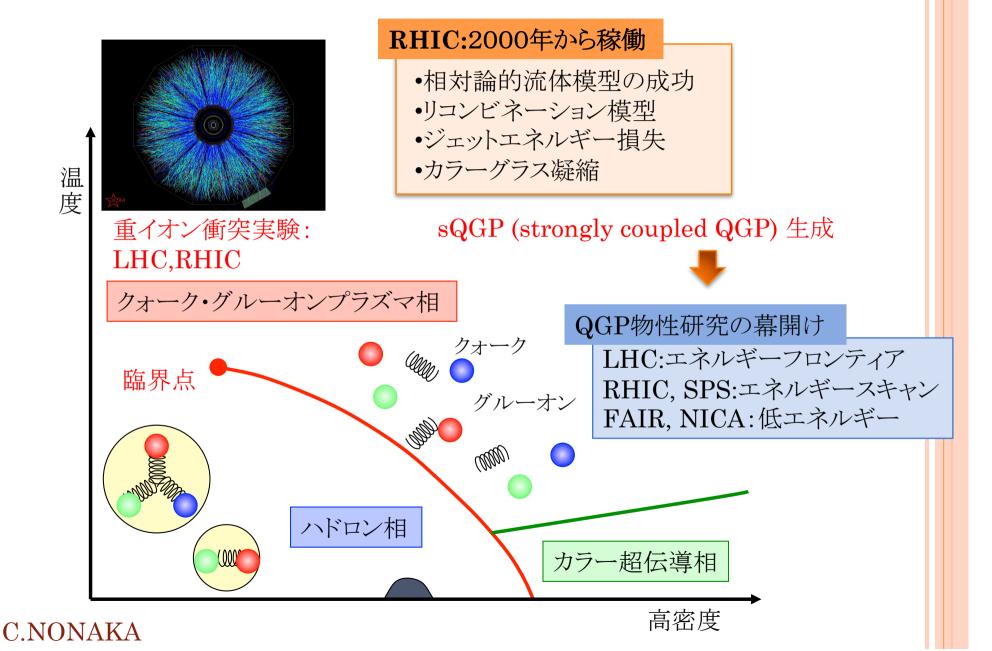
格子ゲージ理論を用いた クォーク・グルーオン・プラズマ相の研究 一高エネルギー重イオン衝突における チャーモニウム

