
OpenACC: A High Level Programming

Model for Accelerated Computing

Luiz DeRose

Sr. Principal Engineer

Programming Environments Director

Cray Inc.

0

5

10

15

20

25

Cray XT/XE IBM Blue
Gene

IBM Clusters IBM pSeries SGI Altix ICE
& UV Clusters

HP Clusters SUN Clusters Dell Clusters

Jun-07

Nov-07

Jun-08

Nov-08

Jun-09

Nov-09

Jun-10

Nov-10

Jun-11

Supercomputing Leadership

Top 500 Supercomputers in the World
November 2011

Top 10 Top 50 Top 100

Cray Systems 3 15 21

Vendor Rank #1 #1 #2

Systems in the Top100

2007-2011

Source: www.top500.org

Our Roadmap:
Adaptive Supercomputing

Cascade

2013

Next Gen

~2016

Future

~2019

Baker (XE6)

2010

Glacier (XK6)

2011

Combine multiple processing technologies into a single,
scalable system

Increasing energy-efficiency and reliability at all levels of
the system

Designing for extreme scale & concurrency

Focusing on programming tools, libraries & compilers
for productivity

Store and manage data at extreme scale

Enable science, engineering and advanced analytics on
one platform

Outline

● Motivation

● Why a new programming model

● OpenACC overview

● The Cray programming environment for accelerated computing

● Porting and optimization strategies

● Case study

● Conclusions

May 2012 Luiz DeRose © Cray Inc.
4

The Exascale furrow is a hard one to plough...

Seymour Cray famously once asked if you would rather

plough a field with two strong oxen or five-hundred-and-

twelve chickens.

"Since then, the question has answered itself: power

restrictions have driven CPU manufacturers away from

“oxen” (powerful single-core devices) towards multi-

and many-core “chickens”.

"An exascale supercomputer will take
this a step further, connecting tens of
thousands of many-core nodes.

"Application programmers face the
challenge of harnessing the power of
tens of millions of threads."

EPCC News, issue 70 (Autumn 2011)

May 2012 Luiz DeRose © Cray Inc.
5

http://www.epcc.ed.ac.uk/wp-content/uploads/2012/04/EPCCNews_web.pdf

Three Levels of Parallelism Required

● Developers will continue to use MPI between nodes or sockets

● Developers must address using a shared memory programming

paradigm on the node

● Developers must vectorize low level looping structures

● While there is a potential acceptance of new languages for

addressing all levels directly. Most developers cannot afford

this approach until they are assured that the new language will

be accepted and the generated code is within a reasonable

performance range

May 2012 Luiz DeRose © Cray Inc.
6

May 2012 Luiz DeRose © Cray Inc. 7

“Cray XK6”

Accelerating the Way to Better Science

The Cray XK6 hybrid architecture

● Announced in May 2011

● NVIDIA Fermi X2090 GPU
● Upgradable to Kepler

● AMD Interlagos CPU

● Cray Gemini interconnect
● high bandwidth/low latency scalability

● Unified X86/GPU programming environment

● Fully compatible with Cray XE6 product line

● Fully upgradeable from Cray XT/XE systems

May 2012 Luiz DeRose © Cray Inc.
8

Upcoming Heterogeneous Multi Petaflop
Systems in the US

May 2012 Luiz DeRose © Cray Inc.

Blue Waters: Sustained Petascale Performance

• Production Science at Full Scale

• 235 XE Cabinets + 30 XK Cabinets

● > 25K compute nodes

• 11.5 Petaflops

• 1.5 Petabytes of total memory

• 25 Petabytes Storage

● 1 TB/sec IO

• Cray’s scalable Linux Environment

• HPC-focused GPU/CPU Programming

Environment

Titan: A “Jaguar-Size” System with GPUs

• 200 cabinets

• 18,688 compute nodes

• 25x32x24 3D torus (22.5 TB/s global BW)

• 128 I/O blades (512 PCIe-2 @ 16 GB/s bidir)

• 1,278 TB of memory

• 4,352 sq. ft.

• 10 MW

9

Cray Vision for Accelerated Computing

● Most important hurdle for widespread adoption of accelerated
computing in HPC is programming difficulty
● Need a single programming model that is portable across machine types

● Portable expression of heterogeneity and multi-level parallelism

● Programming model and optimization should not be significantly difference for
“accelerated” nodes and multi-core x86 processors

● Allow users to maintain a single code base

● Cray’s approach to Accelerator Programming is to provide an
ease of use tightly coupled high level programming
environment with compilers, libraries, and tools that can hide
the complexity of the system

● Ease of use is possible with
● Compiler making it feasible for users to write applications in Fortran, C, and

C++

● Tools to help users port and optimize for hybrid systems

● Auto-tuned scientific libraries

May 2012 Luiz DeRose © Cray Inc.
10

Unified X86/GPU Programming Environment

● The Cray XK6 includes the first-generation of the Cray Unified

X86/GPU Programming Environment

● Why is Cray putting so much effort into this?
● Opens up GPU computing to a larger user base

● A good programming environment narrows the gap between observed

and achievable performance

● It supports three classes of users:
1. “Hardcore" GPU programmers with existing CUDA ports

2. Users with parallel codes, ideally with some OpenMP experience, but less

GPU knowledge

3. Users with serial codes looking for portable parallel performance with and

without GPUs

May 2012
11

Luiz DeRose © Cray Inc.

