@ Center for Computational Sciences, University of Tsukuba
www.ccs.tsukuba.ac.jp

X==MP

XcalableMP : Directive-Based Language eXtention for
Scalable'and Performance-Aware Parallel Programming

Overview of XcalableMP

® XcalableMP (XMP) is a PGAS language for distributed memory system.
® XMP extends C99 and Fortran 95 with directives, Co-array syntax, and user APlIs.
® XMP supports typical parallelization under global-view programming model.
¢ XMP global-view model enables parallelizing the original sequential code using minimal modification
with simple directives, like OpenMP.
¢ The directives can describe data distribution, work mapping, and inter-node communication for clusters.
¢ Many ideas on “global-view” programming are inherited from High Performance Fortran.
® XMP includes Co-arrray Fortran syntax as local-view programming model
¢ Co-array syntax in XMP describes one-sided communication between nodes.
® The important design principle of XMP is performance-awareness.
¢ All actions of communication and synchronization are taken by directives, different from automatic paralleliz-
ing compilers.
* The user should be aware of what happens by XMP directives in the execution model on the distributed me-
mory architecture.

#pragma xmp nodes p(2, 2) 300
#pragma xmp template t(0:(1024*10)-1, 0:(1024*10)-1)
#pragma xmp distribute t(BLOCK, BLOCK) onto p
#pragma xmp align [i][j] with t(j, i) 2 u, uu

#pragma xmp shadow u[1][1] o XMP (Multi-threaded, 1 process x 4 threads per CPU)

g

bt ® MPI (Flat-MPI, 4 processes x 1 thread per CPU)
for (k = 0; k < N; k++) {

#pragma xmp reflect (u)
#pragma xmp loop (x, y) on t(x, y) threads
for (y = 1; y < SIZE-1; y++)
for (x = 1; x < SIZE-1; x++)
uulyl[x] = (uly-1][x] + uly+1][x] + uly](x-1] + uly][x+1]) / 4.0;

#pragma xmp loop (x, y) on t(x, y) threads 50
for (y = 1; y < SIZE-1; y++) .
for (x = 1; x < SIZE-1; x++) 0 — Om
EH] 64 128 5 512
}

g

Performance (GFLOPS)
g

ulyl(x] = uulyl[x); 1 2 4 3 16
code example: Laplace Solver Number of CPUs

® XMP-dev is an extension of XMP for acceleration devices such as DEVICE (GPU)

double a1000100); #pragma il fhones 1)
GPUS #pragrme wmg slgn oV with il 1) for.
. Upragma w=p device, siocRE 8. o 01 = i

® XMP-dev supports clusters equipped with acceleration devices.

® XMP-dev provides directives to describe typical processes of data St b
parallelism for accelerators such as data allocation, transfer and Template | 3 '
task offloading onto devices. R e

® Data distribution and inter-node communication for cluster comput-
ing can be described in XMP-dev.

epragma rodes p4, 4]
i ik Execution Model of XMP-dev

#pragma xmp align [i] with t{i) :: a, hb, db code example of XMP-dev

e}
"

P —

#pragma xmp shadow a[*] ‘E

#pragma xmp device replicate (a) G e

A § - —

int a[N], hb[N], db[N]; % 5k ———— = 4 nodes

void main(void) { -] =2 nodes
(#pragma xmp loop on t(i) 3 . g w — #1node

foclineimi} < J L H Al =2 EE?'J::CU_::":‘”_ 0] a0 60 B 100 120 140 160 180 200 220 240
\#pragma xmp reflect a HOSTAGEL)

y, Performance of N-body (Speed-ups)

#pragma xmp device replicate_sync in {a)

=

Data Size (Number of Particles)
2

(#pragma xmp device loop on t{i)

for (inti=0;i<N;i++){ _
for (int j = 0; | < N; j++) db[i] += alj); DEVICE (GPU)

\J J

-
#

= 4 nodes

5
=

= 2 nodes
u 1 node

®

#pragma xmp gmove
hb[:] = db[:];

8
&
. g
8
g

120 140
(Speed-ups)

8

180 200 220

3

of Matrix

