Tightly Coupled Accelerator for HA-PACS

Yuetsu KODAMA
Center for Computational Sciences
University of Tsukuba
kodama@cs.tsukuba.ac.jp

HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences)

Two parts

- Base Cluster:
 - for development of GPU-accelerated code for target fields, and performing product-run of them
- TCA: (Tightly Coupled Accelerators)
 - for elementary research on new communication technology for reducing latency between accelerators.
 - Our original communication system based on PCI-Express named "PEARL", and a prototype communication chip named "PEACH"
 - Improve PEACH for TCA : PEACH2

Problems of GPU Cluster

- Problems of GPGPU for HPC
 - Data I/O performance limitation
 - Ex) GPGPU: PCle gen2 x16 (8GB/s)
 ⇔ 665 GFLOPS (NVIDIA M2090)
 - Memory size limitation
 - Ex) M2090: 6GByte vs CPU: 128GByte
 - Communication between accelerators:
 no direct path (external) ⇒ communication
 latency via CPU becomes large

Researches for direct communication between GPUs are required

The target of TCA is developing a direct communication system between external GPUs for a feasibility study for future accelerated computing

HA-PACS: TCA (Tightly Coupled Accelerator)

- TCA: Tightly Coupled Accelerator
 - Direct connection between accelerators (GPUs)
 - Using PCIe as a communication device between accelerator
 - Most acceleration device and other I/O device are connected by PCIe as PCIe end-point (slave device)
 - An intelligent PCIe device logically enables an end-point device to directly communicate with other end-point devices
- PEARL: PCI Express Adaptive and Reliable Link
 - We already developed such PCIe device (PEACH, PCI Express Adaptive Communication Hub) on JST-CREST project "low power and dependable network for embedded system"
- ⇒ Improving PEACH for HPC to realize TCA : PEACH2

PEACH, PCI Express Adaptive Communication Hub

- Applying PCIe link as "a direct link between nodes"
- PCI-E link edge control feature: "root complex" and "end points" are automatically switched (flipped) according to the connection handling
- Each PCIe is an independent bus, and Intelligent controller on PEACH transfers each packet between PCIe buses.

PEACH chip [Otani et al., ISSCC2011]

- CPU: Renesas M32R 4core SMP (max. 400MHz)
 - small core size, low power
 - SMP
 - Controlling PCIe 4 port
 - health check for the node, link
 - communication link management
 - route reconfiguration

- comm. link:
 PCI Express Gen2 x4 lanes (20Gbps)
 x4 port
- SuperHyway, DMAC
- Low power
 - Controlling #lanes for each port
 - gen1/gen2 switching
 - core frequency control

HA-PACS/TCA (Tightly Coupled Accelerator)

True GPU-direct

- current GPU clusters require 3hop communication (3-5 times memory copy)
- For strong scaling, Inter-GPU direct communication protocol is needed for lower latency and higher throughput

- Enhanced version of PEACH
 - ⇒ PEACH2
 - x4 lanes -> x8 lanes
 - hardwired on main data path and PCle interface fabric

Implementation of PEACH2: ASIC⇒FPGA

FPGA based implementation

- today's advanced FPGA allows to use PCIe hub with multiple ports
- currently gen2 x 8 lanes x 4 ports are available
 ⇒ soon gen3 will be available (?)
- easy modification and enhancement
- fits to standard (full-size) PCIe board
- internal multi-core general purpose CPU with programmability is available
 ⇒ easily split hardwired/firmware partitioning on certain level on control layer

Controlling PEACH2 for GPU communication protocol

- collaboration with NVIDIA for information sharing and discussion
- based on CUDA4.0 device to device direct memory copy protocol

HA-PACS/TCA

Node Cluster = NC

PEARL/PEACH2 variation (1)

- Option 1:
 - GPU host driver is available as-is
 - 4 GPUs are equivalent from PEACH2

PEARL/PEACH2 variation (2)

- Option 1:
 - Performance comparison among IB and PEARL can be evenly compared
 - Additional latency by PCle switch

PEARL/PEACH2 variation (3)

- Option 3:
 - Requires only 72 lanes in total
 - asymmetric connection among 3 blocks of GPUs

PEACH2 FPGA test bed

Evaluate PCI-Express hard IP on FPGA

HSMC-PCle converter board (newly developed)

- HSMC (High-Speed Mezzanine Card)
 General I/O port
- PCle x8 cable connector
- RootComplex / Endpoint switchable
- both x4 / x8 available

generic FPGA evaluation board (DEV-4SGX530N)

- PCle x8 endpoint
- HSMC support PCle x 8 Gen2
- HSMC support PCIe x 4 Gen2
- Stratix IV GX530KH40 (1517pin, 531K LE, 20Mbit, 4 PCle IP, 24 8.5Gbps Transceiver)

Read: 3.2GB/s, Write 3.3GB/s in 64K

PEACH2 PCIe compatible board(~ Mar. 2012)

Real PCIe board for HA-APCS/TCA (and for any other platform)

Summary

- HA-PACS/TCA for elementary study for advanced technology on direct communication among accelerating devices (GPUs)
- FPGA implementation of PEACH2 will be finished for the prototype version on Mar. 2012 and enhanced for final version in following 6 months
- HA-PACS/TCA with at least 200 TFLOPS additional performance will be installed around Mar. 2013

PCI express IP core performance (Gen2 x 8)

PCI Express

- I/O Interface for PC after PCI, PCI-X
 - Standard by PCI-SIG
 - Used in connecton between PC and NIC Root Complex
- Serial communication
 - Speed of 1 lane: 2.5Gbps(Gen1), 5.0Gbps(Gen2)
 - Multilane is supported for high throughput
 - x1, x2, x4, x8, x16
 - Line length is limited
 - 30cm for Gen2 on board
 - 2m with external cable
 - Enough for Embedded or small scale cluster