Programming for a Node with Accelerator

● Fortran, C, and C++ compilers
● OpenACC directives to drive compiler optimization

● Compiler does the “heavy lifting” to split off the work destined
for the accelerator and perform the necessary data transfers

● Compiler optimizations to take advantage of accelerator and
multi-core X86 hardware appropriately

● Advanced users can mix CUDA functions with compiler-generated accelerator
code

● Parallel Debugger support with DDT or TotalView

● Cray Reveal, built upon an internal compiler representation of the
application (the Cray Compiler Program Library)

● Source code browsing tool that provides interface between the user, the compiler,
and the performance tool

● Scoping tool to help users port and optimize applications

● Performance measurement and analysis information for porting and optimization

● Scientific Libraries support
● Auto-tuned libraries (using Cray Auto-Tuning Framework)

May 2012 Luiz DeRose © Cray Inc.
12

● Why a new model? There are already many ways to program:
● CUDA and OpenCL

● All are quite low-level and closely coupled to the GPU

● PGI CUDA Fortran

● Still CUDA just in a better base language

● PGI accelerator directives, CAPS HMPP

● First steps in the right direction – Needed standardization

● User needs to write specialized kernels:
● Hard to write and debug

● Hard to optimize for specific GPU

● Hard to update (porting/functionality)

● OpenACC Directives provide high-level approach
● Simple programming model for heterogeneous systems

● Easier to maintain/port/extend code

● Non-executable statements (comments, pragmas)

● The same source code can be compiled for multicore CPU

● Based on the work in the OpenMP Accelerator Subcommittee
● Proposed to the OpenMP Language Committee

● Subcommittee of OpenMP ARB, aiming for OpenMP 4.0

● Possible performance sacrifice

● A small performance gap is acceptable (do you still hand-code in assembler?)

● Goal is to provide at least 80% of the performance obtained with hand coded CUDA

● Already seeing this in many cases, more tuning ongoing

OpenACC Accelerator Programming Model

May 2012
13

Luiz DeRose © Cray Inc.

Motivating Example: Reduction

● Sum elements of an array

● Original Fortran code

May 2012 Luiz DeRose © Cray Inc.
14

a=0.0

do i = 1,n

 a = a + b(i)

end do

The reduction code in simple CUDA

May 2012 Luiz DeRose © Cray Inc.
15

dim3 dimBlock(128, 1, 1);

dim3 dimGrid(2048, 1, 1);

dim3 small_dimGrid(16, 1, 1);

int smemSize = 128 * sizeof(int);

int *buffer_d, *red_d;

int *small_buffer_d;

cudaMalloc((void **) &buffer_d ,

sizeof(int)*2048);

cudaMalloc((void **) &small_buffer_d ,

sizeof(int)*16);

cudaMalloc((void **) &red_d , sizeof(int));

reduce0<<< dimGrid, dimBlock, smemSize >>>(b_d,

buffer_d);

reduce0<<< small_dimGrid, dimBlock, smemSize

>>>(buffer_d, small_buffer_d);

reduce0<<< 1, 16, smemSize >>>(small_buffer_d,

red_d);

cudaMemcpy(&red, red_d, sizeof(int),

cudaMemcpyDeviceToHost);

*a = red;

cudaFree(buffer_d);

cudaFree(small_buffer_d);

cudaFree(b_d);

}

__global__ void reduce0(int *g_idata, int

*g_odata)

{

extern __shared__ int sdata[];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x +

threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if ((tid % (2*s)) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce0_cuda_(int *n, int *a,

int *b)

{

int *b_d,red;

const int b_size = *n;

cudaMalloc((void **) &b_d , sizeof(int)*b_size);

cudaMemcpy(b_d, b, sizeof(int)*b_size,

cudaMemcpyHostToDevice);

The reduction code in optimized CUDA

May 2012 Luiz DeRose © Cray Inc.
16

 if (tid < 32)

 {

 volatile T* smem = sdata;

 if (blockSize >= 64) { smem[tid] = mySum = mySum + smem[tid + 32]; }

 if (blockSize >= 32) { smem[tid] = mySum = mySum + smem[tid + 16]; }

 if (blockSize >= 16) { smem[tid] = mySum = mySum + smem[tid + 8]; }

 if (blockSize >= 8) { smem[tid] = mySum = mySum + smem[tid + 4]; }

 if (blockSize >= 4) { smem[tid] = mySum = mySum + smem[tid + 2]; }

 if (blockSize >= 2) { smem[tid] = mySum = mySum + smem[tid + 1]; }

 }

 if (tid == 0)

 g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce6_cuda_(int *n, int *a, int *b)

{

 int *b_d;

 const int b_size = *n;

 cudaMalloc((void **) &b_d , sizeof(int)*b_size);

 cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice);

 dim3 dimBlock(128, 1, 1);

 dim3 dimGrid(128, 1, 1);

 dim3 small_dimGrid(1, 1, 1);

 int smemSize = 128 * sizeof(int);

 int *buffer_d;

 int small_buffer[4],*small_buffer_d;

 cudaMalloc((void **) &buffer_d , sizeof(int)*128);

 cudaMalloc((void **) &small_buffer_d , sizeof(int));

 reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d,

b_size);

 reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize

>>>(buffer_d, small_buffer_d,128);

 cudaMemcpy(small_buffer, small_buffer_d, sizeof(int),

cudaMemcpyDeviceToHost);

 *a = *small_buffer;

 cudaFree(buffer_d);

 cudaFree(small_buffer_d);

 cudaFree(b_d);

}

template<class T>

struct SharedMemory

{

 __device__ inline operator T*()

 {

 extern __shared__ int __smem[];

 return (T*)__smem;

 }

 __device__ inline operator const T*() const

 {

 extern __shared__ int __smem[];

 return (T*)__smem;

 }

};

template <class T, unsigned int blockSize, bool nIsPow2>

__global__ void

reduce6(T *g_idata, T *g_odata, unsigned int n)

{

 T *sdata = SharedMemory<T>();

 unsigned int tid = threadIdx.x;

 unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;

 unsigned int gridSize = blockSize*2*gridDim.x;

 T mySum = 0;

 while (i < n)

 {

 mySum += g_idata[i];

 if (nIsPow2 || i + blockSize < n)

 mySum += g_idata[i+blockSize];

 i += gridSize;

 }

sdata[tid] = mySum;

 __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum

+ sdata[tid + 256]; } __syncthreads(); }

 if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum

+ sdata[tid + 128]; } __syncthreads(); }

 if (blockSize >= 128) { if (tid < 64) { sdata[tid] = mySum = mySum

+ sdata[tid + 64]; } __syncthreads(); }

The reduction code in OpenACC

● Compiler does the work:
● Identifies parallel loops within the

region

● Determines the kernels needed

● Splits the code into accelerator and

host portions

● Workshares loops running on

accelerator

● Make use of MIMD and SIMD style

parallelism

● Data movement

● allocates/frees GPU memory at

start/end of region

● moves data to/from GPU

May 2012 Luiz DeRose © Cray Inc.
17

!$acc data present(a,b)

!$acc parallel

a = 0.0

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

TM

Reduction Example Compilation Messages

May 2012 Luiz DeRose © Cray Inc.
18

ftn-6413 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 94

 A data region was created at line 94 and ending at line 107.

ftn-6405 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 95

 A region starting at line 95 and ending at line 101 was
placed on the accelerator.

ftn-6430 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 98

 A loop starting at line 98 was partitioned across the
threadblocks and the 128 threads within a threadblock.

