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Ø SEP: Band calculation with real space density functional 
theory 
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Motivation 
n For post-petascale supercomputers, we need to consider 

hierarchical structures: 
 
 
 
 
 
 
 
 
 
 

n New algorithm design: New concept of algorithm design to 
adapt to the change of architectures  

Computing nodes and cores	

Networks	

Memory and storage	

Algorithms	

?	
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Development of Parallel Eigensolver Software 
n CREST Project: Development of an Eigen-Supercomputing   

            Engine using a Post-Petascale Hierarchical Model  
             (FY2011 – FY2015) 
Ø For both dense and sparse matrices 
-  In this talk, we focus on a sparse solver (z-Pares) 

 
n Goal: Provide high performance eigensolver software  

          for post-petascale architectures 
Ø Scalable and reliable parallel algorithms for eigenvalue 

computations 
Ø High performance implementation for various applications 
Ø Provide practical and portable software 
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Implementation of z-Pares 
n A parallel eigensolver package for sparse matrices 

Ø Implemented on Trilinos 
Ø Uses Block Krylov methods and Shifted Kyrlov methods  

for spectral transformation 

Trilinos	 Belos	

z-Pares	 Shifted Krylov 
Block Krylov	

Parallel Sparse Solver Package	

Eigenvalue Solver	 Linear Solver	
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Our Approach for Parallel Scalability 
n Avoid recurrence calculations 

Ø Algorithm described by a recurrence relation  
(ex. Krylov methods): 

 
 
 
 
Ø Algorithm described by a summation  

(ex. Numerical quadrature): 

ai−1 ai ai+1

f1 f2 fN−1 fN. . . 	

. . . 	 an

IN =

N∑

j=1

wjfj

ai+1 = bi ai + ci ai−1
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Basic Idea 
n Contour integral for a rational function 

 
 
 

n Spectral decomposition of the resolvent of A 
 
 
 
    : eigenvalue,       : eigenvector  
(for simplicity, we considered the case that A is real symmetric) 
 

n Contour integral for the resolvent of A 
1

2πi

∮
Γ

(zI − A)−1dz =
∑

λi∈G

Pi

1

2πi

∮
Γ

n∑
i=1

νi

z − λi

dz =
∑

λi∈G

νi

Re	

Im	
λ1

λ2
λ3

Γ

(zI − A)−1 =
n∑

i=1

Pi

z − λi

, Pi = uiu
H

i

λi ui

G
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Numerical Quadrature 
n Approximated by a numerical quadrature 

 
 
 
    : quadrature point,       : quadrature wait 
 

n Apply for an arbitrary vector 
 
 
 
 
 

wjzj

∑
λi∈G

Pi =
1

2πi

∮
Γ

(zI − A)−1dz ≈

N∑
j=1

wj(zjI − A)−1

∑

λi∈G

Piv ≈

N∑

j=1

wj(zjI − A)−1
v

v

(zjI − A)xj = v, j = 1, . . . , N

Systems of linear equations at shift points	zj
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Eigensolver using Contour Integrals 
n SS method  (Sakurai, et. al. (2003),  Asakura, et al. (2009))   

Ø Eigenvalue problem  
 
 
where T (λ) is an analytic matrix function. 
 

Ø Complex moments are calculated. 
 
 
 

Ø When multiple input vectors                                 are used,  
systems with multiple right-hand sides are solved. 

T (λ)x = 0

sk =
1

2πi

∮
Γ

z
k
T (z)−1dz v ≈

N∑
j=1

wjz
k
j T (zj)

−1
v

V = [v1,v2, . . . ,vL]

T (zj)Xj = V, j = 1, . . . , N
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Parallelization 
n The SS method requires no successive process in the 

subspace construction step 

Parallelization 

Processed at each shift 
point simultaneously 

z1 z2 zN

z1

z2

zN

Approximate eigenpairs 

Extract approximate  
eigenvectors 

Construct subspace 

 Set contour path 
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Hierarchical Parallel Structure 
n Hardware is grouped according to a hierarchical structure  

of the algorithm 

Algorithm	 Hardware	
Top level	

Middle level	

Bottom level	

Γ1 Γ2 Γ3

z1

z2

zN

T (zj)Xj = V
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Shifted Krylov Subspace Method for SEP 
n Shifted linear systems:  

Ø In case of standard eigenvalue problems, shifted linear 
systems are solved. 
 
