LBNL and University of Tsukuba CCS Joint Workshop March 19-20, 2012

The ACTS Project overview and future directions

Osni Marques

Lawrence Berkeley National Laboratory OAMarques@lbl.gov

Motivation: HPC Applications

- Accelerator Science
- Earth Sciences
- Material Sciences
- Biology
- Chemistry
- Astrophysics

:

Commonalities

- Advancements in science and engineering
- Increasing demands for computational power
- Reliance on available computational systems, languages, and software tools

The DOE ACTS Collection

- Goal: The Advanced CompuTational Software Collection (ACTS) makes reliable and efficient software tools more widely used, and more effective in solving the nation's engineering and scientific problems
- Long term maintenance
- Independent test and evaluation
- Outreach and dissemination
- High level user support

Software Stack

APPLICATIONS

GENERAL PURPOSE TOOLS

SUPPORT TOOLS AND UTILITIES

HARDWARE

Leading technology paths (swim lanes):

- Multicore: maintain complex cores, and replicate (x86 and Power7, Blue Waters, NGSC)
- Manycore/embedded: use many simpler, low power cores from embedded systems (BlueGene, Dawning)
- GPU/Accelerator: use highly specialized processors from gaming/graphics market space (NVidia Fermi, Cell, Intel Knights Corner/Larrabee)

Risks in swim lane selection:

- Select too soon: users cannot follow
- Select too late: fall behind performance curve
- Select incorrectly: subject users to multiple disruptive technology changes

The DOE ACTS Collection: Current Functionalities

Category	Tool	Functionalities				
	Trilinos	Linear Solvers (Iterative Methods):		ge sparse linear systems		
Numerical	Hypre	CGGMRES	ge spai	ge sparse linear systems (grid-centric interfaces)		
	PETSC		ar and	ar and nonlinear systems of equations)		
	SUNDIALS		ased)	ferential equations, nonlinear algebraic		
	ScaLAPACK	• QMR				
	SLEPC	• SYMMLQ				
	SuperLU	Various preconditioners		large, sparse, nonsymmetric linear		
	TAO	Multigrid This in the second constrained optimized to the	· ·	nonlinear least squares, unconstrained		
Code Development	Global Arrays	Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-memory view of distributed arrays				
	Overture	Framework for solving partial differential equations in complex geometries.				
Code Execution	TAU	Set of tools for analyzing the performance of multi-language programs				
Library Development	ATLAS	Tools for the automatic generation of optimized numerical software (dense linear algebra)				

Software Interfaces

CALL BLACS_GET(-1, 0, ICTXT)

CALL BLACS_GRIDINIT(ICTXT, 'Row-major', NPROW, NPCOL)

:

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

:

CALL PDGESV(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO)

function call
(ScaLAPACK)

- -ksp_type [cg,gmres,bcgs,tfqmr,...]
- -pc type [lu,ilu,jacobi,sor,asm,...]

More advanced:

- -ksp_max_it <max_iters>
- -ksp_gmres_restart <restart>
- -pc asm overlap <overlap>
- -pc_asm_type [basic,restrict,interpolate,none]

problem domain
(Hypre)

Questions for application developers

- How does performance vary with different compilers?
- Is poor performance correlated with certain OS features?
- Has a recent change caused unanticipated performance?
- How does performance vary with MPI variants?
- Why is one application version faster than another?
- What is the reason for the observed scaling behavior?
- Did two runs exhibit similar performance?
- How are performance data related to application events?
- Which machines will run my code the fastest and why?
- Which benchmarks predict my code performance best?

:

(courtesy of Sameer Shende)

TAU: Performance Analysis

- Profiling: summary statistics of performance metrics (# of times a routine was invoked exclusive or inclusive time or hardware counts, calltrees and callgraphs, memory and message sizes etc)
- Tracing: when and where events took place along a global timeline (timestamped log of events, message communication events)
- Automatic instrumentation of source code (PDT)
- Runs on basically all HPC platforms

- 3D profile browser (paraprof)
- To use TAU, one only needs to set a couple of environment variables and substitute the name of the compiler with a TAU shell script
- Ex. Flat profile of Miranda (LLNL; hydrodynamics / Fortran + MPI) on an BG/L;

node, context, thread

(See http://tau.uoregon.edu/tau.ppt)

Technology Transition

... and impacts to a facility like NERSC

Source: Horst Simon & Kathy Yelick

Parametric Research and Integration

- **Hand-tuning algorithmic** parameters can be cumbersome
- Auto-tuning produces a single tuned library (max cores per node)
- Some applications won't scale ...