 90. subroutine sum_of_int_4(n,a,b)
 91. use global_data
 92. integer*4 a,b(n)
 93. integer*8 start_clock, elapsed_clocks, end_clock
 94. !$acc data present(a,b)
 95. G----< !$acc parallel
 96. G a = 0.0
 97. G !$acc loop reduction(+:a)
 98. G g--< do i = 1,n
 99. G g a = a + b(i)
100. G g--> end do
101. G----> !$acc end parallel
102. !$acc end data
103. end subroutine sum_of_int_4

ftn-6413 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 94
 A data region was created at line 94 and ending at line 107.

ftn-6405 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 95
 A region starting at line 95 and ending at line 101 was placed on
the accelerator.

ftn-6430 ftn: ACCEL File = gpu_reduce_int_cce.F90, Line = 98
 A loop starting at line 98 was partitioned across the threadblocks
and the 128 threads within a threadblock.

 Summary of code complexity and performance

Reduction code summary

Programming
Model

Unit of
computation

Lines of code Performance in
Gflops (higher
is better)

Performance
normalized to
X86 core

Fortran Single x86 core 4 2.0 Gflops 1.0

Simple CUDA GPU 30 1.74 Gflops 0.87

Optimized
CUDA

GPU 69 10.5 Gflops 5.25

OpenACC GPU 9 8.32 Gflops 4.16

May 2012 Luiz DeRose © Cray Inc.
19

OpenACC Execution model

● Host-directed execution with attached GPU
● Main program executes on “host” (i.e. CPU)

● Compute intensive regions offloaded to the accelerator device

● Under control of the host

● “Device” (i.e. GPU) executes parallel regions

● Typically contain “kernels” (i.e. work-sharing loops), or

● Kernels regions, containing one or more loops which are executed as kernels.

● Host must orchestrate the execution by:

● Allocating memory on the accelerator device,

● Initiating data transfer,

● Sending the code to the accelerator,

● Passing arguments to the parallel region,

● Queuing the device code,

● Waiting for completion,

● Transferring results back to the host, and

● Deallocating memory.

● Host can usually queue a sequence of operations

● To be executed on the device, one after the other.

May 2012 Luiz DeRose © Cray Inc.
20

OpenACC Memory model

● Distinct memory spaces on the host and device
● Different locations, different address space

● Data movement performed by host using runtime library calls that explicitly

move data between the separate memories

● GPUs have a weak memory model
● No synchronisation between different execution units (SMs)

● Unless explicit memory barrier

● One can write OpenACC kernels with race conditions

● Giving inconsistent execution results

● Compiler will catch most errors, but not all (no user-managed barriers)

● OpenACC
● Data movement between the memories implicit

● Managed by the compiler,

● Based on directives from the programmer.

● Device memory caches are managed by the compiler

● With hints from the programmer in the form of directives

May 2012 Luiz DeRose © Cray Inc.
21

!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

● Compiler does the work:
● Identifies parallel loops within the region

● Determines the kernels needed

● Splits the code into accelerator and host

portions

● Workshares loops running on accelerator

● Make use of MIMD and SIMD style

parallelism

● Data movement

● Allocates/frees GPU memory at start/end of

region

● Moves data to/from GPU

A First Example:
Execute a region of code on the GPU

 User can tune default behavior with optional directives and clauses

 Loop schedule: spreading loop iterations over PEs of GPU

 Parallelism NVIDIA GPU SMT node (CPU)

 gang: a threadblock CPU

 worker: warp (32 threads) CPU core

 vector: SIMT group of threads SIMD instructions (SSE, AVX)

May 2012
22

Luiz DeRose © Cray Inc.

read-only write-only

A First OpenACC Program: "Hello World"

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initializes array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

 Code still compile-able for CPU

 Array a(:) unnecessarily moved from and to GPU between kernels

 "data sloshing"

May 2012 Luiz DeRose © Cray Inc.
23

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

A second version

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

 No automatic synchronization of copies within data region

 User-directed synchronization via update directive

 Code still compile-able for CPU

May 2012 Luiz DeRose © Cray Inc.

24

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

● Data clauses:
● copy, copyin, copyout, create

● e.g. copy moves data "in" to GPU at start of region and "out" to CPU at end

● Supply list of arrays or array sections

● Fortran use standard array syntax (“:" notation)

● C/C++ use extended array syntax [start:length]

● present: share GPU-resident data between kernels

● present_or_copy [in,out] (pcopy)

● Use data if already resident, otherwise move the data

● Tuning clauses:
● num_gangs, vector_length, collapse...

● Optimize GPU occupancy, register and shared memory usage, loop scheduling...

● Some other important clauses:
● async: Launch accelerator region asynchronously

● Allows overlap of GPU computation/PCI transfers with CPU computation/network

Directive Clauses

May 2012
25

Luiz DeRose © Cray Inc.

Sharing GPU Data Between Subprograms

 One of the kernels now in subroutine (maybe in separate file)

 CCE supports function calls inside parallel regions
 Compiler will automatically inline

 The present clause uses version of b on GPU without data copy

 Can also call double_array() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved

May 2012 Luiz DeRose © Cray Inc.
26

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present_or_copy (b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

● host_data region exposes accelerator memory address on host
● nested inside data region

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
● Must include cudaThreadSynchronize()

● Before: so asynchronous accelerator kernels definitely finished

● After: so CUDA kernel definitely finished

● CUDA kernel written as usual

● Or use same mechanism to call existing CUDA library

CUDA Interoperability

May 2012
27

Luiz DeRose © Cray Inc.

