they are vectorizable 

● Choose number of workers per gang (threads/block) 

● This number will vary by kernel and by problem size 

● Collapsing or blocking of loops may help (though compilers already do that) 

● See if caching can be used to reduce data loads from device memory 

● Longer term: can loops be migrated up the call chain? 

● e.g. Loop over sites, or blocks of sites (“blocking for cache”) 

● If so, parallelise (gangs) over these 

 

● Consider overlap of computation and communication using 

async 
● Don’t do this until everything working 

● May require application restructuring 
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Case Study: the Himeno Benchmark 

● Parallel 3D Poisson equation solver 
● Iterative loop evaluating 19-point stencil 

● Memory intensive, memory bandwidth bound 

 

● Fortran, C, MPI and OpenMP implementations 

available from  http://accc.riken.jp/HPC_e/himenobmt_e.html  

 

● Fortran Coarray (CAF) version developed 
● ~600 lines of Fortran 

● Fully ported to accelerator using 27 directive pairs 

 

● Strong scaling benchmark 
● XL configuration: 1024 x 512 x 512 global volume 

● Expect halo exchanges to become significant 

● Use asynchronous GPU data transfers and kernel launches to help avoid this 

May 2012 Luiz DeRose © Cray Inc. 
56 

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html


The Jacobi Computational Kernel (Serial) 

● The stencil is applied to 

pressure array p 

 

● Updated pressure values 

are saved to temporary 

array wrk2 

 

● Control value wgosa is 

computed 

 

● In the benchmark this 

kernel is iterated a fixed 

number of times (nn) 

DO K=2,kmax-1 

 DO J=2,jmax-1 

  DO I=2,imax-1 

   S0=a(I,J,K,1)*p(I+1,J, K )  

     +a(I,J,K,2)*p(I, J+1,K ) & 

     +a(I,J,K,3)*p(I, J, K+1) & 

     +b(I,J,K,1)*(p(I+1,J+1,K )-p(I+1,J-1,K )  & 

                 -p(I-1,J+1,K )+p(I-1,J-1,K )) & 

     +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1)  & 

                 -p(I, J+1,K-1)+p(I, J-1,K-1)) & 

     +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1)  & 

                 -p(I+1,J, K-1)+p(I-1,J, K-1)) & 

     +c(I,J,K,1)*p(I-1,J, K ) & 

     +c(I,J,K,2)*p(I, J-1,K ) & 

     +c(I,J,K,3)*p(I, J, K-1) & 

     + wrk1(I,J,K) 

 

   SS = (S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K) 

   wgosa = wgosa+ SS*SS 

   wrk2(I,J,K)=p(I,J,K)+OMEGA *SS 

  ENDDO 

 ENDDO 

ENDDO 

fw
d

 n
.n

. 
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 n
.n

. 
n
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The Distributed Implementation 

● The outer loop is executed a 
fixed number of times 
 

● The Jacobi kernel is executed 
and new pressure array wrk2 
and control value wgosa are 
computed 
 

● The p array is updated with 
wrk2 values 
 

● The halo region values are 
exchanged between neighbor 
PEs using send and receive 
buffers 
 

● The maximum wgosa value is 
computed with an Allreduce 
operation across all the PEs 

DO loop = 1, nn 

 

  compute Jacobi: wrk2, wgosa 

    

  copy back wrk2 into p 

   

  pack halo from p into send buf 

   

  exchange halos with neighbor PEs 

   

  unpack halo into p from recv buf 

   

  Allreduce to sum wgosa across Pes 

 

ENDDO 
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Porting Himeno to the Cray XK6 

● Several versions tested, with communication implemented in 

MPI and Fortran coarrays 

 

● GPU version using OpenACC accelerator directives 
● Total number of accelerator directives:  27 

● plus 18 "end" directives 

 

● Arrays reside permanently on the GPU memory 

 

● Data transfers between host and GPU are: 
● Communication buffers for the halo exchange 

● Control value 

 

● Cray XK6 timings compared to best Cray XE6 results (hybrid 

MPI/OpenMP) 
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The Himeno GPU code structure 

● GPU performs 
● Jacobi kernel 

● Halo buffers packing/unpacking 

● Pressure update 

 

● Host/device communication 
● Halo region buffers transfer 

● Control value wgosa 

 

● CAF communication 
● Remote halo buffers put 

● Global wgosa sum 

 

CPU GPU 
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Using Asynchronous Streams 

● Async buffer handling 
● Packing/unpacking multiple 

buffers 

● Overlapping packing and 

host/device transfers 

 

● Further testing possible 
● Overlapping/pipelining CAF 

remote put with host/device 

transfers ? 