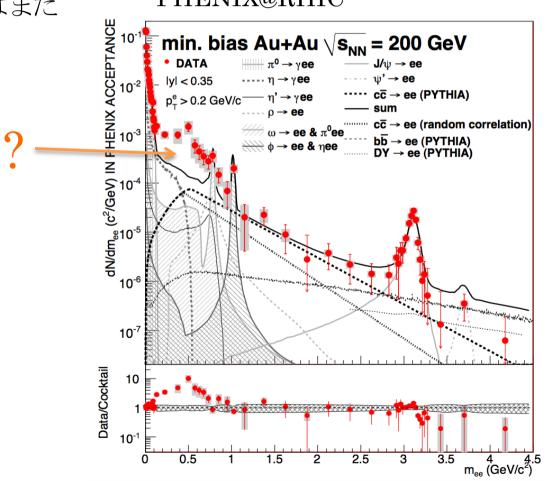
LQGPコラボレーション


浅川正之^a、河野泰宏^a、北沢正清^a、*野中千穂^b、星野武之^b a大阪大学、b名古屋大学

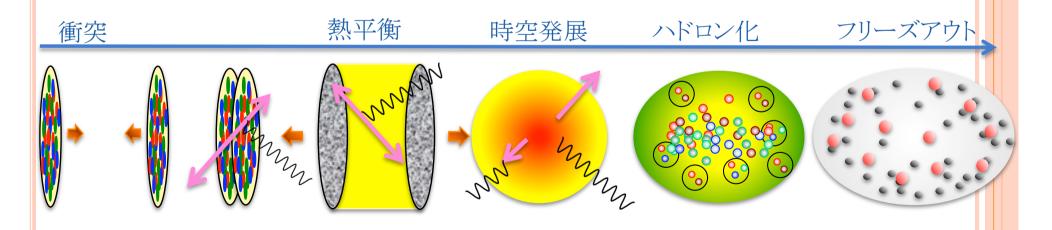
クォーク・グルーオンプラズマ相の微視的理解へ

我々の目標:格子ゲージ理論からのQGP物性研究

- クォーク、グルーオンの一粒子状態
- ○相関
- ○揺らぎ
- フォトン・レプトン対生成率


RHICでの新しいQGP状態の発見

格子ゲージ理論からのQGP物性研究


- RHICでの豊富な実験結果
 - チャーモニウム:J/Ψ抑制
 - 光子・レプトン対
 - 確固とした理解はまだ

PHENIX@RHIC

格子ゲージ理論からのQGP物性研究

- RHICでの豊富な実験結果
 - チャーモニウム:J/Ψ抑制
 - 光子・レプトン対
 - 確固とした理解はまだ
- ○現象論的模型の必要性
 - 重イオン衝突のダイナミクス
 - 熱平衡へ、時空発展、ハドロン化、フリーズアウト

格子ゲージ理論からのQGP物性研究

- RHICでの豊富な実験結果
 - チャーモニウム:J/Ψ抑制
 - 光子・レプトン対
 - 確固とした理解はまだ
- ○現象論的模型の必要性
 - 重イオン衝突のダイナミクス
 - 熱平衡へ、時空発展、ハドロン化、フリーズアウト
- ○第一原理からの理解
 - 格子ゲージ理論
 - 。第一原理計算、数値実験 ← 重イオン衝突実験と相補的
 - 現象論的模型のインプット

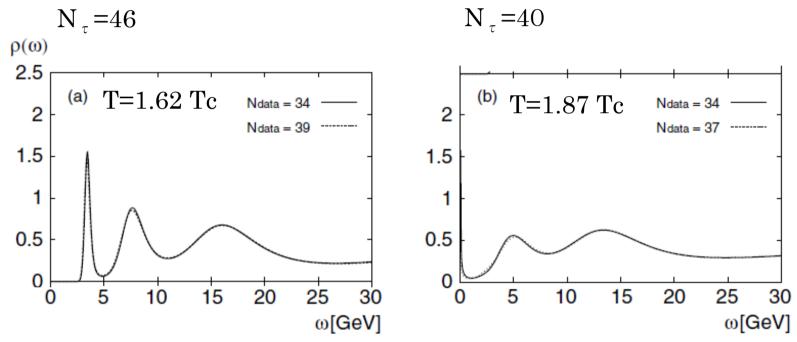
現在の計算状況

•クェンチ近似:プラケット作用

•Wilson フェルミオン

•非等方格子: $\xi = 4$

•格子サイズ:

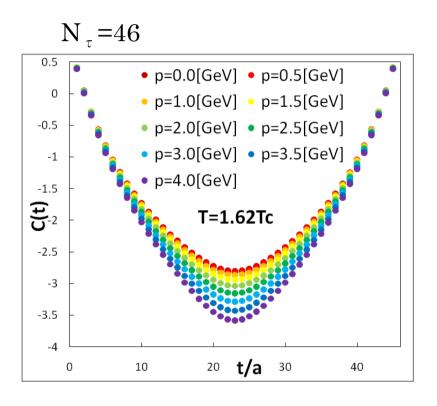

 $N_{\sigma}^{3} \times N_{\tau} = 64^{3} \times N_{\tau}$

Nτ (T/Tc)	目標統計	終了 ゲージ配位	終了 相関関数	
96 (0.78)	400	200	0	
54 (1.38)	400	0	0	
46 (1.62)	400	300	200	—
44	400	200	0	
42	400	200	0	
40 (1.87)	400	300	200	—
32 (2.33)	400	~50	0	

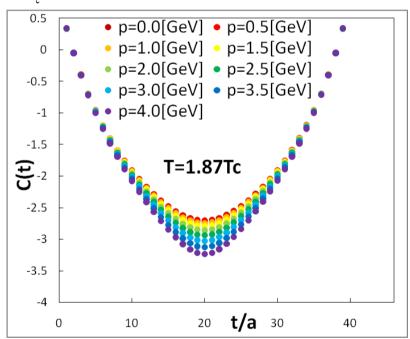
これまでの研究成果

o 重イオン衝突でのJ/Ψ抑制の理解にむけて

$$N_{\sigma}^{3} \times N_{\tau} = 64^{3} \times N_{\tau}, N_{\tau} = 40, 46$$
 の計算の一部終了