 

n Reduction of number of Mat-Vec: 
Ø By using the shift invariance of the Krylov subspace, we 

can reduce the number of matrix-vector multiplications. 

normal Krylov method for shifted systems	

shifted Krylov method 	

mat-vec &  
dot product	

AXPY	

(zjI − A)Xj = V, j = 1, . . . , N

z1 z2 zN

z1
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Shifted Krylov Subspace Method for SEP 
n  In case of a lot of shift points: 

Ø If there are a lot of shifted systems, the computational cost 
for AXPY becomes dominant 
 

 
 
 

n Shifted Block Krylov method: 
Ø AXPY for multiple RHSs can be implemented by GEMM 
-  Improves performance 

mat-vec &  
dot product	

AXPY	
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Numerical Examples for SEPs 
n Application for band calculation with real space density 

functional theory (RSDFT) 
Ø An interior standard eigenvalue problem (SEP) 
-  Eigenvalues around the band gap 
-  Solved several matrices:  A(k) u = λ u, k = 0, Δk, 2Δk,...���

 
n Material: Silicon nanowire  

 
n Test Environment: T2K-Tsukuba System  

Ø 2,048 cores for 1,085 atoms 
Ø 8,192 cores for 1,654 atoms 
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Numerical Examples for SEPs 
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Numerical Examples for SEPs 
n Eigensolver: 

CG: Conjugate Gradient method 
SS:  SS method with a shifted Block Krylov linear solver 

  

#atoms	 Mat.  dim.	 #core	
Time (sec)	 SS/CG 

Time ratio	CG	 SS	

1,085	 576,000	 2,048	 2,373	 1,534	 0.65	

1,654	 1,453,248	 8,192	 1,074*	 563	 0.52	

We have executed our code on the K computer with 6,144 cores for the 
case of silicon nanowire 9,924 atoms.	

*certain eigenvalues were not obtained in the interval to be computed	
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Numerical Examples for SEPs 
Band structure of SiNW9924	
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Numerical Examples for GEPs 
n Application for molecular orbital (MO) computation of protein 
-  Generalized eigenvalue problem (GEP) 

Ø Target protein:  
Epidamal Growth Factor Receptor  
17,246 atoms 

Ø Matrix dimension: 96,234,  
#nonzeros: 456,807,648 

Ø Test environment:  
T2k-Tsukuba System 

Ø Linear solver: Block COCG method 
Ø Preconditioner:  

MUMPS (sparse direct solver) for a dropped coefficient 
matrix 
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Numerical Examples for GEPs 
n One contour path: 16 linear systems are solved with 128 cores 

■ : Matrix distribution 
■ : Preconditioning  
■ : Matvec  
■ : Forward/Backward substitution 
■ : Misc.  
■ : Extract eigenpairs	

Dominant part of computational time is solving linear systems	

about 6 min. for 
one domain	
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Numerical Examples for GEPs 
n Multiple contour paths 

Ø Eigenvalues from lowest orbital to highest occupied orbital  
are calculated for self consistent field (SCF) iteration 

Ø 314 contour paths are set (128 cores for each contour path) 
Ø 32,769 eigenvalues and corresponding eigenvectors are 

obtained 

102	 1,680	 23,703	306	5,424	1,554	#eigs:	
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Conclusions 
n Development of parallel eigensolver and its software for 

post-petascale computing environment 
Ø Contour integral based method 
-  Scalable algorithm 
-  Hierarchical parallel structure 

Ø Several number of linear systems with multiple RHSs 
-  Block Krylov methods and Shifted Krylov methods 
-  Time for solving linear systems is dominant 

 
n  Looking for  

Ø efficient linear solvers and preconditioners 
Ø applications 
 