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

● async(handle): like CUDA streams

● Allows overlap of tasks on GPU
● PCIe transfers in both directions

● Plus multiple kernels (up to 16 with Fermi)

● Streams identified by handle
● Tasks with same handle execute sequentially

● can wait on one, more or all tasks

● OpenACC API also allows completeness

check

● First attempt, a simple pipeline:

● Processes array, slice by slice
● Copy data to GPU, process, bring back to CPU

● Very complicated kernel operation here!

● Should be able to overlap 3 streams at once
● Use slice number as stream handle in this case

● Runtime MODs it back into allowable range

● Can actually overlap more than three stream
● No benefit on this test

OpenACC Async Clause

May 2012 Luiz DeRose © Cray Inc.
28

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000

REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = SQRT(EXP(a(i,j)*2d0))
 b(i,j) = LOG(b(i,j)**2d0)/2d0
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

● Execution times (on Cray XK6):

● CPU: 3.98s

● OpenACC, blocking: 3.6s

● OpenACC, async: 0.82s

● OpenACC, full async: 0.76s

● NVIDIA Visual profiler:
● Time flows to right, streams stacked vertically

● red: data transfer to GPU

● pink: computational kernel on GPU

● blue: data transfer from GPU

● vertical slice shows what is overlapping

● only 7 of 16 streams fit in window

● collapsed view at bottom

● async handle modded by number of streams

● so see multiple coloured bars per stream

OpenACC async Results

May 2012 Luiz DeRose © Cray Inc.
29

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000

REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = SQRT(EXP(a(i,j)*2d0))
 b(i,j) = LOG(b(i,j)**2d0)/2d0
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

OpenACC in CCE

● man intro_openacc

● Which module to use, craype-accel-nvidia20

● Forces dynamic linking

● Single object file

● Whole program

● Messages/list file

● Compiles to PTX not CUDA

● Debugger sees original program not CUDA intermediate source

● OpenACC directives status in CCE
● Only two one constructs are un-implemented

● Cache

● Declare

● One unimplemented data clause

● deviceptr

May 2012 Luiz DeRose © Cray Inc.
30

● Scaling (running big jobs with a large number of GPUs)
● Results summarized and consolidated in one place

● Statistics for the whole application
● Performance statistics mapped back to the user source by line number

● Performance statistics grouped by accelerator directive

● Single report can include statistics for both the host and the accelerator

● Single tool for GPU and CPU performance analysis
● Performance statistics

● Includes accelerator time, host time, and amount of data copied to/from the

accelerator

● Kernel level statistics

● Accelerator hardware counters

Cray Performance Tools

May 2012
31

Luiz DeRose © Cray Inc.

● Loop work estimates
● Provide information to identify important loops

● Performance statistics
● Includes accelerator time, host time, and amount of data copied to/from the

accelerator

● Accelerator hardware counters
● Hardware counters on the accelerator itself.

● On NVIDIA Fermi GPUs, there are about 50 available counters

● Kernel level statistics
● Includes stats about grid size, block size, and occupancy

Types of Statistics

May 2012 Luiz DeRose © Cray Inc.
32

Accelerator Performance Statistics

● Default statistics collected when accelerated directives are

encountered with event tracing
● Host time for kernel launches, data copies and synchronization with the

accelerator

● Accelerator time for kernel execution and data copies

● Data copy size to and from the accelerator

● Collection enabled by default for programs built with CCE

● Collection enabled with runtime environment variable for CUDA

● Sampling will not produce accelerator table in the report, but

samples can show up in CUDA libraries

May 2012 Luiz DeRose © Cray Inc.
33

Accelerator Table Column Definitions

● Host Time%
● Percentage of wallclock time for events

● Host Time
● Wallclock time, in seconds, for the event

● Acc Time
● Amount of time the event executed on the accelerator

● Acc Copy In
● Amount of data copied to the accelerator

● Acc Copy Out
● Amount of data copied from the accelerator

● Calls
● The number of time the event occurred

All of the above are summed for regions and functions

May 2012 Luiz DeRose © Cray Inc.
34

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree

 Time% | Time | Time | In | Out | | PE=HIDE

 | | | (MBytes) | (MBytes) | |

 100.0% | 42.787 | 35.429 | 2554.726 | 2559.820 | 38164 |Total

|--

| 100.0% | 42.787 | 35.429 | 2554.726 | 2559.820 | 38164 |himenobmtxp_

| | | | | | | himenobmtxp_.ACC_DATA_REGION@li.65

3 99.6% | 42.628 | 35.273 | 2554.726 | 2559.820 | 38152 | jacobi_

4 | | | | | | jacobi_.ACC_DATA_REGION@li.227

|||||--

5|||| 67.4% | 28.836 | 28.168 | 0.004 | 0.004 | 5015 |jacobi_.ACC_REGION@li.309

6|||| 66.2% | 28.324 | -- | -- | -- | 1003 | jacobi_.ACC_REGION@li.309(exclusive)

5|||| 10.2% | 4.384 | 3.786 | -- | -- | 4012 |jacobi_.ACC_REGION@li.334

6|||| 9.5% | 4.050 | -- | -- | -- | 1003 | jacobi_.ACC_REGION@li.334(exclusive)

5|||| 4.7% | 1.998 | -- | -- | -- | 2 |jacobi_.ACC_DATA_REGION@li.227(exclusive)

5|||| 2.6% | 1.113 | 0.513 | -- | -- | 4012 |jacobi_.ACC_REGION@li.274

6|||| 1.8% | 0.778 | -- | -- | -- | 1003 | jacobi_.ACC_REGION@li.274(exclusive)

Accelerator Statistics

May 2012 Luiz DeRose © Cray Inc.
35

● A predefined set of counter groups has been created for ease of

use
● Combines events that can be counted together

● ACCPC groups start at 1000, and will be incremented by 100 as

new families of accelerators are supported

● Specify group by number or name
● PAT_RT_ACCPC=1000 OR

● PAT_RT_ACCPC=inst_exec_gst

● accpc(5) man page provides list of groups and their

descriptions

Accelerator Hardware Performance Counters

May 2012 Luiz DeRose © Cray Inc.
36

Table 3: ACC Performance Counter Data

 warps_launched | active_warps | active_cycles | sm_efficiency | achieved_occupancy |Calltree