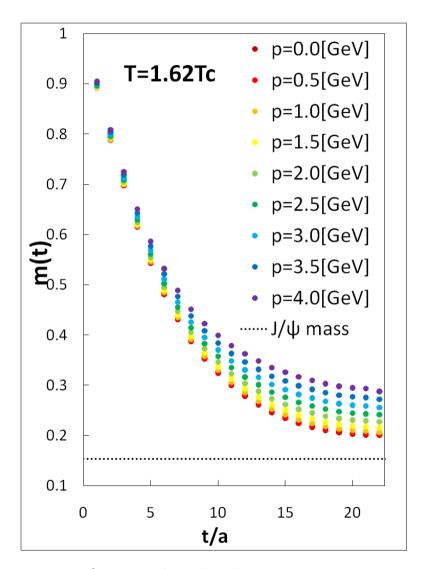

先行研究: Asakawa and Hatsuda, PRL92, 012001

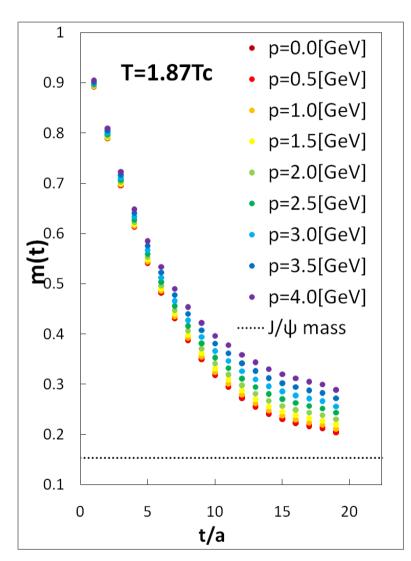
$$N_{\sigma}^{3} \times N_{\tau} = 32^{3} \times N_{\tau}$$


重イオン衝突実験:ダイナミカルな系 → 有限運動量効果

研究成果

ο チャーモニウム: J/Ψ の相関関数 ~100ゲージ配位上 $N_{\sigma}^{3} \times N_{\tau} = 64^{3} \times N_{\tau}, N_{\tau} = 40, 46$ の計算の一部終了




$$N_{\tau} = 40$$

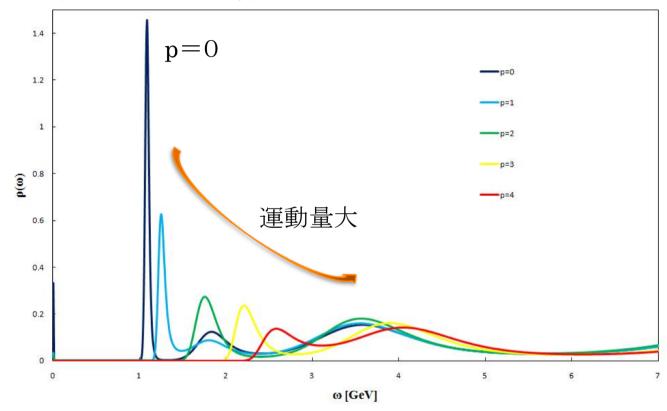
有効質量
$$\frac{C(t)}{C(t+1)} = \frac{\cosh\left[m_{\text{eff}}(t)(N_t/2-t)\right]}{\cosh\left[m_{\text{eff}}(t)(N_t/2-t-1)\right]}$$

有効質量

両温度間で大きな差はみられない

→より詳しいチャーモニウムの情報 → スペクトル<mark>関数</mark>が必要

スペクトル関数


○ Ill-posed 問題:最大エントロピー法で解決

$$C(t,\vec{p}) = \int d\omega \rho(\omega,\vec{p})K(t,\omega)$$
相関関数 スペクトル関数 カーネル ~O(10): 格子上 連続数

- 計算パラメータと物理量によって必要統計量が異なる
 - 先行研究 ~200ゲージ配位上での計算
 - 今回:有限運動量効果を含む計算 → 200以上必要
 - 意味のある計算には400程度必要

テスト計算:有限運動量を考慮したスペクトル関数

小さい格子でのテスト計算:

大きな格子での計算も開始中

目標とする物理成果

QGP物性を第一原理から明らかにする

- チャーモニウム
 - QGP生成のシグナルとしてのJ/Ψ抑制機構の理解
- 軽いメソン: ρ 中間子などの有限温度中の性質
 - レプトン対不変質量分布の実験結果の理解へ
- 光子・レプトン対生成率
 - レプトン対不変質量分布の実験結果の定量的理解へ
 - 現象論的模型(相対論的流体模型)へのインプット