● Pinned memory allocation for the 

halo buffers ? 

CPU GPU 
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Allocating arrays on the GPU 

● Arrays are allocated on the 

GPU memory in the main 
program with the data 

directive 

 

● In the subroutines the data 

directive is replicated with the 

present clause,  

to use the data already 

present in the GPU memory 

and avoid extra allocations 

 

● Since the present clause is 

used, no copy* clauses are 

used, and data transfers 

to/from host are implemented 
by update directives 

 

PROGRAM himenobmtxp 

... 

!$acc data create                 & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,   & 

!$acc&  sendbuffx_up,sendbuffx_dn,& 

!$acc&  sendbuffy_up,sendbuffy_dn,& 

!$acc&  sendbuffz_up,sendbuffz_dn) 

... 

!$acc end data 

 

 

SUBROUTINE jacobi(nn,gosa) 

!$acc data present                & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,   & 

!$acc&  sendbuffx_up,sendbuffx_dn,& 

!$acc&  sendbuffy_up,sendbuffy_dn,& 

!$acc&  sendbuffz_up,sendbuffz_dn) 
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Jacobi kernel on the GPU 

● The GPU kernel for the 
main loop is created with 
the parallel loop 
directive 

● The scoping of the main 
variables is specified earlier 
with the data directive - no 
need to replicate it in here 

● wgosa is computed by 
specifying the reduction 
clause, as in a standard 
OpenMP parallel loop 

● vector_length clause is 
used to indicate the number 
of threads within a 
threadblock (compiler 
default 128) 

DO loop=1,nn 

  gosa = 0 

  wgosa = 0 

!$acc parallel loop              & 

!$acc&  private(s0,ss)           & 

!$acc&  reduction(+:wgosa)       & 

!$acc&  vector_length(256) 

  DO K=2,kmax-1 

    DO J=2,jmax-1 

      DO I=2,imax-1 

        S0=a(I,J,K,1)*p(I+1,J, K )& 

        ... 

        wgosa = wgosa + SS*SS 

      ENDDO 

    ENDDO 

  ENDDO 
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Halo region buffers 

● Halo values are extracted 
from the wrk2 array and 
packed into the send 
buffers, on the GPU 

● A global parallel region 
is specified and buffers in 
the X, Y, and Z directions 
are packed within loop 
blocks 

● The send buffers are 
copied to host memory with 
update 

● In the same way, after the 
halo exchange, the recv 
buffers are transferred to 
the GPU memory and used 
to update the array p 

 

!$acc parallel 

!$acc loop 

DO j = 2,jmax-1 

  DO i = 2,imax-1 

    sendbuffz_dn(i,j)= wrk2(i,j,2) 

    sendbuffz_up(i,j)= wrk2(i,j,kmax-1) 

  ENDDO 

ENDDO 

!$acc end loop 

 ... 

!$acc loop 

 ... 

!$acc end loop 

!$acc end parallel 

 

!$acc update host 

!$acc&       (sendbuffz_dn,sendbuffz_up) 
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Benchmarking the code 

● Cray XK6 configuration:  
● Single AMD IL-16 2.1GHz nodes, 16 cores per node 

● Nvidia Tesla X2090 GPU, 1 GPU per node 

● Running with 1 PE (GPU) per node 

● Himeno case XL needs at least 16 XK6 nodes 

● Testing blocking and asynchronous GPU implementations 

 

● Cray XE6 configuration: 
● Dual AMD IL-16 2.1 GHz nodes, 32 cores per node 

● Running on fully packed nodes: all cores used 

● Depending on the number of nodes, 1-4 OpenMP threads per PE are used 

 