 16380 | 1976842921 | 61837413 | 2.7% | 66.6% |Total

|---

| 16380 | 1976842921 | 61837413 | 2.7% | 66.6% |main

| | | | | | test1

3 | | | | | test1.ACC_REGION@li.35

||||--

4||| 16380 | 1976842921 | 61837413 | 3.1% | 66.6% |test1.ACC_KERNEL@li.35

4||| 0 | 0 | 0 | 0.0% | -- |test1.ACC_COPY@li.35

4||| 0 | 0 | 0 | 0.0% | -- |test1.ACC_COPY@li.39
|==

Accelerator Hardware Counters Statistics

May 2012 Luiz DeRose © Cray Inc.
37

mailto:test1.ACC_REGION@li.35
mailto:|test1.ACC_KERNEL@li.35
mailto:|test1.ACC_COPY@li.35
mailto:|test1.ACC_COPY@li.39

May 2012 Luiz DeRose © Cray Inc. 38

Porting and Optimizing for the

XK6 System

Cray XK6 vs Cray XE6 Programming

● Single MPI per node
● Multiple processes cannot share the GPU

● 1 MPI rank per node is likely not what has been used for the CPU code:

possibly need to review communication optimization

● Consider MPI communication/computation overlap

● Used with core specialization to reserve a core/node for the helper threads

● Large OpenMP threading
● It is very important to get cooperation between CPUs and GPU

● If there is not enough work for 16 OpenMP threads, try running in single

stream mode, with 1 thread per Bulldozer module

 export OMP_NUM_THREADS=8

 aprun -N 1 -d 8 –cc 0,2,4,6,8,10,12,14 –n XX a.out

● Dynamic linking
● You need to be aware that dynamic linking is required with GPU codes

● Dynamic libraries should be automatically set by the build process

● In some cases dynamically linked codes can be slower than statically linked

ones

May 2012 Luiz DeRose © Cray Inc.
39

A Porting and Optimization Strategy for Multi-
core Systems

● Reduce the number of MPI ranks per node

● Add parallelism to MPI ranks to take advantage of cores within

a node while minimizing network injection contention

● Maximize on-node communication between MPI ranks

● Relieve on-node shared resource contention by pairing threads

or processes that perform different work (for example

computation with off-node communication) on the same node

● Accelerate work intensive parallel loops

May 2012 Luiz DeRose © Cray Inc.
40

Structural Issues with Accelerated Computing

● Trick is to keep kernel data structures resident in GPU memory

as much as possible
● Avoid copying between CPU and GPU

● Use async, non-blocking, communication, multi-level overlapping

May 2012 Luiz DeRose © Cray Inc.
41

CPU
~150 GF

GPU
~665 GF

32GB

SDRAM 6 GB

GDDR

PCIe-2

8 GB/s

~170 GB/s ~42 GB/s

Bandwidth

and Synchronization

A three-task approach

● How to move to a hybrid code

1. Identification of possible accelerator kernels
● Determine where to add additional levels of parallelism

● Assumes MPI application is functioning correctly on X86

● Find top work-intensive loops (perftools + CCE loop work estimates)

2. Parallel analysis, scoping and vectorization
● Split loop work among threads

● Do parallel analysis and restructuring on targeted high level loops

● Use CCE loopmark feedback, Reveal loopmark and source browsing

3. Moving to OpenMP and then to OpenACC
● Add parallel directives and acceleration extensions

● Insert OpenMP directives (Reveal scoping assistance)

● Run on X86 to verify application and check for performance improvements

● Convert desired OpenMP directives to OpenACC

May 2012 Luiz DeRose © Cray Inc.
42

Collecting Loop Statistics

● Need to be using CCE
module load PrgEnv-cray perftools

● Fresh compile AND link with –h profile_generate
cc -h profile_generate -c my_program.c

cc -h profile_generate -o my_program my_program.o

● Instrument binary for event tracing
pat_build -u my_program (or -w option)

● Run application

● Create report with loop statistics
pat_report my_program+pat.xf > loops_report

May 2012 Luiz DeRose © Cray Inc.
43

Loop Work Estimates Report

May 2012 Luiz DeRose © Cray Inc.
44

Table 3: Inclusive Loop Time from -hprofile_generate

 Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]
 Time | Hit | Trips | Trips | PE=HIDE
 Total | | Min | Max |
|---
|
| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267
| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276
| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277
| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288
| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289
| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300
| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301
| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312
| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313
| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314
| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336
| 20.862715 | 127882 | 0 | 256 |jacobi_.LOOP.18.li.337
| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338
|===

subroutine

line number

internal label

nested loops
• Loop Hits multiply

• Incl Times reduce

A Porting and Optimization Strategy

● Preparation: add checksum(s) and high-res timer to code
● Check for correctness very frequently
● Profile code on the host

● Use representative-sized problem, map call tree,
● Ideally resolve profile by loop nest and measure typical loop iteration counts

● First get your application working without data regions

● Once you have a correct hybrid code

● Run on x86 + GPU and get performance feedback
● perftools profiling analysis

● Optimize for data locality and copies to the GPU
● perftools accelerator statistics

● Optimize kernel(s) on GPU
● perftools GPU counter statistics
● perftools Kernel statistics

● Optimize core performance on CPU
● Automatic profiling analysis with CPU HW counter threshold feedback

May 2012 Luiz DeRose © Cray Inc.
45

A Porting and Optimization Strategy

● Optimizing the data movements
● Start in subprograms at bottom of call chain

● Accelerate individual loop nests using parallel regions

● Concentrate initially on most computationally expensive

● Add data regions in subprograms

● Minimize data movements, use create clause where possible

● May need to accelerate insignificant loop nests to avoid data copies

● Use available feedback to understand data movement

● Compiler messages: -ra for CCE creates *.lst listing files

● Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

● NVIDIA compute profiler: export COMPUTE_PROFILE=1

● CrayPat performance measurement and analysis tool (Cray PE only)

May 2012 Luiz DeRose © Cray Inc.
46

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
47

#ifdef USE_DATA

!$acc data create(a,b)

#endif

 t1 = gettime()

 stream_counter = 1

 DO j = 1,Nchunks

 my_stream = Streams(stream_counter)

#ifdef USE_DATA

!$acc update device(a(:,j))

