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Ab initio Nuclear Physics – Fundamental Questions 

!  How does the nuclear shell model emerge from 
the underlying theory? 

!  What controls nuclear saturation? 
!  What are the properties of nuclei with extreme 

neutron/proton ratios? 
!  Nucleo-synthesis: 

Can we understand the nuclear processes that 
created matter? 

!  Can nuclei provide precision tests of the fundamental laws of nature? 



Ab initio NP – Quantum Many-Body Problem 

!  Eigenvalue problem for wave function 
ψ(r1, …, rA) of A nucleons 
 
 
 
with Hamiltonian operator 

"  Eigenvalues λ – discrete (quantized) energy 
levels 

"  Eigenvectors:  |ψ(r1, …, rA)|2 – probability 
density for finding nucleons 1, …, A at 
r1, …, rA. 
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Ab initio NP – Computational Challenges 

!  Self-bound quantum many-body problem, with 3A degrees of freedom 
in coordinate (or momentum) space 

!  Not only 2-body interactions, but also intrinsic 3-body interactions and 
possibly 4- and higher N-body interactions 

!  Strong interactions, with both short-range and long-range pieces 
!  Multiple scales, from keV’s to MeV’s 



Configuration Interaction Methods 

!  Expand wave function in basis states 
!  Express Hamiltonian in basis 
!  Diagonalize Hamiltonian matrix Hij 

!  Complete basis      exact result 
"  caveat: complete basis is infinite dimensional 

!  In practice  
"  truncate basis 
"  study behavior of observables as function of truncation 

!  Computational challenge 
"  construct large (1010×1010) sparse symmetric real matrix Hij 

"  use Lanczos algorithm to obtain lowest eigenvalues & corresponding 
eigenvectors 
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CI Methods – Basis Space Expansion 

!  Expand wave function in basis  
"  Slater determinants of single-particle states  

 
 

takes care of anti-symmetrization of nucleons (Fermi-statistics) 

!  Single-particle basis states 
"  eigenstates of SU(2) operators                                    with quantum numbers 

|n,l,s,j,m>        
"  radial wavefunctions: Harmonic Oscillator; Wood--Saxon basis (Negoita, PhD 

thesis 2010); Gamov, Sturmian, … 
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CI Methods – Basis Space Expansion 

!  Expand wave function in basis  
"  M-scheme: many-body basis states eigenstates of  

!  single run gives spectrum 

!  Alternatives: 
o  LS scheme, Coupled-J scheme, Symplectic basis, … 

"  Nmax truncation 

!  alternatives:  Monte-Carlo No-Core Shell Model, Importance Truncation, FCI 
(truncation on single-particle basis only), … 
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CI Methods – Basis Space Expansion 

!  Expand wave function in basis states  
!  Express Hamiltonian in basis  

!  Pick your favorite potential 
"  Argonne potentials: AV8, AV18 (plus Illinois 

NNN interactions) 
"  Bonn potentials 
"  Chiral NN interactions (plus chiral NNN interactions) 
"  … 
"  JISP16 (phenomenological nonlocal NN potential) 
"  … 
"  Obtain from lattice QCD? 
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CI Methods – Basis Space Expansion 

!  Expand wave function in basis states  
!  Express Hamiltonian in basis  

"  large sparse symmetric matrix 

!  Obtain lowest eigenvalues using 
!  Lanczos algorithm 

"  Eigenvalues: bound state spectrum 
"  Eigenvectors: nuclear wavefunctions 

!  Use wavefunctions to calculate 
observables 

!  Challenge: eliminate dependence on basis space truncation 
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CI Calculations – Main Challenges 

!  Single most important computational issue:  exponential increase of 
dimensionality with increasing H.O. levels 

!  Additional computational issue:  sparseness of matrix / number of 
nonzero matrix elements 

!  Extrapolation to infinite basis requires Nmax ≥ 8 



CI Calculations and High Performance Computing 

!  Hardware 
"  individual desktops and laptops 
"  local linux clusters 
"  DOE NERSC Center at LBNL 

!  17,000,000 CPU hours (ISU collaboration) 

"  DOE Leadership Computing Facilities 
!  INCITE award - Computational Nuclear Structure (PI: J. Vary, ISU) 
!  20,000,000 CPU hours on Cray XT5 at ORNL 

!  grand challenge award at Livermore (Jurgenson, Ormand) 

"  … 

!  Software 
"  Lanczos algorithm -- iterative method to find lowest eigenvalues and 

eigenvectors of sparse matrix 

!  implemented in Many Fermion Dynamics 
"  parallel F90/MPI/OpenMP CI code for nuclear physics 



MFDn Performance Over Past 4 Years 

!  updated from Sternberg, Ng, Yang, Maris, Vary, Sosonkina, Le, 
“Accelerating Configuration Interaction calculations for nuclear 
structure”, presented at SC08. 