- **Auto-tuned algorithmic** parameters
- Auto-tuned libraries through steering parameters (#cores/ node)
- Run-time selection of tuned library
- Binary rewriting (?)

GENERAL PURPOSE

SUPPORT TOOLS AND

HARDWARE

Software Tools for Application Development, Portability and Performance

min[time_to_first_solution]

(prototype)
(production)

- min[time_to_solution]
- min[software-development-cost]
- max[software_life]
- max[resource_utilization]
- Outlive Complexity
 - Increasingly sophisticated models
 - Model coupling
 - Interdisciplinary
- Sustained Performance
 - Increasingly complex algorithms
 - Increasingly diverse architectures
 - Increasingly demanding applications

software evolution

long-term deliverables

Partitioned Global Address Space (PGAS) Languages

- Abstract shared address space with control of locality for SPMD programming model
- Convenient for application development
- Languages
 - Unified Parallel C (UPC, http://upc.lbl.gov)
 - Co-Array Fortran (CAF, http://www.co-array.org)

- Titanium (http://titanium.cs.berkeley.edu)
- Fortress (http://blogs.oracle.com/projectfortress)
- Chapel (http://chapel.cray.com)
- X-10 (http://x10-lang.org)
- GASNET: low-level networking layer that provides highperformance communication primitives tailored for PGAS languages (http://gasnet.cs.berkeley.edu)

Co-array Fortran

- Image: each replication of a program
- Syntax:

```
real, dimension(10), codimension[\cdot] : : x,y x(:) = y(:)[q] ! coarray y on image q is copied into coarray x on the executing image
```

- Simple statements replace MPI calls (simpler, shorter, more maintainable code), no need to pack and unpack data (error prone)
- Synchronization

CRITICAL ! Begin critical region END CRITICAL ! End of a critical region

SYNC ALL ! Synchronize all images

SYNC IMAGES ! Synchronize a specified subset of all images

SYNC MEMORY ! Memory barrier

See ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf for details

Target Application: the Parallel Ocean Program (POP)

dipole or tripole grids are mapped into a 2D domain

block_size_x

block(i,j-1)

block(i-1,j)

block(i,j)

block(i+1,j)

nghost

block(i,j+1)

full domain with shaded land cells (which are removed)

ghost cell or halo region

space-filling curve

POP Components

- Baroclinic: density depends on the temperature and pressure, slow motion → finite differences
- Barotropic: density depends only on the pressure, fast motion → (preconditioned) conjugate gradient
- 1D data structure in the barotropic solver enables the elimination of land points in the 2D data structure
 - changes the matrix-vector multiply (indirect addressing)
 - uses CSR format
- Barotropic component as a miniapp
 - 13 versions (3 2D data, 10 1D data) by Stone, Dennis and Strout (CO State)
 - 9 point stencil
 - halo updates

Communication Pattern using 1D Structure

Performance Comparisons

hopper.nersc.gov: 153,216 compute cores Cray XE6 (6,384 compute nodes with 2 twelve-core AMD MagnyCours) and Gemini interconnect; 1° model; 120 CG iterations

barrier

a[k] = a a = a[k]

ACTS Tools: numerical functionalities (1/3)