#endif

!$acc parallel loop

 DO i = 1,Nvec

 b(i,j) = SQRT(EXP(a(i,j)*2d0))

 b(i,j) = LOG(b(i,j)**2d0)/2d0

 ENDDO

!$acc end parallel loop

#ifdef USE_DATA

!$acc update host(b(:,j))

#endif

 stream_counter = MOD(stream_counter,3) + 1

 ENDDO

!$acc wait

 t2 = gettime()

!$acc end data

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
48

ftn -rad -hnocaf -c -o toaa2.o toaa2.F90

ftn -rad -hnocaf -o toaa2.x toaa2.o

pat_build -w toaa2.x

aprun toaa2.x+pat

 4999899.3359271679

 Time = 88.750109565826278

Experiment data file written:

/lus/scratch/beyerj/openacc/toaa/toaa2.x+pat+10112-43t.xf

Application 1880125 resources: utime ~83s, stime ~7s

pat_report –T toaa2.x+pat+10112-43t.xf

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
49

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 100.0% | 88.902394 | -- | -- | 5003.0 |Total

|---

| 100.0% | 88.902394 | -- | -- | 5003.0 |USER

||--

|| 75.4% | 67.041165 | -- | -- | 1000.0 |toaa_.ACC_COPY@li.59

|| 24.3% | 21.629574 | -- | -- | 1000.0 |toaa_.ACC_COPY@li.65

|| 0.2% | 0.155233 | -- | -- | 1.0 |toaa_

|| 0.0% | 0.037016 | -- | -- | 1000.0 |toaa_.ACC_KERNEL@li.59

|| 0.0% | 0.032549 | -- | -- | 1000.0 |toaa_.ACC_SYNC_WAIT@li.65

|| 0.0% | 0.006752 | -- | -- | 1000.0 |toaa_.ACC_REGION@li.59

|| 0.0% | 0.000074 | -- | -- | 1.0 |exit

|| 0.0% | 0.000031 | -- | -- | 1.0 |toaa_.ACC_SYNC_WAIT@li.79

||==

| 0.0% | 0.000000 | -- | -- | 0.0 |ETC

|===

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
50

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree

 Time% | Time | Time | In | Out | |

 | | | (MBytes) | (MBytes) | |

 100.0% | 88.749 | 88.697 | 152587.891 | 76293.945 | 5001 |Total

|---

| 100.0% | 88.749 | 88.697 | 152587.891 | 76293.945 | 5001 |toaa_

||--

|| 100.0% | 88.749 | 88.697 | 152587.891 | 76293.945 | 5000 |toaa_.ACC_REGION@li.59

|||---

3|| 75.5% | 67.042 | 67.042 | 152587.891 | -- | 1000 |toaa_.ACC_COPY@li.59

3|| 24.4% | 21.630 | 21.630 | -- | 76293.945 | 1000 |toaa_.ACC_COPY@li.65

3|| 0.0% | 0.037 | 0.026 | -- | -- | 1000 |toaa_.ACC_KERNEL@li.59

3|| 0.0% | 0.033 | -- | -- | -- | 1000 |toaa_.ACC_SYNC_WAIT@li.65

3|| 0.0% | 0.007 | -- | -- | -- | 1000 |toaa_.ACC_REGION@li.59(exclusive)

|||===

|| 0.0% | 0.000 | -- | -- | -- | 1 |toaa_.ACC_SYNC_WAIT@li.79

|===

Processing step 3 of 3

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
51

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55

ACC: Wait async(auto) from toaa2.F90:61

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55

ACC: Wait async(auto) from toaa2.F90:61

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55

ACC: Wait async(auto) from toaa2.F90:61

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55

ACC: Wait async(auto) from toaa2.F90:61

ACC: Transfer 2 items (to acc 0 bytes, to host 800000000 bytes) from toaa2.F90:61

ACC: Transfer 2 items (to acc 1600000000 bytes, to host 0 bytes) from toaa2.F90:55

ACC: Execute kernel toaa_$ck_L55_1 async(auto) from toaa2.F90:55

ACC: Wait async(auto) from toaa2.F90:61

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
52

ftn -rad -hnocaf -DUSE_DATA -c -o toaa2.o toaa2.F90

ftn -rad -hnocaf -DUSE_DATA -o toaa2.x toaa2.o

pat_build -w toaa2.x

aprun toaa2.x+pat

 50000944.502389029

 Time = 4.1188710090027598

Experiment data file written:

/lus/scratch/beyerj/openacc/toaa/toaa2.x+pat+10178-

43t.xf

Application 1880347 resources: utime ~4s, stime ~2s

pat_report –T toaa2.x+pat+10112-43t.xf

#ifdef USE_DATA

!$acc data create(a,b)

#endif

 t1 = gettime()

 stream_counter = 1

 DO j = 1,Nchunks

 my_stream = Streams(stream_counter)

#ifdef USE_DATA

!$acc update device(a(:,j))

#endif

!$acc parallel loop

 DO i = 1,Nvec

 b(i,j) = SQRT(EXP(a(i,j)*2d0))

 b(i,j) = LOG(b(i,j)**2d0)/2d0

 ENDDO

!$acc end parallel loop

#ifdef USE_DATA

!$acc update host(b(:,j))

#endif

 stream_counter = MOD(stream_counter,3) + 1

 ENDDO

!$acc wait

 t2 = gettime()

!$acc end data

Performance Tools Example

May 2012 Luiz DeRose © Cray Inc.
53

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree

 Time% | Time | Time | In | Out | |

 | | | (MBytes) | (MBytes) | |

 100.0% | 4.148 | 3.714 | 762.939 | 762.939 | 70005 |Total

|---

| 100.0% | 4.148 | 3.714 | 762.939 | 762.939 | 70005 |toaa_

| | | | | | | toaa_.ACC_DATA_REGION@li.27

|||---

3|| 67.3% | 2.792 | 2.487 | -- | 762.939 | 30000 |toaa_.ACC_UPDATE@li.71

||||--

4||| 60.0% | 2.487 | 2.487 | -- | 762.939 | 10000 |toaa_.ACC_COPY@li.71

4||| 6.9% | 0.286 | -- | -- | -- | 10000 |toaa_.ACC_SYNC_WAIT@li.71

4||| 0.4% | 0.018 | -- | -- | -- | 10000 |toaa_.ACC_UPDATE@li.71(exclusive)

||||==

3|| 25.7% | 1.066 | 1.055 | 762.939 | -- | 20000 |toaa_.ACC_UPDATE@li.52

||||--

4||| 25.4% | 1.055 | 1.055 | 762.939 | -- | 10000 |toaa_.ACC_COPY@li.52

4||| 0.3% | 0.011 | -- | -- | -- | 10000 |toaa_.ACC_UPDATE@li.52(exclusive)

||||==

[[[...]]]

