Matrix Computation in Large-Scale Nuclear Structure Calculations

Esmond G. Ng (EGNg@lbl.gov) Lawrence Berkeley National Laboratory

> March 20, 2012 (Joint Tsukuba/CCS-LBNL Workshop)

Collaborators

- LBNL ...
 - Hasan Metin Aktulga
 - Chao Yang
- Iowa State University
 - Pieter Maris
 - James P. Vary
- □ Work supported in part by the DOE SciDAC Program
- $\hfill\square$ Calculations done at NERSC and OLCF
 - Part of a nuclear physics INCITE project

Ab initio Nuclear Physics - Fundamental Questions

- □ How does the nuclear shell model emerge from the underlying theory?
- □ What controls nuclear saturation?
- □ What are the properties of nuclei with extreme neutron/proton ratios?
- Nucleo-synthesis:
 Can we understand the nuclear processes that created matter?

□ Can nuclei provide precision tests of the fundamental laws of nature?

Ab initio NP - Quantum Many-Body Problem

Ab initio NP - Computational Challenges

- □ Self-bound quantum many-body problem, with 3A degrees of freedom in coordinate (or momentum) space
- Not only 2-body interactions, but also intrinsic 3-body interactions and possibly 4- and higher N-body interactions
- □ Strong interactions, with both short-range and long-range pieces
- □ Multiple scales, from keV's to MeV's

Configuration Interaction Methods

- $\Box \quad \text{Expand wave function in basis states } \left| \Psi \right\rangle = \sum a_i \left| \psi_i \right\rangle$
- **D** Express Hamiltonian in basis $\langle \Psi_j | \hat{\mathbf{H}} | \Psi_i \rangle = H_{ij}$
- **D**iagonalize Hamiltonian matrix H_{ij}
- $\hfill\square$ Complete basis \rightarrow exact result
 - caveat: complete basis is infinite dimensional
- □ In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large ($10^{10} \times 10^{10}$) sparse symmetric real matrix H_{ij}
 - use Lanczos algorithm to obtain lowest eigenvalues & corresponding eigenvectors

 $\square \text{ Expand wave function in basis } \Psi(r_1, \dots, r_A) = \sum_{\substack{a \neq A}} a_i \Phi_i(r_1, \dots, r_A)$

• Slater determinants of single-particle states $\phi_i(r_j)$

$$\Phi_{i}(r_{1}, \dots, r_{A}) = \frac{1}{\sqrt{(A!)}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \cdots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \cdots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \cdots & \phi_{iA}(r_{A}) \end{vmatrix}$$

takes care of anti-symmetrization of nucleons (Fermi-statistics)

- □ Single-particle basis states
 - eigenstates of SU(2) operators \hat{L}^2 , \hat{S}^2 , $\hat{J}^2 = (\hat{L} + \hat{S})^2$, \hat{J}_z with quantum numbers $|n,l,s,j,m\rangle$
 - radial wavefunctions: Harmonic Oscillator; Wood--Saxon basis (Negoita, PhD thesis 2010); Gamov, Sturmian, ...

- $\Box \text{ Expand wave function in basis } \Psi(r_1, \dots, r_A) = \sum a_i \Phi_i(r_1, \dots, r_A)$
 - M-scheme: many-body basis states eigenstates of \hat{J}_{j}

$$\hat{J}_{z}|\psi\rangle = M|\psi\rangle = \sum_{i=1}^{A} m_{i}|\psi\rangle$$

- single run gives spectrum
- Alternatives:
 - $\,\circ\,$ LS scheme, Coupled-J scheme, Symplectic basis, ...
- *N*_{max} truncation

$$\sum_{k=1}^{A} (2n_{ik} + l_{ik}) \le N_0 + N_{\max}$$

• alternatives: Monte-Carlo No-Core Shell Model, Importance Truncation, FCI (truncation on single-particle basis only), ...

