& dn University of Tsukuba | Center for Computational Sciences

University of Tsukuba : :
@ Center for Computational Sciences

Division of High Performance Computing Systems

Chief: BOKU Taisuke, Professor, Ph.D., Director of CCS

The High-Performance Computing Systems Division conducts research and development of various hardware and software for High
Performance Computing (HPC) to satisfy the demand for ultrafast and high-capacity computing to promote cutting-edge computational
science. In collaboration with the Center’ s teams in domain science fields, we aim to provide the ideal HPC systems for real-world
problems.

Research targets a variety of fields, such as high-performance computer architecture, parallel programming languages, large-scale
parallel numerical calculation algorithms and libraries, computational acceleration systems such as Graphics Processing Units (GPUs),
Field Programmable Gate Array (FPGA), large-scale distributed storage systems, and grid/cloud environments.

.
Fundamental technologies for parallel /O and storage systems

_
Storage performance has become a bottleneck in large-scale

data analysis and artificial intelligence (Al) using Big Data on
|OR — fie-per-process read/write

supercomputers. To reduce this performance bottleneck, we
are researching and developing fundamental technologies for
parallel input/output (I/0O) and storage systems. We developed
Gfarm/BB, which can temporarily configure a parallel file
system when parallel applications are executed, by utilizing the
storage system of a compute node. We also designed and
implemented a standard library for parallel I/O (NSMPI), which
efficiently utilizes the storage system of a compute node. Both

GiB/s

300

250

200

150

100

50

0

Gfarm/BB
write

0 10 20 30 40

BeeOND
read/write

Gfarm/BB
read

50 60

N
o o

o

Bandwidth [GiB/s]
ad -l N
(#)]

Q O,

o

21.91

2.53
... . 0.64

5 10 Lustre g
Number of Nodes
--Proposal -e-Lustre -=-BeeOND

20

Write

nodes
of them exhibit scalable performance depending on the number

Fig. 1 left: Gfarm/BB read and write performance

of nodes and contribute significantly to reducing performance
right: NSMPI write performance

bottlenecks.

(
High-performance, massively parallel numerical algorithms
_

FFTE—an open-source high-performance parallel
a1 — — | FFT library developed by our division—has an
% 3 1500 || - cmvres
3ol 2, DY o GMRES(00) " auto-tuning mechanism and is suitable for a wide
$n Qé : grid}igescgz(%?EGWBiCGSTABrQ) .

< $11 2 1000 [L_2__Froposed BICGSTAB range of systems (from PC clusters to massively
F o =)) :
" z% parallel systems). We are also developing
! e A X 1 large-scale linear computation algorithms. We
COH(WS(B(HS)(SU(HS(# S &) #Y %S g : :
0123456-764892/7-8; S ‘ constructed a method using the matrix structure of
——++:<6'=$9,.596>2-6-718,9.@e++,<6'=$9,.596>ABCDE&@ 3 : :] i
e ti<6=50,506FGATOH: ot I6%=%) 0 100 200 300 400 S00 gsgddle point problems that enables faster solutions
Number of columns of B and C, m o
Fig. 2 than existing methods.

left: Performance of parallel one-dimensional FFT on Oakforest-PACS (1024 nodes)
right: solution time of saddle point problems

-

GPU computing

_

GPUs were originally designed as accelerators with a large number of arithmetic units for image processing, but they are also able to
perform general-purpose calculations. GPUs have been used to accelerate applications but are now used to perform larger-scale
calculations, often with longer execution times. In shared systems such as supercomputers, there are execution time limits, but time limits
can be exceeded using a technique called checkpointing, which is used to save the application state to a file in the middle of an execution
so that the application can be resumed later.

Because the checkpointing technique for applications using only the central processing unit (CPU) is well established, we extended it to
the GPU. The GPU has its own memory separate from the CPU, and GPU applications control the GPU with dedicated application
programming interface (API) functions from the CPU. We monitor all the calls to these API functions, collect the necessary information to
resume execution, and store it in the CPU memory. Additionally, in the pre-processing of saving the checkpoint, the data in the GPU’ s
memory is collected on the CPU side so that they can be saved together in a file. Because we cannot increase the execution time to
enable checkpoints, we must minimize the overhead of monitoring the API. It is important to minimize the number of API functions to be
monitored and to save only the data that are needed.

https://Iwww.ccs.tsukuba.ac.jp/