"  13C chiral N3LOc 2- and 3-body 
interactions 

"  Dimension 38 × 106 

"  # nonzero m.e. 56 × 1010 

"  memory for matrix: 5 TB 
"  size input 3 GB 
"  Version 13-B03: hybrid MPI and 

OpenMP (Jan. 2011) 



Total-J Computation 

!  Sometimes it is necessary to compute the eigenstates of the nuclear 
Hamiltonian matrix for a specific angular momentum (J). 
"  E.g., investigating nuclear level densities or evaluating scattering amplitudes 

!  A possible solution is to compute a large number of eigenpairs.  Then 
determine with eigenpairs correspond to the desirable J value. 
"  Expensive … because of the cost computing a large number of eigenpairs 

with the knowledge that some of them will be discarded anyway. 

!  A better approach is needed. 
"  Want to project the problem into a smaller subspace that captures the same 

information. 
"  Solve the smaller problem to extract the projected eigenvectors. 
"  Then extract the corresponding eigenvectors of the original Hamiltonian. 



Total-J Computation 

!  Question:  How to find the appropriate subspace? 

!  Useful to consider the total angular moment squared operator K, which 
has the property that HK = KH. 

!  For a fixed J value, λ = J(J+1) is an eigenvalue of K. 
!  If Z is an invariant subspace associated with λ, then it is also invariant 

under H. 
!  Eigenvalues of G = ZTHZ are also eigenvalues of H, associated with a 

specific J. 
!  If V contains the eigenvectors of G, then ZV contains the desired 

eigenvectors of H. 

!  The problem is to compute the eigenvectors of K corresponding to the 
eigenvalue λ = J(J+1). 



Total-J Computation 

!  Computing the eigenvectors of K … 
"  Bad news:  K is as large as the Hamiltonian H. 
"  Good news:  K can be “organized” so that it has a nice block diagonal 

structure. 
!  Z also has a block “diagonal” form. 

!  Have investigated 3 ways to compute the eigevectors of K … 
"  Shift-invert Lanczos applied to (K − α I)-1, where α is close to J(J+1). 
"  QR factorization applied to (K − λ I). 
"  Polynomial accelerated subspace iteration: apply Lanczos to p(K), where 

p(ω) is a polynomial that assumes a max value at ω = λ and much smaller 
values elsewhere. 



Some Numerical Results 

!  Comparing QR and polynomial subspace iteration 
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Scientific Discovery – Unstable Nucleus 14F 

!  Maris, Shirokov, Vary, arXiv:0911.2281 [nucl-th], Phys.~Rev.~C81, 
021301(R) (2010) 

"  Dimension 2 × 109 
"  # nonzero m.e. 2 × 1012 
"  runtime 2 to 3 hours on 7,626 

quad-core nodes on Jaguar (XT4) 
(INCITE 2009) 

!  Predicted ground state energy:   
!  72 ± 4 MeV (unstable) 
!  Mirror nucleus 14B: 86 ± 4 MeV 

agrees with experiment 
85.423 MeV 



Predictions for 14F Confirmed by Experiments 



Lifetime of 14C: A Puzzle for Nuclear Theory 

!  compare e.g. β decay 6He(0+)       6Li(1+) 
"  half-life τ1/2 = 806.7 ± 1.5 msec 
"  Gamow-Teller transition B(GT) = 4.71 
"  good agreement between ab-initio calculations and experiment 

!  Vaintraub, Barnea, Gazit, arXiv:0903.1048 [nucl-th] 

→



 

 
!  Chiral effective 2-body plus 3-body interactions at Nmax = 8 

!  Basis space dimension 1.1 billion 
!  Number of nonzero m.e. 39 trillion 

!  Memory to store matrix (CRF) 320 TB 

!  Total memory on JaguarPF 300 TB 
!  Ran on JaguarPF (XT5) using up to 36k 8GB processors (216K cores) after additional 

code-development for partial “on-the-fly” algorithm 

Ab initio Structure of 14C – Role of 3-body Forces 



Origin of The Anomalously Long Life-Time of 14C 

 
!  Near-complete cancellations 

between dominant contributions 
within p-shell 

!  Very sensitive to details 

!  Maris, Vary, Navratil, Ormand, 
Nam, Dean, PRL106, 202502 (2011) 



Concluding Remarks 

!  We have worked with nuclear physicists to improve their nuclear 
structure calculation code, which enables them to do calculations that 
they were not able to do previously. 
"  Subsequently used the code to make scientific discoveries 

!  More to do … 
"  Algorithmic improvements 
"  New methodologies 
"  Scalability 
"  New physics – heavier nuclei 

!  Main challenge:  large-scale matrix computation 
"  Particularly solution of large sparse eigenvalue problems 
"  Opportunities to collaborate nuclear physicists 



Concluding Remarks 

!  Other Applications involving linear algebra problems 
"  Nonlinear eigenvalue problems in accelerator modeling, materials sciences, 

chemical sciences, … 
"  AMR, linear solvers, nonlinear solvers in land-ice modeling 
"  Linear solvers in fusion sciences, earth sciences, … 

!  More other applications … 
"  Power network simulation 
"  Extreme climate events 
"  Image analysis (in biological sciences) 
"  Cybersecurity 