D Expand wave function in basis states $|\Psi\rangle = \sum a_i |\psi_i\rangle$ **D** Express Hamiltonian in basis $\langle \psi_i | \hat{H} | \psi_i \rangle = H_{ii}$

$$\hat{\mathbf{H}} = \hat{\mathbf{T}}_{\mathsf{rel}} + \Lambda_{\mathsf{CM}} (\hat{\mathbf{H}}_{\mathsf{CM}}^{\mathsf{H.O.}} - \frac{3}{2} \hbar \omega) + \sum_{i < j} \mathbf{V}_{ij} + \sum_{i < j < k} \mathbf{V}_{ijk} + \cdots$$

- Pick your favorite potential
 - Argonne potentials: AV8, AV18 (plus Illinois NNN interactions)
 - Bonn potentials
 - Chiral NN interactions (plus chiral NNN interaction
 - ...
 - JISP16 (phenomenological nonlocal NN potential)
 - ...
 - Obtain from lattice QCD?

- $\Box \quad \text{Expand wave function in basis states } \left| \Psi \right\rangle = \sum a_i \left| \psi_i \right\rangle$
- **D** Express Hamiltonian in basis $\langle \Psi_j | \hat{H} | \Psi_i \rangle = H_{ij}$
 - large sparse symmetric matrix

Sparsity Structure for ⁶Li

- Obtain lowest eigenvalues using
- □ Lanczos algorithm
 - Eigenvalues: bound state spectrum
 - Eigenvectors: nuclear wavefunctions
- Use wavefunctions to calculate observables

Challenge: eliminate dependence on basis space truncation

CI Calculations - Main Challenges

- Single most important computational issue: exponential increase of dimensionality with increasing H.O. levels
- Additional computational issue: sparseness of matrix / number of nonzero matrix elements
- □ Extrapolation to infinite basis requires $N_{max} \ge 8$

CI Calculations and High Performance Computing

- □ Hardware
 - individual desktops and laptops
 - local linux clusters
 - DOE NERSC Center at LBNL
 - 17,000,000 CPU hours (ISU collaboration)
 - DOE Leadership Computing Facilities
 - INCITE award Computational Nuclear Structure (PI: J. Vary, ISU)
 - 20,000,000 CPU hours on Cray XT5 at ORNL
 - grand challenge award at Livermore (Jurgenson, Ormand)
 - ...
- Software
 - Lanczos algorithm -- iterative method to find lowest eigenvalues and eigenvectors of sparse matrix
- implemented in Many Fermion Dynamics
 - parallel F90/MPI/OpenMP CI code for nuclear physics

MFDn Performance Over Past 4 Years

- updated from Sternberg, Ng, Yang, Maris, Vary, Sosonkina, Le, "Accelerating Configuration Interaction calculations for nuclear structure", presented at SC08.
 - ¹³C chiral N3LOc 2- and 3-body interactions
 - Dimension 38 × 10⁶
 - # nonzero m.e. 56 × 10¹⁰
 - memory for matrix: 5 TB
 - size input 3 GB
 - Version 13-B03: hybrid MPI and OpenMP (Jan. 2011)

BERKELEY LAB

Total-J Computation

- □ Sometimes it is necessary to compute the eigenstates of the nuclear Hamiltonian matrix for a specific angular momentum (J).
 - E.g., investigating nuclear level densities or evaluating scattering amplitudes
- □ A possible solution is to compute a large number of eigenpairs. Then determine with eigenpairs correspond to the desirable J value.
 - Expensive ... because of the cost computing a large number of eigenpairs with the knowledge that some of them will be discarded anyway.
- □ A better approach is needed.
 - Want to project the problem into a smaller subspace that captures the same information.
 - Solve the smaller problem to extract the projected eigenvectors.
 - Then extract the corresponding eigenvectors of the original Hamiltonian.

Total-J Computation

- **Question:** How to find the appropriate subspace?
- □ Useful to consider the total angular moment squared operator K, which has the property that HK = KH.
- \Box For a fixed J value, $\lambda = J(J+1)$ is an eigenvalue of K.
- \Box If Z is an invariant subspace associated with λ , then it is also invariant under H.
- □ Eigenvalues of $G = Z^T H Z$ are also eigenvalues of H, associated with a specific J.
- □ If V contains the eigenvectors of G, then ZV contains the desired eigenvectors of H.
- □ The problem is to compute the eigenvectors of *K* corresponding to the eigenvalue $\lambda = J(J+1)$.

Total-J Computation

- □ Computing the eigenvectors of *K* ...
 - Bad news: *K* is as large as the Hamiltonian *H*.
 - Good news: K can be "organized" so that it has a nice block diagonal structure.
 - Z also has a block "diagonal" form.