Processing step 3 of 3

A Porting and Optimization Strategy (2)

● Move progressively up call chain, adding data regions
● Aim to further reduce data movements

● No problem nesting data regions: use present clause on inner ones

● May need to port insignificant subprograms to avoid data transfers

● Use update for essential data transfers (e.g. data for halo swaps)

● Now optimize kernel performance (often trial and error)
● Perfect loop nests schedule better than imperfect ones

● e.g. remove temporary arrays by manually inlining (eliminate array b)

● Or manually privatize arrays and break loop nest (make b(i,j))

May 2012 Luiz DeRose © Cray Inc.
54

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1,j) + b(i-1,j)
 ENDDO
ENDDO

A Porting and Optimization Strategy (3)

● Now look at tweaking the loop scheduling
● Quick wins

● Optimize loop scheduling

● Make sure the right loops are vectorized (for coalesced memory loads)

● And that they are vectorizable

● Choose number of workers per gang (threads/block)

● This number will vary by kernel and by problem size

● Collapsing or blocking of loops may help (though compilers already do that)

● See if caching can be used to reduce data loads from device memory

● Longer term: can loops be migrated up the call chain?

● e.g. Loop over sites, or blocks of sites (“blocking for cache”)

● If so, parallelise (gangs) over these

● Consider overlap of computation and communication using

async
● Don’t do this until everything working

● May require application restructuring

May 2012 Luiz DeRose © Cray Inc.
55

Case Study: the Himeno Benchmark

● Parallel 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil

● Memory intensive, memory bandwidth bound

● Fortran, C, MPI and OpenMP implementations

available from http://accc.riken.jp/HPC_e/himenobmt_e.html

● Fortran Coarray (CAF) version developed
● ~600 lines of Fortran

● Fully ported to accelerator using 27 directive pairs

● Strong scaling benchmark
● XL configuration: 1024 x 512 x 512 global volume

● Expect halo exchanges to become significant

● Use asynchronous GPU data transfers and kernel launches to help avoid this

May 2012 Luiz DeRose © Cray Inc.
56

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html

The Jacobi Computational Kernel (Serial)

● The stencil is applied to

pressure array p

● Updated pressure values

are saved to temporary

array wrk2

● Control value wgosa is

computed

● In the benchmark this

kernel is iterated a fixed

number of times (nn)

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)

 +a(I,J,K,2)*p(I, J+1,K) &

 +a(I,J,K,3)*p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)*p(I-1,J, K) &

 +c(I,J,K,2)*p(I, J-1,K) &

 +c(I,J,K,3)*p(I, J, K-1) &

 + wrk1(I,J,K)

 SS = (S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 wgosa = wgosa+ SS*SS

 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

 ENDDO

 ENDDO

ENDDO

fw
d

 n
.n

.
b

w
d

 n
.n

.
n

.n
.n

.

May 2012 Luiz DeRose © Cray Inc.
57

The Distributed Implementation

● The outer loop is executed a
fixed number of times

● The Jacobi kernel is executed
and new pressure array wrk2
and control value wgosa are
computed

● The p array is updated with
wrk2 values

● The halo region values are
exchanged between neighbor
PEs using send and receive
buffers

● The maximum wgosa value is
computed with an Allreduce
operation across all the PEs

DO loop = 1, nn

 compute Jacobi: wrk2, wgosa

 copy back wrk2 into p

 pack halo from p into send buf

 exchange halos with neighbor PEs

 unpack halo into p from recv buf

 Allreduce to sum wgosa across Pes

ENDDO

May 2012 Luiz DeRose © Cray Inc.
58

Porting Himeno to the Cray XK6

● Several versions tested, with communication implemented in

MPI and Fortran coarrays

● GPU version using OpenACC accelerator directives
● Total number of accelerator directives: 27

● plus 18 "end" directives

● Arrays reside permanently on the GPU memory

● Data transfers between host and GPU are:
● Communication buffers for the halo exchange

● Control value

● Cray XK6 timings compared to best Cray XE6 results (hybrid

MPI/OpenMP)

May 2012 Luiz DeRose © Cray Inc.

59

The Himeno GPU code structure

● GPU performs
● Jacobi kernel

● Halo buffers packing/unpacking

● Pressure update

● Host/device communication
● Halo region buffers transfer

● Control value wgosa

● CAF communication
● Remote halo buffers put

● Global wgosa sum

CPU GPU

May 2012 Luiz DeRose © Cray Inc.
60

Using Asynchronous Streams

● Async buffer handling
● Packing/unpacking multiple

buffers

● Overlapping packing and

host/device transfers

● Further testing possible
● Overlapping/pipelining CAF

remote put with host/device

transfers ?

● Pinned memory allocation for the

halo buffers ?

CPU GPU

May 2012 Luiz DeRose © Cray Inc.
61

Allocating arrays on the GPU

● Arrays are allocated on the

GPU memory in the main
program with the data

directive

● In the subroutines the data

directive is replicated with the

present clause,

to use the data already

present in the GPU memory

and avoid extra allocations

● Since the present clause is

used, no copy* clauses are

used, and data transfers

to/from host are implemented
by update directives

PROGRAM himenobmtxp

...

!$acc data create &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn,&

!$acc& sendbuffy_up,sendbuffy_dn,&

!$acc& sendbuffz_up,sendbuffz_dn)

...