Computational Problem	Methodology	Algorithms	Library	
	Direct Methods	LU factorization	ScaLAPACK(dense), SuperLU (sparse)	
		Cholesky factorization	ScaLAPACK	
		LDL ^T factorization (tridiagonal matrices)	7	
		QR factorization		
		QR factorization with column pivoting		
		LQ factorization		
		Full orthogonal factorization		
		Generalized QR factorization		
		Conjugate gradient (CG)	AztecOO (Trilinos), PETSc	
		GMRES	AztecOO, Hypre, PETSc	
	Iterative Methods	CG Squared	AztecOO, PETSc	
		Bi-CG-Stab		
		QMR	AztecOO	
Linear Equations		Transpose free QMR	AztecOO, PETSc	
		SYMMLQ	PETSc	
		Richardson		
		Block Jacobi preconditioner	AztecOO, Hypre, PETSc	
		Point Jacobi preconditioner	AztecOO	
		Least-squares polynomials		
		SOR preconditioner	PETSc	
		Overlapping additive Schwarz]	
		Approximate inverse	Hypre	
		Sparse LU preconditioner	AztecOO, Hypre, PETSc	
		Incomplete LU (ILU) preconditioner	<u> </u>	
	Multigrid	MG preconditioner	Hypre, PETSc	
		Algebraic multigrid	ML (Trilinos), Hypre	
		Semicoarsening	Hypre	

ACTS Tools: numerical functionalities (2/3)

Computational Problem	Methodology	Algorithms	Library	
Linear least squares	least squares	$min_x b - Ax _2$	ScaLAPACK	
	minimum norm	$min_x x _2$		
	minimum norm least squares	$min_x x _2$ and $min_x b-Ax _2$		
Standard eigenvalue problems	iterative, direct	$Az=\lambda z$ for $A=A^{T}$ or $A=A^{H}$	ScaLAPACK(dense), SLEPc (sparse)	
Generalized eigenvalue problems		$Az=\lambda Bz, ABz=\lambda z, BAz=\lambda z$		
Singular value decomposition		$A=U\Sigma V^{\mathrm{T}}, A=U\Sigma V^{\mathrm{H}}$		
Non-linear equations problems	Newton-based	Line search	PETSc, KINSOL (SUNDIALS)	
		Trust regions	PETSc	
		Pseudotransient continuation	PETSc	
		Matrix-free	PETSc	
Nonlinear optimization	Newton-based	Newton	OPT++, TAO	
		Finite differences	OPT++	
		Quasi-Newton	OPT++, TAO (LMVM)	
		Nonlinear interior point	OPT++, TAO	
	CG	Standard nonlinear CG	OPT++, TAO	
		Limited memory BFGS	OPT++	
		Gradient projection	TAO	
	Direct Search	Without derivative information	OPT++	
	Semismooth	Infeasible semismooth	TAO	
		Feasible semismooth	<u> </u>	

ACTS Tools: numerical functionalities (3/3)

Computational Problem	Methodology	Algorithms	Library
ODEs	Integration	Variable coefficient Adams-Moulton	CVODE (SUNDIALS)
	Backward differential	Direct and iterative solvers	
ODEs with sensitivity analysis	Integration	Variable coefficient Adams-Moulton	
	Backward differential	Direct and iterative solvers	
Differential-algebraic equations	Backward differential formula	Direct and iterative solvers	IDA (SUNDIALS)
Nonlinear equations with sensitivity analysis	Inexact Newton	line search	SensKINSOL (SUNDIALS)
Tuning and optimization	Automatic code generator	BLAS and some LAPACK routines	ATLAS

POP: block sizes for a 1° model (3600x2400 grid points)

blocks (each direction)	grid points (3600x2400)		points per block	halo
20	180	120	21600	604
30	120	80	9600	404
40	90	60	5400	304
60	60	40	2400	204
75	48	32	1536	164
100	36	24	864	124
150	24	16	384	84
200	18	12	216	64

Miniapps for Testing PGAS Languages

- Miniapps (as defined by M. Heroux et al., 2009)
 - Benchmarking in immature environments
 - Simple build process to enable easy porting
 - About 1000 SLOC
 - Performance proxy
 - Programmability proxy (code importance, incremental improvement)

POP Miniapp: Future Work

- Analysis of the communication pattern
- CAF based on GASNET on hopper
- CAF 2.0 (http://caf.rice.edu)
 - subsets known as teams, collective communication, and relative indexing of process images for pair-wise operations
 - topologies, which augment teams with a logical communication structure
 - global pointers in support of dynamic data structures, and
 - enhanced support for synchronization for fine control over program execution
 - asynchronous communication support for hiding communication latency

