Time-dependent method in laser material interactions
-- a hybrid method of using openmp + MPI + cuda C in Fortran

Xiao-Min Tong

Center for Computational Science
University of Tsukuba, Japan
Outline

- What we are working on
 - **Understand** the mechanism of laser-material interactions
 - **Control** material properties in an ultrashort time scale

- Computational Methods
 - Working Equation: Time-dependent Schrodinger equation (PDE)
 - Space: dynamic important region (Inner, numerical simulation), asymptotical region (outer region, analytic treatment)
 - Many-electron effect: Model potential, Density-functional theory
 - **Code structure for HA-PACS (GPU cluster)**

- Results
 - Above threshold ionization in intense mid-IR field (80GB, 50x6 PFlops)
 - Control the transparency in attosecond time-scale
Status of intense laser

Laser intensity: $10^{12} \sim 10^{16}$ W/cm2

Pulse duration: 4 fs (10^{-15} s) ~

Wavelength: 200 nm ~ 4000 nm
Main mechanism and its application: Rescattering

(a) High harmonic generation
(b) Ionization or dissociation
(c) Image the structure (holography)
Control material properties in attosecond time scale

Insulator \rightarrow conductor (1 fs)

Wang, et al., PRA (2013)

Simulation on HA-PACS

Photoabsorption or no (1 fs)
Working Equations (time-dependent Schrodinger equation)

Initial: \[\Phi_0 \]

Differential: \[i \frac{\partial}{\partial t} \Psi(t) = H(t) \Psi(t) \quad \Psi(t) = U(t, -\infty) \Phi_0 \]

Integral: \[\Psi(t) = -i \int_{-\infty}^{t} U(t, \tau) V_{in}(\tau) U_0(\tau, -\infty) \Phi_0 d\tau + U_0(t, -\infty) \Phi_0 \]

Laser material interactions

Length gauge \[V^{ext}(t) = r \cdot E(t) \quad A(t) = \int_{t'}^{\infty} E(t') dt' \]

Velocity gauge \[V^{ext}(t) = p \cdot A(t) \]
Key step: time-propagator (Split-Operator Method)

Time-propagation:

\[\Psi(t + \Delta t) = e^{-iH(t)\Delta t} = U(t + \Delta t, t)\Psi(t) \]
\[\approx e^{-iH_0\Delta t} e^{-iV(t)\Delta t} e^{-iH_0\Delta t}\Psi(t) + O(\Delta t^3) \]

Discretize space in pseudo-spectra grid:

\[H_0 = H_{r_i,r_j}^0(\ell), \quad \Psi(r_i, \theta) = \sum_{\ell} R_{\ell}(r_i) Y_{\ell,m}(\hat{r}), \quad \Psi(r_i, \ell) = R_{\ell}(r_i) \]

Time-propagation → vector, matrix operations → blas

One time step: 2 zgemv (zgemm): \(NR^2 \times NL \times (Np) \) cublas_
2 zgemm : \(NR \times NL^2 \times (Np) \) cublas_
1 exponential : \(NR \times NL \times (Np) \) Cuda C
Total ops. Z \(4 \times NR \times NL \times (NR+NL+1) \times (Np) \times NT \times K \) (K=1,3)
Outline of the simulation code

MPI_init / GPU_device

Prepare pre-time-pro.

Copy data to GPU

Time-propagation

Output

Eigen value problem (MKL)
S: NR^2 \times \text{LperThread} \times 16
(4000^2 \times 16 \times 15 = 3.8 \text{ GB})

\Psi_0, \quad S(\ell) = e^{-iH_0(\ell)\Delta t/2}

\Psi(t + \Delta t) = e^{-iH_0\Delta t}e^{-iV(t)\Delta t}e^{-iH_0\Delta t}\Psi(t)

\Psi^a(r, \ell) = S_{r\rightarrow r'}(\ell)\Psi(r', \ell) \quad \text{zgemv(m)}

\Psi^b(r, \theta) = T_{\ell\rightarrow \theta}\Psi^a(r, \ell) \quad \text{zgemm}

\Psi^c(r, \theta) = e^{-iV(r,\theta,t)\Delta t}\Psi^b(r, \theta) \quad \text{Cuda C}

\Psi^d(r, \ell) = T_{\theta\rightarrow \ell}\Psi^c(r, \theta) \quad \text{zgemm}

\Psi^a(r, \ell) = S_{r\rightarrow r'}(\ell)\Psi(r', \ell) \quad \text{zgemv(m)}
Structure of code (machine)

One MPI thread

OpenMP+ mkl

Cublas + CUDA C

HA-PACS

Device = mod(myid,4)

MPI
(node 0)
Thread 0
(Device 0)
Thread 1
(Device 1)
Thread 2
(Device 2)
Thread 3
(Device 3)

MPI
(node 1)
Thread 4
(Device 0)
Thread 5
(Device 1)
Thread 6
(Device 2)
Thread 7
(Device 3)

MPI
(node n)
Thread a
(Device 0)
Thread b
(Device 1)
Thread c
(Device 2)
Thread d
(Device 3)
Numerical accuracy:

Single-electron model:

One time-step: random, round-off, double-complex, 10^{-14} (norm)

Time propagation: systematic error:

Graph 1: Time step vs. 1-Norm.

- X-axis: Time step

Graph 2: Ionization probability vs. IR Laser Intensity.

- X-axis: IR Laser Intensity (W/cm2)
- Y-axis: Ionization probability

Legend:
- Integral
- Differential
- V-D
Memory and Work load

2D + Time propagation in spherical coordinates:

Memory: \(k \times 16 \times N_r^2 \times N_L \) (0.5 GB ~ 100.0 GB)
(800, 50 ~ 4000, 300)

Flops: \(k \times N_r^2 \times N_L \times N_t \) (0.5\(N_p \) PFlops, ~ 100\(N_p \) PFlops)

Speed: Double complex:

- Small Job (5 nodes, NO GPU comm): 68%, 1.7x6 TFlops
- Large Job: (20 nodes, With GPU comm): 10%, 1.0x6 TFlops
ATI in intense mid-IR field

ATI: above-threshold ionization

Physical Process: \[A + n \ h\nu \rightarrow A^+ + e \]
ATI in intense mid-IR field

Memory: $\propto \lambda^3$

A typical ATI spectra:

Goal:

• understand the structure: interference between the returning and rescattering electrons

• Information encoded in the structure: inner-work: how the electron interacts with the parent core
Comparison with experiment

HA-PACS: 5 nodes, 20 hrs
Attosecond Streaking

Without IR field

With IR field
Control transparency in attosecond time scale

A

XUV/IR Interferometer

B

Reaction Microscope

EUV pulse 43 eV, ~5fs

IR pulse 1.5 ev, 30fs

ALuminum Foil

Beam Chopper

APT + IR

COLTRIMS
IR assistant Photoabsorption cross sections
Control transparency

Applications:

Generate a super-fast optical switch

in femto or atto second time domain

ON

OFF
Future works

- Code work: move to K20, 2.5~3 times faster than Fermi20
- Extend the present method to TDDFT-SIC
- Search the best way to generate HHG
- Search a way to control molecular dynamics from as to ps
- …
- how to minimize the communication time

MPI on the GPU level?