Configuration interactionによる QMC全エネルギーの改善

木野日織(物質・材料研究機構)

共同研究者: Prof. Lubos Mitas (NCSU)

First-principles study

Difficulty of many body problem <- evaluation of correlation energy

$$\frac{e^2}{|r-r'|}$$

DFT

- Using model XC potential, solve as an one-body problem.
- Relatively fast
- Order(N) sometimes

Diffusion Monte Carlo

- •Correlation energy, more than 90%
- **•~**№3.5
- •Parallel, almost 100%
- •time: 1000 folds more than DFT
- Little ambiguity, prediction without exp.

Correlated wavefunciton, Ψ $\Psi = e^J \Phi$

- Φ: CISD,MC,CAS,Pfaffian(extention of Slater Determinant),...
 usually carried out mechanically as a study of optimization algorithm.
- J: Jastrow factor (mainly electron electron repulsion)
- Few precedent. One must study how good/bad, and its accuracy

Nodes of correlated wavefunctions

3D harminic well, unpolarized interacting Fermion

fill space with + and -

Non-interacting

interacting

Too symmetric -> higher energy

L. Mitas, PRL 96 240402 (2006).

(Jastrow factor doesn't change nodal structure.)

M.Bajdich, et al., PRL 96,130201(2006) and his thesis

Mn atom

- Mn: $(3d)^5(4s)^2$, ferromagnetic
- Mn_2 : r_e ~3.5Å, a van der Waals molecule

Problems:

any good choice of configuration space? convergence properties

– Li, Be: near degeneracy problem, $E_{2s} \sim E_{2p}$ ~97% correlation energy for ~20 configuration

- Mn: E_{4s} , E_{4p} ?, f?

Calculations

Mn CI/26(+s,p,d,f)