!$acc end data

SUBROUTINE jacobi(nn,gosa)

!$acc data present &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn,&

!$acc& sendbuffy_up,sendbuffy_dn,&

!$acc& sendbuffz_up,sendbuffz_dn)

May 2012 Luiz DeRose © Cray Inc.
62

Jacobi kernel on the GPU

● The GPU kernel for the
main loop is created with
the parallel loop
directive

● The scoping of the main
variables is specified earlier
with the data directive - no
need to replicate it in here

● wgosa is computed by
specifying the reduction
clause, as in a standard
OpenMP parallel loop

● vector_length clause is
used to indicate the number
of threads within a
threadblock (compiler
default 128)

DO loop=1,nn

 gosa = 0

 wgosa = 0

!$acc parallel loop &

!$acc& private(s0,ss) &

!$acc& reduction(+:wgosa) &

!$acc& vector_length(256)

 DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)&

 ...

 wgosa = wgosa + SS*SS

 ENDDO

 ENDDO

 ENDDO

May 2012 Luiz DeRose © Cray Inc.
63

Halo region buffers

● Halo values are extracted
from the wrk2 array and
packed into the send
buffers, on the GPU

● A global parallel region
is specified and buffers in
the X, Y, and Z directions
are packed within loop
blocks

● The send buffers are
copied to host memory with
update

● In the same way, after the
halo exchange, the recv
buffers are transferred to
the GPU memory and used
to update the array p

!$acc parallel

!$acc loop

DO j = 2,jmax-1

 DO i = 2,imax-1

 sendbuffz_dn(i,j)= wrk2(i,j,2)

 sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

 ENDDO

ENDDO

!$acc end loop

 ...

!$acc loop

 ...

!$acc end loop

!$acc end parallel

!$acc update host

!$acc& (sendbuffz_dn,sendbuffz_up)

May 2012 Luiz DeRose © Cray Inc.
64

Benchmarking the code

● Cray XK6 configuration:
● Single AMD IL-16 2.1GHz nodes, 16 cores per node

● Nvidia Tesla X2090 GPU, 1 GPU per node

● Running with 1 PE (GPU) per node

● Himeno case XL needs at least 16 XK6 nodes

● Testing blocking and asynchronous GPU implementations

● Cray XE6 configuration:
● Dual AMD IL-16 2.1 GHz nodes, 32 cores per node

● Running on fully packed nodes: all cores used

● Depending on the number of nodes, 1-4 OpenMP threads per PE are used

● All comparisons are for strong scaling on case XL

May 2012 Luiz DeRose © Cray Inc.
65

Himeno performance

● XK6 GPU is about 1.6x faster than XE6

● OpenACC async implementation is ~ 8% faster than OpenACC

blocking

May 2012 Luiz DeRose © Cray Inc.
66

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

P
e

rf
o

rm
an

ce
 (

TF
lo

p
/s

)

Number of nodes

Himeno Benchmark - XL configuration
XE6 MPI/OMP XK6 async XK6 blocking

GAMESS

● Computational chemistry package suite developed and

maintained by the Gordon Group at Iowa State University
● http://www.msg.ameslab.gov/gamess/

● Isolated computationally intensive kernel called CCSD(T)
● Method to calculate electronic correlation energy in water clusters

● ijk-tuples kernel contains iterations of:

● Communication

● Complex array transformations

● Matrix-matrix multiplies

● Ideal for GPU execution

● Data movement between host and device can be minimized

● Kernel is compute intensive with many matrix multiplies

● Data scrambling can be done on device

May 2012 Luiz DeRose © Cray Inc.
67

http://www.msg.ameslab.gov/gamess/

OpenACC vs. CUDA

● Source changes
● OpenACC – approximately 75 directives added to the original source

● CUDA - 1800 lines of hand-coded CUDA

● Performance of ijk-tuples kernel
● OpenACC – 36.3 seconds

● CUDA – 34.8 seconds

May 2012 Luiz DeRose © Cray Inc.
68

Reveal

New code restructuring
and analysis assistant…

Uses both the performance
toolset and CCE’s program
library functionality to
provide static and runtime
analysis information

Assists user with the code
optimization phase by
correlating source code with
analysis to help identify
which areas are key
candidates for optimization

Key Features

Annotated source code with
compiler optimization
information

• Provides feedback on critical
dependencies that prevent
optimizations

Scoping analysis

• Identifies shared, private and
ambiguous arrays

• Allows user to privatize ambiguous
arrays

• Allows user to override dependency
analysis

Source code navigation

• Uses performance data collected
through CrayPat

May 2012
69

Luiz DeRose © Cray Inc.

● Selects best GPU kernel for the current task based on:
● Problem, Problem Size, Data Size

● Selects best Kernel from:
● Cray tuned kernels (ATF)

● cuBlas, magmaBlas

● Other available sources

● Provides two sets of interfaces to be used in difference
scenarios with minimized code modifications
● Basic Interface:

● Data copy is automatic

● GPU or CPU execution placement is automatic

● Automatic Memcpy optimizations
● Copy only necessary data (submatrix copy, basic interface)

● Advanced Interface:
● Data placement done by user

● CCE Integration

What is Cray Libsci_acc?

May 2012
70

Luiz DeRose © Cray Inc.

● In addition to the Cray Differentiated Programming Environment for GPUs, the

following third party components are also available for the Cray XK6:

Third Party Integration

 Compilers
• NVIDIA C and C++
• PGI Fortran, C, and C++
• CAPS

 Libraries
• CUDA Runtime support libraries

• NVIDIA Thread Storage libraries

• NVIDIA GPU-accelerated BLAS

• NVIDIA GPU-accelerated FFT

• MAGMA

 Tools
• Environment setup

 Modules

• Debuggers

 NVIDIA debugger

 TotalView

 DDT

• Performance Tools

 CUDA Visual Profiler

 OpenCL Visual Profiler

May 2012
71

Luiz DeRose © Cray Inc.

● Hybrid multicore has arrived and is here to stay
● Fat nodes are getting fatter

● GPUs have leapt into the Top500 and accelerated nodes

● Programming accelerators efficiently is hard
● Need a high level programming environment

● Cray Compilation Environment (CCE) focused on ease-of-use

● OpenACC support

● “Program Library” provides application specific repository for information for compiler and

tools

● Cray Reveal

● Assists user in understanding their code and taking full advantage of SW and HW

system

● Cray Performance Analysis Toolkit

● Single tool for GPU and CPU performance analysis with statistics for the whole

application

● Cray Auto-Tuning Libraries

● Getting performance from the system … no assembly required

Summary

May 2012
72

Luiz DeRose © Cray Inc.