 \Box Have investigated 3 ways to compute the eigevectors of K ...

- Shift-invert Lanczos applied to $(K a I)^{-1}$, where a is close to J(J+1).
- QR factorization applied to $(K \lambda I)$.
- Polynomial accelerated subspace iteration: apply Lanczos to p(K), where $p(\omega)$ is a polynomial that assumes a max value at $\omega = \lambda$ and much smaller values elsewhere.

Some Numerical Results

□ Comparing QR and polynomial subspace iteration

Scientific Discovery - Unstable Nucleus ¹⁴F

- Maris, Shirokov, Vary, arXiv:0911.2281 [nucl-th], Phys.~Rev.~C81, 021301(R) (2010)
 - Dimension 2 × 10⁹
 - # nonzero m.e. 2 × 10¹²
 - runtime 2 to 3 hours on 7,626 quad-core nodes on Jaguar (XT4) (INCITE 2009)
- □ Predicted ground state energy:
- □ 72 ± 4 MeV (unstable)
- Mirror nucleus 14B: 86 ± 4 MeV agrees with experiment 85.423 MeV

Predictions for ¹⁴F Confirmed by Experiments

Theory published PRC: Feb. 4, 2010	Physics Letters B 692 (2010) 307-311	Experiment published: Aug. 3, 2010
c	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

First observation of ¹⁴F

V.Z. Goldberg^{a,*}, B.T. Roeder^a, G.V. Rogachev^b, G.G. Chubarian^a, E.D. Johnson^b, C. Fu^c, A.A. Alharbi^{a,1}, M.L. Avila^b, A. Banu^a, M. McCleskey^a, J.P. Mitchell^b, E. Simmons^a, G. Tabacaru^a, L. Trache^a, R.E. Tribble^a

^a Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, USA ^b Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA ^c Indiana University, Bloomington, IN 47408, USA

TAMU Cyclotron Institute

Fig. 1. (Color online.) The setup for the ¹⁴F experiment. The "gray box" is the scattering chamber. See explanation in the text.

Fig. 6. ¹⁴F level scheme from this work compared with shell-model calculations, *ab-initio* calculations [3] and the ¹⁴B level scheme [16]. The shell model calculations were performed with the WBP [21] and MK [22] residual interactions using the code COSMO [23].

BERKELEY LAB

Lifetime of ¹⁴C: A Puzzle for Nuclear Theory

- \Box compare e.g. β decay ${}^{6}\text{He}(0^{+}) \rightarrow {}^{6}\text{Li}(1^{+})$
 - half-life $\tau_{1/2}$ = 806.7 ± 1.5 msec
 - Gamow-Teller transition B(GT) = 4.71
 - good agreement between ab-initio calculations and experiment
 - Vaintraub, Barnea, Gazit, arXiv:0903.1048 [nucl-th]

Ab initio Structure of ¹⁴C - Role of 3-body Forces

- Chiral effective 2-body plus 3-body interactions at $N_{max} = 8$
- Basis space dimension 1.1 billion
- Number of nonzero m.e. 39 trillion
- Memory to store matrix (CRF) 320 TB
- Total memory on JaguarPF 300 TB
- Ran on JaguarPF (XT5) using up to 36k 8GB processors (216K cores) after additional code-development for partial "on-the-fly" algorithm

Origin of The Anomalously Long Life-Time of ¹⁴C

DEPARTMENT OF

Office of Science

Concluding Remarks

- We have worked with nuclear physicists to improve their nuclear structure calculation code, which enables them to do calculations that they were not able to do previously.
 - Subsequently used the code to make scientific discoveries
- □ More to do ...
 - Algorithmic improvements
 - New methodologies
 - Scalability
 - New physics heavier nuclei
- □ Main challenge: large-scale matrix computation
 - Particularly solution of large sparse eigenvalue problems
 - Opportunities to collaborate nuclear physicists

Concluding Remarks

- Other Applications involving linear algebra problems
 - Nonlinear eigenvalue problems in accelerator modeling, materials sciences, chemical sciences, ...
 - AMR, linear solvers, nonlinear solvers in land-ice modeling
 - Linear solvers in fusion sciences, earth sciences, ...
- □ More other applications ...
 - Power network simulation
 - Extreme climate events
 - Image analysis (in biological sciences)
 - Cybersecurity