● All comparisons are for strong scaling on case XL 
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Himeno performance 

● XK6 GPU is about 1.6x faster than XE6 

● OpenACC async implementation is ~ 8% faster than OpenACC 

blocking 
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GAMESS 

● Computational chemistry package suite developed and 

maintained by the Gordon Group at Iowa State University 
● http://www.msg.ameslab.gov/gamess/ 

 

● Isolated computationally intensive kernel called CCSD(T) 
● Method to calculate electronic correlation energy in water clusters 

● ijk-tuples kernel contains iterations of: 

● Communication 

● Complex array transformations 

● Matrix-matrix multiplies   

● Ideal for GPU execution 

● Data movement between host and device can be minimized 

● Kernel is compute intensive with many matrix multiplies 

● Data scrambling can be done on device 

 

May 2012 Luiz DeRose © Cray Inc. 
67 

http://www.msg.ameslab.gov/gamess/


OpenACC vs. CUDA 

● Source changes 
● OpenACC – approximately 75 directives added to the original source 

● CUDA - 1800 lines of hand-coded CUDA 

 

● Performance of ijk-tuples kernel 
● OpenACC – 36.3 seconds 

● CUDA – 34.8 seconds 
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Reveal 

New code restructuring 
and analysis assistant… 

Uses both the performance 
toolset and CCE’s program 
library functionality to 
provide static and runtime 
analysis information  

Assists user with the code 
optimization phase by 
correlating source code with 
analysis to help identify 
which areas are key 
candidates for optimization 

Key Features 

Annotated source code with 
compiler optimization 
information 

• Provides feedback on critical 
dependencies that prevent 
optimizations 

Scoping analysis 

• Identifies shared, private and 
ambiguous arrays 

• Allows user to privatize ambiguous 
arrays 

• Allows user to override dependency 
analysis 

Source code navigation 

• Uses performance data collected 
through CrayPat 
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● Selects best GPU kernel for the current task based on: 
● Problem, Problem Size, Data Size 

 

● Selects best Kernel from: 
● Cray tuned kernels (ATF) 

● cuBlas, magmaBlas 

● Other available sources 

 

● Provides two sets of interfaces to be used in difference 
scenarios with minimized code modifications 
● Basic Interface: 

● Data copy is automatic 

● GPU or CPU execution placement is automatic 

● Automatic Memcpy optimizations 
● Copy only necessary data (submatrix copy, basic interface) 

● Advanced Interface: 
● Data placement done by user 

● CCE Integration 

What is Cray Libsci_acc? 

May 2012 
70 

Luiz DeRose © Cray Inc. 



● In addition to the Cray Differentiated Programming Environment for GPUs, the 

following third party components are also available for the Cray XK6: 

Third Party Integration 

 Compilers 
• NVIDIA C and C++ 
• PGI Fortran, C, and C++ 
• CAPS  

 

 Libraries 
• CUDA Runtime support libraries 

• NVIDIA Thread Storage libraries 

• NVIDIA GPU-accelerated BLAS 

• NVIDIA GPU-accelerated FFT 

• MAGMA 
 

 Tools 
• Environment setup 

 Modules 
 

• Debuggers 

 NVIDIA debugger 

 TotalView 

 DDT 
 

• Performance Tools 

 CUDA Visual Profiler 

 OpenCL Visual Profiler 
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● Hybrid multicore has arrived and is here to stay 
● Fat nodes are getting fatter 

● GPUs have leapt into the Top500 and accelerated nodes 

 

● Programming accelerators efficiently is hard 
● Need a high level programming environment 

● Cray Compilation Environment (CCE) focused on ease-of-use 

● OpenACC support 

● “Program Library” provides application specific repository for information for compiler and 

tools 

● Cray Reveal  

● Assists user in understanding their code and taking full advantage of SW and HW 

system 

● Cray Performance Analysis Toolkit 

● Single tool for GPU and CPU performance analysis with statistics for the whole 

application 

● Cray Auto-Tuning Libraries 

● Getting performance from the system … no assembly required  

 

Summary 
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